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Abstract
Background: Adaptive game software has been successful in remediation of dyslexia. Here we
describe the cognitive and algorithmic principles underlying the development of similar software
for dyscalculia. Our software is based on current understanding of the cerebral representation of
number and the hypotheses that dyscalculia is due to a "core deficit" in number sense or in the link
between number sense and symbolic number representations.

Methods: "The Number Race" software trains children on an entertaining numerical comparison
task, by presenting problems adapted to the performance level of the individual child. We report
full mathematical specifications of the algorithm used, which relies on an internal model of the
child's knowledge in a multidimensional "learning space" consisting of three difficulty dimensions:
numerical distance, response deadline, and conceptual complexity (from non-symbolic numerosity
processing to increasingly complex symbolic operations).

Results: The performance of the software was evaluated both by mathematical simulations and by
five weeks of use by nine children with mathematical learning difficulties. The results indicate that
the software adapts well to varying levels of initial knowledge and learning speeds. Feedback from
children, parents and teachers was positive. A companion article [1] describes the evolution of
number sense and arithmetic scores before and after training.

Conclusion: The software, open-source and freely available online, is designed for learning
disabled children aged 5–8, and may also be useful for general instruction of normal preschool
children. The learning algorithm reported is highly general, and may be applied in other domains.

Background
In the last few decades, cognitive neuroscience research
has revealed that developing cognitive brain systems

appear to show considerable plasticity in response to early
brain lesions or neuronal disorganization. Although
many of the constraints and critical periods for plasticity
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remain to be defined, this finding has already started to be
applied to education, particularly to the field of learning
disabilities. To provide the intensive training necessary to
induce long-lasting brain changes, researchers have
designed "adaptive games", i.e. computer programs which
use algorithms to adapt to an individual child's ability
and provide intensive training in an entertaining context.
This approach has now been successfully used to improve
language and reading performance in children with spe-
cific language impairment (SLI) and dyslexia [2-4]. Func-
tional magnetic resonance imaging (fMRI) has shown
noticeable changes in brain activity associated with adap-
tive game remediation, including a partial restoration of
normal activation in reading-related areas [4].

Adaptive game software has the potential to maintain the
difficulty of an educational task within the "zone of prox-
imal development" [5], minimizing failure whilst main-
taining adequate difficulty, thus providing a presumably
ideal level of cognitive stimulation needed for progress.
The use of computer aided instruction also allows us to
capitalize on the fascination that children have for com-
puter games, which makes it easier to provide intensive
training on exercises which might otherwise become bor-
ing for them. In modern societies, computers have
become so ubiquitous that computer-aided instruction is
now low-cost, and can be used in either the home or the
school environment.

In this article we report the first development of an adap-
tive game for remediation of dyscalculia, inspired by cog-
nitive neuroscience research. Dyscalculia, or
mathematical learning disability, is thought to have a
prevalence of 3–6% [6-9], similar to that of dyslexia, but
is extremely under-researched in comparison, despite the
grave professional and societal consequences which it
entails [10]. It is unknown whether dyscalculia can be suc-
cessfully remediated, or whether in general the brain cir-
cuits involved in numerical cognition show
developmental plasticity [11]. However previous success
has been shown in school-based intervention with chil-
dren at-risk for low mathematical achievement [12,13], as
well as in neuropsychological training in adults with
acquired dyscalculia [14]. Inspired by this work, and that
in the dyslexia field, our aim was to develop a fully autom-
atized computerized adaptive game that would be enter-
taining, and yet would inconspicuously provide intensive
training in number sense.

The article is structured as follows. We first outline the key
instructional principles used in designing the software.
We then discuss the software design and development in
detail. Finally, we report on the performance of the soft-
ware both in mathematical simulations and in five weeks
of use by nine children with mathematics learning diffi-

culties. In a companion article [1], we present a first open-
trial study in full detail, including results of number sense
and arithmetic tests before and after training. This article
also discusses dyscalculia in more depth.

Instructional principles
The design of the software was based on several instruc-
tional principles relevant to the remediation of develop-
mental dyscalculia, although these principles may be
equally pertinent to the instruction of mathematics for
younger non-dyscalculic children. We mention possible
symptoms and causes of dyscalculia here only briefly and
where relevant to particular design features.

1. Enhancing number sense
Our most important design principle was that of enhanc-
ing quantity representation, or number sense. We now
know that one of the most fundamental aspects of numer-
ical cognition is the ability to represent and manipulate
approximate numerical quantities in a non-verbal format
[15-18]. This ability remains at the core of many numeri-
cal tasks, even once symbolic representations such as Ara-
bic digits have been learned. We and others have
suggested that dyscalculia may involve an impairment in
quantity representation or its access via symbolic repre-
sentations (the "core deficit" theory) [19-24].

In order to enhance number sense, we firstly selected
number comparison as the primary task of the software.
Number comparison is a simple task which draws heavily
on quantity representation [15,25-27], and which pro-
duces activity in the area of the brain thought to underlie
a neuronal code for numerical quantity, the horizontal
intra-parietal sulcus (HIPS) [28,29]. The difficulty of the
task and degree of associated brain activity is modulated
by numerical distance in adults and children [30,31]. Dys-
calculic children and children who are at risk for mathe-
matical under-achievement perform slowly or
inaccurately in numerical comparison [13,22,32-34]. Our
comparison task included varying levels of numerical dis-
tance, thus allowing the software to adapt to the current
level of precision of the child's quantity representation.
We also included an adaptable response deadline to
encourage faster, increasingly automatic access to quantity
representation.

