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Representational change and strategy use in
children’s number line estimation during the first
years of primary school
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Abstract

Background: The objective of this study was to scrutinize number line estimation behaviors displayed by children
in mathematics classrooms during the first three years of schooling. We extend existing research by not only
mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation
strategies of individual target digits within a number range familiar to children.

Methods: Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical
estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression
modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus
identifying target digits that were estimated with the assistance of arithmetic strategy.

Results: Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling;
however, uniquely we have identified that children employ variable strategies when completing numerical
estimation, with levels of strategy advancing with development.

Conclusion: In terms of the existing cognitive research, this strategy factor highlights the limitations of any
regression modeling approach, or alternatively, it could underpin the developmental time course of the
logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the
implications for educational practice.

Background
Estimation is a required skill for everyday life. Numeri-
cal estimation skills are an example of what Piaget [1]
described as logico-mathematical knowledge. While Pia-
get did not carry out numerical estimation tasks specifi-
cally he considered logic-mathematical knowledge to be
the mental relationships between and among objects/
representations. Understanding the development of
numerical estimation is particularly important to psy-
chologists and educators, as several studies indicate the
benefits of advanced estimation skills. For example,
many studies (e.g. [2-5]) have determined a strong, posi-
tive correlation between the accuracy of numerical esti-
mation and standardized tests of mathematics
achievement. Furthermore, LeFevre, Greenham and

Waheed [6] propose the tendency of skilful estimators
to have a better conceptual understanding of mathe-
matics, as well as better counting and arithmetic skills.
Here we provide an investigation of numerical estima-
tion skills at the beginning of primary school. We used
a number range familiar to the