The software was also designed to emphasize the associa-
tion between representations of number and space, which
are known to be closely linked [15,27,35]. One previous
highly successful number sense intervention achieved this
by capitalizing on the key features of board games, in
which the number/space link is concretized as playing
pieces are moved along the board; the distance of their
moves being enumerated or estimated numerically by
children [12,13].
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2. Cementing the links between representations of number
As mentioned above, a core deficit in number sense could
be caused by a deficit in number sense itself, or in the links
between this representation and learned symbolic repre-
sentations of number. Our second instructional principle
was therefore to cement links between non-verbal quan-
tity representation and other developing symbolic repre-
sentations of numbers, such Arabic numerals or number
words. This was achieved by the following two methods:
a) a scaffolding procedure which required children to rely
increasingly on symbolic representations in order to per-
form the numerical comparison task, and b) a "repeated
association" feature which concurrently presented all
three number formats after the child had made their
response to this task.

3. Conceptualizing and automatizing arithmetic
A third instructional principle was to increase understand-
ing of and fluency of access to very basic addition and sub-
traction facts. Dyscalculic children tend to show a
developmental delay in procedures used to calculate sim-
ple addition and subtraction sums, as well as fact retrieval
deficits. In particular, they tend to use laborious finger
counting procedures when other children have already
switching to verbal counting, decomposition and, later,
memory retrieval procedures. [36-38]. This delay seems to
be extremely persistent, with a series of longitudinal stud-
ies by Ostad [39,40] showing that it lasts at least up until
5th grade for addition and 7th grade for subtraction. It
could be that dyscalculic children are slow to develop
these more advanced procedures and to memorize facts
because of a difficulty understanding the meaning of
numbers and the operations concerned. At higher levels of
difficulty of the software we therefore included small
addition and subtraction facts which children had to solve
prior to making a numerical comparison. These opera-
tions were reinforced with concrete representations of sets
of objects undergoing the corresponding transformations.
The aforementioned adaptable response deadline added
speed pressure to these arithmetic tasks, thus progressively
encouraging the use of more advanced procedures such as
fact retrieval or decomposition.

4. Maximizing motivation
Finally, a fourth important instructional principle com-
mon to all adaptive games was to maintain attention and
motivation by providing sufficient positive reinforce-
ment. This was achieved by the adaptive algorithm itself,
which was programmed to continuously adapt task diffi-
culty in order to maintain performance at 75% correct. In
addition to maximizing motivation, this "rewarding"
environment may help with other problems which can be
associated with dyscalculia. For instance ADHD (atten-
tion deficit and hyperactivity disorder) appears to be
highly associated with dyscalculia [7], and children with

this disorder may benefit from a high-reinforcement envi-
ronment [41]. It addition, a high reward rate may help
reduce the considerable anxiety that many dyscalculic
children experience when exposed to mathematics [42],
by associating mathematical activity with a positive emo-
tional state.

Potential for general instructional use
As mentioned earlier, although the initial conception and
testing of the remediation was for and with dyscalculic
children, it is likely that these same principles would aid
in the development of number sense for non-dyscalculic
children, at an earlier age. Thus there is potential for this
software to be used with children who are at risk for
under-achievement due to socioeconomic status, or with
children who are just learning the meaning of number
symbols. In the next year, in association with collabora-
tors, we will be testing the software in normal kindergar-
ten children to see if it can accelerate their learning.

Methods
"The Number Race" software was programmed by Anna
Wilson, over the period of one year. It is written in Java
and is thus multi-platform. The current version is availa-
ble in French and German; however English, Swedish, and
Finnish translations are planned. The software is under a
GNU license, and is thus open source and freely available.
It can be downloaded from our lab website [43].

Overall game design
There are two main screens in the game. On the "compar-
ison screen" (Figure 1a), children carry out a numerical
comparison task, choosing the larger of two quantities of
treasure (ranging from 1 to 9). This is the primary task
whose difficulty is manipulated by the adaptive algorithm
(see following section for full explanation). On some tri-
als the task has a response deadline; the competitor char-
acter which children play against (controlled by the
computer) moves to take the largest quantity if the child
does not respond in time. In higher levels, the child may
have to add or subtract in order to make the comparison
(Figure 1b). Prior to the child's choice, the quantities can
be presented in non-symbolic format (sets of "gold
pieces", which are controlled for density or luminance), in
symbolic Arabic format (digits), in symbolic verbal for-
mat (spoken number words), or in a combination of these
formats. After they make a choice, they are presented with
all three of these formats (e.g. they see five coins, the digit
5, and hear "you chose five"), and they also receive feed-
back on who has "won" this turn (e.g. "You've got the
most!").

After choosing on the comparison screen, children move
to the "board screen" (Figure 1c) where they use their set
of gold pieces to advance in a race against the competitor
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character. They have to move their character (and then
their competitor) by the same number of squares as each
has gold pieces. They do this by clicking the gold pieces
onto the board in one-to-one correspondence. This can be
done one at a time, or by counting and clicking only on
the correct end square, in which case the pieces move all
at once. The number of squares is counted out aloud by
the computer as the child clicks the gold pieces in place,
and again as their character moves. Children receive feed-
back on the relative position of the two characters (e.g.
their competitor says "I'm way behind!", or "Oh no!
You've overtaken me!"). At higher levels, they have to try
and avoid hazards, which appear at random on some
board squares and cause characters to go backwards when
landed on.

When children reach the end of the board before their
computer-driven competitor does, they collect a reward.
After enough rewards are collected, they can unlock a new
character to play with. The new character has new anima-
tions, but the core game tasks remain exactly the same.

Adaptive dimensions
We used a multidimensional learning algorithm to con-
stantly adapt the difficulty of the program to the child's
performance level. Adaptation was implemented using
three dimensions of difficulty, which were based on our
instructional principles and our knowledge of the key
determinants of performance in basic numerical cogni-
tion in adults and children. Below we describe these
dimensions conceptually, and in the following section,
mathematically.

1. The first dimension, "distance", increases difficulty of
the numerical comparison by decreasing the numerical
distance (as measured by the Weber ratio) between the
two compared quantities. This dimension is designed to
adapt to the precision of the children's quantity represen-
tation, and to push children to progressively increase this
precision.

2. The second dimension, "speed", implements an
increasingly short deadline by which the child must
respond. This is designed to increase speed and automa-
ticity of to quantity representations, and to encourage
more efficient calculation and eventually memory recall
of simple number facts. At the lower end of this dimen-
sion, there is no deadline, so that if children are particu-
larly slow at a task, they will still be able to succeed.

3. The third dimension, "conceptual complexity", is a
composite dimension which is designed to move children
along a pedagogical progression which teaches them
about number symbols and elementary arithmetic. Diffi-
culty is increased in two ways: 1) by decreasing the ratio

Screen shots from the "The Number Race" rehabilitation softwareFigure 1
Screen shots from the "The Number Race" rehabili-
tation software. a. Sample comparison screen. The child 
plays the character of the dolphin, and has to choose the 
larger of two numerosities, before her competitor (the crab) 
arrives at the key and steals the larger quantity. b. Another 
sample comparison screen, taken at a higher difficulty level 
on the "complexity" dimension where addition and subtrac-
tion are required to make a correct comparison. The screen 
shows how operations are concretized by corresponding 
operations on sets of objects, after one of the characters 
wins (in this case the competitor). c. Sample board screen. 
After each comparison, the child uses tokens won to move a 
corresponding number of squares on the game board, where 
she must avoid landing on hazards (here depicted by anemo-
nes). Once she arrives at the end of the board, she wins a 
"reward" fish to add to her collection. Winning enough of 
these rewards unlocks access to the next character.

a.

b.

c.
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of non-symbolic to symbolic information available to
make a choice between the two quantities on the "choice
screen", and 2) by introducing addition and subtraction at
higher levels. These steps were designed to cement links
between symbolic and non-symbolic representations of
number, and to increase understanding and of and flu-
ency of access to simple arithmetical facts. However the
dimension includes some other aspects, such as restricting
magnitude range at times, and adding hazards to the
board (see Table 1 for full details).

A multidimensional adaptive algorithm
The combination of the three above dimensions can be
seen as constituting a "learning space". If we represent dif-
ficulty on each dimension using the interval zero to one,
this learning space can be visualized as a cube. Children
can be presented with a problem at any point in this
space, and will have different probabilities of success for
problems at different points. For instance a relatively easy
problem which is at 0.1 difficulty on all three dimensions
might have a high probability of success, whereas a more
difficult problem located at 0.9 on all dimensions might
have a low probability of success. Thus, the three-dimen-
sional matrix giving the probability of success at each
point in the learning space can be thought of as an opera-
tional definition of the current knowledge of the child.
Different children can be expected to show different prob-
ability of success matrices. For instance, imagine a child
who has little difficulty with numerical distance but great
difficulty in responding fast, and who, whilst understand-
ing Arabic digits, has not fully mastered addition or sub-
traction. We could imagine that the "knowledge area" of
this child might consist of a rectangular volume of high
probability of success which extends over most of the dis-
tance axis, little of the speed axis, and half of the "com-
plexity" axis, whereas the rest of the area would be
occupied by low probability of success. As the child learns,
the high probability of success area ought to expand to
occupy more of the total knowledge space.

How can an adaptive algorithm be written to model
knowledge and learning in a multidimensional learning
space such as this? The task of this algorithm is to estimate
what the knowledge space looks like for each child, and to
present children with problems on which the child will
perform well most but not all of the time, i.e. problems in
their "zone of proximal learning". The algorithm must be
able to continuously update its representation of the
child's knowledge space as he or she learns.

We solved this problem by using a probabilistic explora-
tion of the knowledge space. The algorithm samples
points within the space and uses the child's response to
these problems to build an interpolated model of the
entire knowledge space. Each turn of the game, the algo-

rithm calculates performance over the last 20 turns, and
selects a problem in the space which it estimates to be at
the difficulty level required to maintain performance at
75% correct.

Algorithm specifications
Goal
The purpose of the algorithm is to adapt to the perform-
ance of a learner in an n-dimensional problem space,
composed of continuous or discrete dimensions, main-
taining their success rate close to a pre-specified fixed
level. This is achieved by estimating the learner's current
knowledge in a discrete model of this problem space, and
by using this representation to present the learner with
problems at the level of difficulty required to maintain the
desired success rate.

Modeling of knowledge
If n = the number of dimensions along which problem
difficulty may vary, then we represent the estimated prob-
ability of success on all possible problem types in an n
dimensional matrix (K), of size m on each dimension (the
"knowledge matrix"), which discretizes the learning space
cube of size [0,1]n. The value of m determines the "resolu-
tion" of the algorithm, and must be sufficiently large to
allow adequate representation of the knowledge space,
but not so large as to excessively slow computation. In our
implementation, n = 3 and m = 20, hence K is a 20 × 20 ×
20 matrix. Assume zero initial knowledge, by initializing
all elements to the chance success rate (c).

Selection of problem difficulty
Let: S = average desired success rate; α = learning rate
adjustment factor; and σ = standard deviation of scatter
function. On a given trial, in order to ensure that p(correct
response) ~ S, use the following procedure:

1. Calculate the desired success (s) for this trial as follows:

a. For the first five trials, s = S.

b. For all other trials, let r = the average success on the
last 20 (or less) trials. s = S - α (r - S)

Note: low values of α will reduce large fluctuations in s,
but will also result in slower adaptation to the learner's
performance.

2. Identify the point (or points) in the knowledge space
matrix (K) whose value is closest to that of s.

Note: an alternative method is to use a tolerance value t
(e.g. 0.05), and identify all points whose value lies in the
interval s ± t. If no points are found, increment t by an
increment value i, (e.g. 0.01), and repeat.
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Table 1: Conceptual complexity dimension levels

Level Format given before choice: Range restriction? 
(numbers 1–5 only)

Dot fading 
present? 
(duration)

Hazards 
present?

Addition 
required?

Subtractio
n required?

Instructional goal

Non-
symbolic 
(dot clouds)

Symbolic: 
Verbal (spoken 
numbers)

Symbolic: 
Arabic 
(digits)

1 Yes No No Yes No No No No Attention to and processing of small non-symbolic quantities
2 Yes No No No No No No No Attention to and processing of large non-symbolic quantities
3 Yes Yes Yes Yes No No No No Link small non-symbolic quantities to symbolic codes
4 Yes Yes Yes No No No No No Link large non-symbolic quantities to symbolic codes
5 Yes Yes Yes No Yes (4 sec) No No No Increase reliance on symbolic codes
6 Yes Yes Yes No Yes (1 sec) No No No Further increase reliance on symbolic codes
7 No Yes Yes No No No No No Require complete reliance on symbolic codes
8 No No Yes No No No No No Require complete reliance on Arabic code
9 No No Yes No No Yes No No Attention towards exact quantity
10 No No Yes Yes No Yes Yes No Comprehension and fluency of small addition problems
11 No No Yes No No Yes Yes No Comprehension and fluency of larger addition problems
12 No No Yes Yes No Yes No Yes Comprehension and fluency of small subtraction problems
13 No No Yes No No Yes No Yes Comprehension and fluency of larger subtraction problems
14 No No Yes No No Yes Yes Yes Distinguishing between addition and subtraction

Notes.
"Range restriction" means that the range of quantities presented was from 1–5.
"Dot fading" means that the collections of gold pieces were faded from view in the space of either 1 or 4 seconds, gradually helping to introduce a reliance on symbolic codes.
"Hazards" means that there were new anemone hazards placed on the game board, which children had to try and avoid, encouraging a focus on exact quantity
In addition trials, instead of presenting a simple quantity, an addition problem with a sum of up to 9 was presented on one side of the screen.
In subtraction trials, the problems had operands of 9 or below, and thus a result of 8 or below.
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3. Pick one of these matrix points at random, and convert
it to a vector on the difficulty scale (i.e. in the range
[0,1]n).

4. Sample the final problem difficulty (a vector, d, also in
the range [0,1]n) from a Gaussian distribution whose
mean is at the point selected in the previous step, and
whose standard deviation is σ.

5. Present a problem at difficulty level d to the child, and
collect the child's response (correct or incorrect)

Updating of the knowledge space
The observation that the learner succeeded or failed at
problem d allows us to update the estimated knowledge
matrix, K. Let: ω = adjustment rate; and g = generalizing
distance (which is proportional to m). After each trial, use
the final problem difficulty vector (d) determined in step
(4) above, and the resulting Boolean success (γ = 1 for suc-
cess, 0 for failure) to update the knowledge matrix (K), as
follows:

1. Generalize weakly to neighboring problems:

a. Let v = the difference vector between d and each
location in K.

b. Let the distance factor, β, = . (Note: |v|1

= the L1 norm of v, or the sum of its elements.)

c. For all elements of K for which |v|1 ≤ g, adjust the
estimated knowledge as follows: kcurrent = (1-ωβ)kprevious
+ ωβγ

2. In case of success, generalize to all simpler problems:

a. Set β = 0.5

b. For all elements of K for which all indices are
smaller than or equal to the corresponding elements
of d, adjust the estimated knowledge as follows:

kcurrent = (1 - ωβ)kprevious + ωβγ

3. In case of failure, generalize to all harder problems:

a. Set β = 0.5

b. For all elements of K for which all indices are larger
than or equal to the corresponding elements of d,
adjust the estimated knowledge as follows:

kcurrent = (1 - ωβ)kprevious + 0.5ωβγ

Note: The following parameter values were used in our
implementation:

n = 3, m = 20, c = 0.5, S = 0.75, t = 0.05, i = 0.02, α = 0.7,
σ = 0.05, ω = 0.5, g = 4

Operational definition of our three adaptive dimensions
As above, let d be a point in knowledge space, defined by
its three coordinates (ds, dd, dn), where ds = difficulty for
speed dimension, dd = difficulty for distance dimension
and dc = difficulty for complexity dimension. We now
describe how particular values of these coordinates (the
di) are converted into actual problems presented to chil-
dren. Note that we assume that the di are real numbers in
the interval [0,1]. As described in the previous section, the
knowledge space is discretized in m steps. In that case, if
the δi ∈ {1, m} are the indices of the matrix K, one can let
di = (δi - 1)/(m - 1)

Distance dimension
The difficulty on the distance dimension dd, is used to
select the pair of numbers x and y which are presented to
the child for number comparison. We suppose that x is the
larger number of the pair, and choose x such that

x = floor((xmax - xmin +1)α + xmin),

where xmax = the largest possible value of x (which varies
with the difficulty on the complexity dimension; see
below), xmin = the smallest possible value of x (always 2 in
our implementation), and α = a value randomly picked
from a uniform distribution in [0,1].

Then choose y such that

y = min(floor( ),(x - 1))

Apart from eliminating rounding error, this equation
ensures that log y = log x + δ, where δ = (dd - 1).log R, and
R = the maximum desired ratio of x/y, with the constraints
that y ≥ 1, y <x. In our implementation, we used R = 2.

Speed dimension
The deadline duration (v) which is used on a given trial is
determined by the following functions:

if ds <α, v = infinity

else if ds ≥ α, v =  + vmin

where vmin = asymptotic minimum deadline duration (in
seconds)

vmax = maximum deadline duration (in seconds)

1
1
1−

+
⎛

⎝
⎜

⎞

⎠
⎟

| |v

g

xR dd −( )1

rd cs −
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r = deadline decrease rate

α = difficulty level at which deadline begins to be insti-
tuted

and  

We used the following parameters in our software: vmin =
0.25, vmax = 10, r = 0.001, α = 0.3.

Conceptual complexity dimension
The complexity level (l) which is used on a given trial is
determined by the following equation, where n is the total
number of levels:

l = Floor(dn·n) + 1

We used 14 complexity levels, whose detailed description
is provided in Table 1.

Results
Validation by simulation
We tested the design of our algorithm by developing a
Matlab model which simulates a child playing the game.
This allowed us to run the algorithm through many tests
at a high speed without being slowed by the graphical
aspects of the game in Java, and to easily produce graphs
of the algorithm and simulated children's performance.

There are many ways in which a child's learning could be
simulated, and several were successfully tried. Here, we
report solely on our simplest attempt, which modeled the
child's knowledge as a rectangular volume of increasing
size. Our child simulator module worked by representing
the child's knowledge at a given moment by a knowledge
matrix representing the success probability at each point
in learning space, as in the adaptive algorithm. Probability
of success at a given problem was given by a sigmoid func-
tion of the distance between the problem's location and
the subject's "knowledge threshold", a set of three coordi-
nates which specified the location in knowledge space of
the corner of the subject's rectangular zone of high knowl-
edge. This could move up from trial to trial, thus simulat-
ing learning. The speed of learning was assumed to be a
function of the derivative of the sigmoid (i.e. learning
occurs at the fastest rate when the child is tested on prob-
lems that are slightly harder than his/her current ability).
We assumed that the rate of learning could be different in
different dimensions.

Simulations with a fixed level of the child's knowledge
The goal of this first simulation was to study the perform-
ance of our algorithm with a simulated child who has a
fixed level of knowledge (although not the same value on
all dimensions), and zero learning rate. We examined
whether the algorithm was able to develop an adequately
accurate model of the child's ability. Figure 2a shows the
final estimated knowledge space produced by the learning
algorithm (after 500 trials), which models fairly well the
shape of the knowledge space defined in the simulator
module. Figure 2b shows a different type of measure, the
"knowledge volume" (defined as the proportion of
knowledge space with an estimated probability of success
greater than 75%). Here we can see that after about 100
trials the algorithm clearly distinguishes between children
with different levels of fixed knowledge.

Simulations of the evolution of the child's knowledge
The goal of the second simulation was to investigate how
well the algorithm could respond to different rates of
learning. Thus the simulation was run with simulated
children who started with the same level of knowledge,
but had different learning rates for different dimensions.
Figure 2c shows the change in knowledge volume
observed. We can see that the rate of increase in knowl-
edge volume is a function of the learning rate, especially
after around 120 trials. Thus, the algorithm successfully
adjusts to children's changes in learning rate. Further sim-
ulation (not shown) confirmed this capacity to track such
changes even when the learning speed differed across the
three different dimensions.

Validation by testing in children
We tested the software in a 5-week open-trial study with
nine children who had mathematics learning difficulties.
The method and results of this study are fully described in
the accompanying paper [1]; here we describe only the
performance of the software itself. Children used the soft-
ware for half an hour per day, four days a week, over a five
week period.

Analyses
We analyzed children's data from the software in order to
assess whether it had performed as expected. Overall, the
program was fairly successful in maintaining a challeng-
ing yet rewarding level of play. Following an initial period
of high success, children's performance quickly entered
the 80–90% range, and eventually all children stabilized
at around 75% across trials (see Figure 3). However this
stabilization at the desired success rate took longer than
expected, not occurring until around 250 trials. This may
have been caused by fact that the algorithm assumed zero
starting knowledge for each child, and then took some
time to adapt up to his or her ability level. In a revised ver-
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Simulations of the adaptive algorithm and measures of learningFigure 2
Simulations of the adaptive algorithm and measures of learning. a. Knowledge space estimated by the algorithm (top) 
after 500 simulated trials, shown as five "slices" through the three-dimensional knowledge space cube. Red represents high 
probability of success, blue high probability of failure, green background = chance level (50%). The estimated knowledge space 
resembles the actual knowledge surface (bottom) that was used by the simulator module. b. Estimated knowledge volume as a 
function of the number of trials. Simulated children had a knowledge limit of a rectangular cube of a particular size starting at 
the origin beyond which they could not progress. It can be seen that the algorithm quickly converges towards the appropriate 
knowledge volume (approximately the cube root of the imposed limit). c. Here, simulated children had no knowledge limit, but 
variable learning rates. The program tracked the progressive increase in the knowledge volume. (Knowledge started at 0.5 on 
each dimension).
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sion of the software, this problem has been addressed (see
below).

Secondly we examined the software data for evidence of
progress in performance. The same Matlab programs that
were used to analyze the simulation data were used to
construct models of how the children's estimated knowl-
edge space changed over time with utilization of the soft-
ware (e.g. Figure 4a). All children showed evidence of
progress using the software, as measured by an increase in
knowledge volume (Figure 4c). Children's curves on this
measure were similar to those from simulations with a
moderate learning rate, and were considerably lower than
simulations of children with a perfect fixed knowledge.
This confirms empirically that the software challenged
children. Furthermore, empirical evidence of learning
could be seen, inasmuch as children showed progress in
areas where they initially failed. For instance in Figure 3b
we can see several locations within the learning space
where a child initially made errors, but where perform-
ance was later almost perfect. Similar evidence can also be
seen in a movie which shows the change in knowledge
space over time for one particular child (additional file 1).

Finally, different children showed different profiles of per-
formance and of knowledge acquisition, as evidenced by
the progression at different rates on different difficulty
dimensions. For example, in Figure 4d we can see a com-
parison between two children's performance on the dis-
tance and complexity dimensions, suggesting a double
dissociation: One child progresses quickly on the distance
dimension, but slowly on the complexity dimension, sug-
gesting a need to increase understanding of symbolic
numbers and/or fluency of elementary arithmetic, while
the other child shows the converse pattern, suggesting a
greater need to increase precision in the representation of
quantities.

Observations
Our informal observations from the remediation sessions
confirmed that children enjoyed using the software. Feed-
back from parents and teachers was also positive. Teachers
reported that children's confidence in their mathematical
ability improved, possibly a result of a new positive asso-
ciation with math created by the rewarding game. Aspects
of the game which children found particularly rewarding
and entertaining were the speed deadlines, the character
animations, the sound feedback, and winning rewards
and new characters.

Some problems in the software design were identified.
The principal difficulty observed was that after about 10
hours of use (an average of 420 trials), children tended to
become bored with the software. In the following section,
we discuss why this might be the case, and possible meth-
ods to combat this effect.

Discussion
Simulations showed that the algorithm correctly adapted
to both simulated children's knowledge and learning
rates, even when these were different across different
dimensions. Results from real children were similar to
simulation results, showing that children did learn in the
process of using the software. Of course, in order to rigor-
ously test the effectiveness of the software in remediation
of dyscalculia, children's performance needs to be tested
using independent pre and post tests. The accompanying
paper [1] presents this methodology and analysis for the
same group of children; thus we defer such discussion to
it, and focus here on details relevant to the software design
and future uses.

The potential for future uses and adaptations of the soft-
ware is promising. Children who used the software
showed different profiles of performance on different
dimensions, suggesting that response to the intervention
could be an interesting variable to investigate in the future
with a larger sample. For instance, perhaps children with
different subtypes of dyscalculia might perform better or

Performance of the adaptative algorithm in ensuring a defined level of successFigure 3
Performance of the adaptative algorithm in ensuring 
a defined level of success. Children's average mean suc-
cess at each trial in the software study (measured as a run-
ning average of the last 20 trials for each child, and averaged 
across all nine participants). This gives an indication of how 
well the software adapted to children's performance, i.e. how 
well it stayed at the desired mean success rate of 75%. We 
can see that for the first half of the remediation, mean suc-
cess was higher than 75%, but it eventually converged close 
to this value.
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Performance of the adaptive algorithm in tracking the knowledge of actual childrenFigure 4
Performance of the adaptive algorithm in tracking the knowledge of actual children. a. Estimated knowledge space 
at the end of training for one subject (same format as figure 2a). This subject attained a high level of achievement in distance 
and complexity dimensions, but remained limited in the speed dimension. b. Regions of knowledge space where errors were 
corrected in the course of training. The graph shows the probability density of errors observed throughout the training period 
which were later corrected (i.e. at the end of training the corresponding region had an estimated probability of success > 0.95). 
c. Evolution of the knowledge volume for six representative children. All showed evidence of learning (compare figure 2b). d. 
Here we compare the evolution of knowledge for two children; measured in a narrow rectangular cube along each dimension, 
which allows a relatively bias free measurement of progress for that dimension in particular. Both children quickly hit an asymp-
tote on the speed dimension, but their performance showed a double dissociation along the distance and complexity dimen-
sion. Note: The dotted curves in figures c and d are included for comparison and represent knowledge volume change over 
time in simulations with a fixed knowledge of 0.4 and 1 (as in figure 2b).
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worse on particular difficulty dimensions of the software.
Children's response to the intervention could also be used
in the future to investigate different theories of dyscalcu-
lia. As discussed earlier, our software design takes into
account two possibilities as to the "core deficit" underly-
ing dyscalculia; a) an impairment in number sense itself,
and b) a impairment in the links between the quantity
representation and the symbolic representations of
number, without a direct deficit of number sense per se.
Children in whom the first cause is dominant should ben-
efit primarily from training on the distance dimension,
while children with impaired symbol-quantity links
should benefit primarily from training on the complexity
dimension. Furthermore, with minimum changes to the
complexity dimension, a purely non symbolic version of
the software, training children solely to compare the
numerosity of sets of dots, could be made. If children still
showed a response to this version (using pre and post
tests), this would support an impairment in non-symbolic
number sense as the cause of a "core deficit".

Two software design problems were identified. First, for
the age range tested (7–9), the initial levels of the software
were too easy for most children, and the software took too
long to adapt to their initial ability. An easy way to solve
this problem in the future is to start the algorithm assum-
ing a certain degree of prior knowledge for each child, so
that it is able to progress to more difficult problems more
quickly.

The second design problem was that some children
became bored with the software after about 10 hours of
use. This was not because they were performing at ceiling;
on the contrary, not one child had reached ceiling per-
formance on both the complexity and distance dimen-
sions, and in fact the "speed" dimension of the software
was programmed so that even adults would have diffi-
culty in reaching ceiling performance. Instead, we believe
several other factors may have contributed to this effect:
the aforementioned initial slowness of the game to reach
children's zone of proximal development (because it
started at a very easy level), insufficient variation in the
game, slowness of game play (especially on the "board
screen"), and finally the fact that after about 10 hours of
play, children had won all of the rewards and characters
available, considerably reducing their motivation to con-
tinue using the software.

We have therefore developed a new version of the soft-
ware, in which we have addressed all of these issues. We
adjusted the algorithm so that it does not necessarily start
at the easiest level, but instead can be preprogrammed to
assume a moderate amount of prior knowledge (e.g. a
cube of high probability of success ranging from 0 to 0.4
on all dimensions). Secondly, we included a second

"graphical shell" or "game world", which uses the same
underlying game logic with different settings, images and
characters. This provides more variety and entertainment
for children, and has the added bonus of doubling the
number of rewards and characters that children can win.
We also sped up automatic movement on the "board
screen" making game play faster. Finally, in our current
work, we now restrict the maximum age of children using
the software to 5–8 years, as children of this age are more
engaged by the software and found it more challenging.

The software still has limitations, and although it appears
to produce improvement on some tasks (see companion
paper [1]), it is unlikely to provide a simple "cure" for dys-
calculia. The software currently focuses solely on a small
range of numerical magnitudes (1–9). It is not clear
whether training on single-digit numbers will transfer to
larger numbers and to the concept of place value, which
pose frequent difficulties to children with learning disa-
bilities. In addition, there are many mathematical con-
cepts (e.g. multiplication, division, fractions), which are
not included in the software. However, there is of course
the possibility of using the same software algorithm and
framework for expansion into these higher arithmetic
domains. In the future, new versions of the game could be
made which might train multi-digit number sense, frac-
tions, or multiplication facts.

Conclusion
We have described in this paper the conception and devel-
opment of adaptive software for the remediation of dys-
calculia, including full specifications of the learning
algorithm used, and testing of the software; both using
mathematical simulation and with a group of children
with mathematical learning difficulties. The design of the
software incorporated four major principles: Enhancing
number sense, cementing links between symbolic and
non-symbolic representations of number, conceptualiz-
ing and automatizing arithmetic, and maximizing moti-
vation. These principles were implemented in the
software by the use of three adaptive dimensions (dis-
tance, speed and conceptual complexity), which together
form a multidimensional learning space.

A multidimensional learning algorithm was used to
model and adapt to children's performance in this learn-
ing space. Simulations of the algorithm's performance
showed that it was able to accurately model children's
knowledge, and to respond differently to different initial
knowledge levels and learning rates. The algorithm was
validated in a small sample of 7–9 year old children who
had mathematical learning difficulties. It successfully
adapted to children's performance (including to their
individual difficulties) and kept children's mean success
at close to the desired rate. Children's learning could be
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seen as an increase in knowledge volume, and as eventual
success in areas of initial failure.

These results, along with the results from pre and post
testing (see accompanying paper [1]), suggest that the
software may be useful for remediation of dyscalculia, at
least for children aged 7–8 and under. In addition, there
is potential to use the software to investigate different
causes and subtypes of dyscalculia. Although the current
paper focuses on dyscalculia, we emphasize that the learn-
ing algorithm developed is a general one, which could be
used in any domain. Additionally, the software may have
applications to the general instruction of number sense
for normal children at a younger age (e.g. 3–6 yrs).
Finally, the software described is open source and availa-
ble online for free download, thus allowing other research
groups as well as the general public to use and test its abil-
ity to help children at risk for mathematical learning disa-
bilities.
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Additional File 1
Example knowledge space movie. This movie file, output from our Matlab 
analysis program, shows the progress in knowledge space over time of one 
child using the software, shown as ten "slices" through the three-dimen-
sional knowledge space cube. The x axis is speed, the y axis distance, and 
the z axis complexity. Red represents high probability of success, blue high 
probability of failure, green background = chance level (50%). As the 
child makes errors, patches of blue appear. We can see particular areas of 
difficulty which are consistently blue (e.g. for this child the speed dimen-
sion and higher levels of the complexity dimension), however we see that 
over time many of these become red as the child makes progress.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1744-
9081-2-19-S1.avi]
Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1744-9081-2-19-S1.avi
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8539603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8539603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8539604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8539604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8539604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12604786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12604786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12604786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8606013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8606013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8188799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8188799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8188799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9720604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9720604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15082328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15082328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486303


Behavioral and Brain Functions 2006, 2:19 http://www.behavioralandbrainfunctions.com/content/2/1/19
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

21. Gersten R, Chard D: Number Sense: Rethinking Arithmetic
Instruction for Students with Mathematical Disabilities.  J
Spec Educ 1999, 33:18.

22. Gersten R, Jordan NC, Flojo JR: Early Identification and Inter-
ventions for Students With Mathematics Difficulties.  J Learn
Disabil 2005, 38:293-304.

23. Berch DB: Making Sense of Number Sense: Implications for
Children With Mathematical Disabilities.  J Learn Disabil 2005,
38:333-339.

24. Mazzocco MMM: Challenges in Identifying Target Skills for
Math Disability Screening and Intervention.  J Learn Disabil
2005, 38:318-323.

25. Dehaene S: Varieties of numerical abilities.  Cognition 1992,
44:1-42.

26. Dehaene S: Précis of the number sense.  Mind and Language 2001,
16:16-36.

27. Dehaene S, Bossini S, Giraux P: The mental representation of
parity and number magnitude.  J Exp Psychol Gen 1993,
122:371-396.

28. Dehaene S, Piazza M, Pinel P, Cohen L: Three parietal circuits for
number processing.  Cognitive Neuropsychology 2003, 20:487-506.

29. Dehaene S, Tzourio N, Frak V, Raynaud L, Cohen L, Mehler J, Maz-
oyer B: Cerebral activations during number multiplication
and comparison: A PET study.  Neuropsychologia 1996,
34:1097-1106.

30. Moyer RS, Landauer TK: Time Required for Judgements of
Numerical Inequality.  Nature 1967, 215:1519-1520.

31. Sekuler R, Mierkiewicz D: Children's judgments of numerical
inequality.  Child Dev 1977, 48:630-633.

32. Chard DJ, Clarke B, Baker S, Otterstedt J, Braun D, Katz R: Using
Measures of Number Sense to Screen for Difficulties in
Mathematics: Preliminary Findings.  Assessment for Effective
Intervention 2005, 30:3-14.

33. Landerl K, Bevan A, Butterworth B: Developmental dyscalculia
and basic numerical capacities: a study of 8-9-year-old stu-
dents.  Cognition 2004, 93:99-125.

34. Mazzocco MMM, Thompson RE: Kindergarten Predictors of
Math Learning Disability.  Learning Disabilities Research and Practice
2005, 20:142-155.

35. Hubbard EM, Piazza M, Pinel P, Dehaene S: Interactions between
number and space in parietal cortex.  Nat Rev Neurosci 2005,
6:435-448.

36. Ginsburg HP: Mathematics Learning Disabilities: A View from
Developmental Psychology.  J Learn Disabil 1997, 30:20-33.

37. Jordan NC, Montani TO: Cognitive arithmetic and problem
solving: A comparison and children with specific and general
mathematics difficulties.  J Learn Disabil 1997, 30:624-634.

38. Kirby JR, Becker LD: Cognitive Components of Learning Prob-
lems in Arithmetic.  Remedial and Special Education 1988, 9:7-16.

39. Ostad SA: Developmental differences in addition strategies: A
comparison of mathematically disabled and mathematically
normal children.  Br J Educ Psychol 1997, 67:345-357.

40. Ostad SA: Developmental progression of subtraction strate-
gies: A comparison of mathematically normal and mathe-
matically disabled children.  European Journal of Special Needs
Education 1999, 14:21-36.

41. Sagvolden T, Johansen EB, Aase H, Russell VA: A dynamic develop-
mental theory of attention-deficit/hyperactivity disorder
(ADHD) predominantly hyperactive/impulsive and com-
bined subtypes.  Behav Brain Sci 2005, 28:419-468.

42. Butterworth B: Developmental dyscalculia.  In Handbook of Math-
ematical Cognition Edited by: Campbell J. New York: Psychology Press;
2005. 

43. The Number Race   [http://www.unicog.org/main/
pages.php?page=NumberRace]
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1511583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8904747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8904747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6052760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6052760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15147931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15928716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15928716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9009878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9009878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9364900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9364900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9364900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9376311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9376311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9376311
http://www.unicog.org/main/pages.php?page=NumberRace
http://www.unicog.org/main/pages.php?page=NumberRace
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Instructional principles
	1. Enhancing number sense
	2. Cementing the links between representations of number
	3. Conceptualizing and automatizing arithmetic
	4. Maximizing motivation
	Potential for general instructional use

	Methods
	Overall game design
	Adaptive dimensions
	A multidimensional adaptive algorithm
	Algorithm specifications
	Goal
	Modeling of knowledge
	Selection of problem difficulty
	Updating of the knowledge space
	Operational definition of our three adaptive dimensions
	Distance dimension
	Speed dimension
	Conceptual complexity dimension



	Results
	Validation by simulation
	Simulations with a fixed level of the child's knowledge
	Simulations of the evolution of the child's knowledge

	Validation by testing in children
	Analyses
	Observations


	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

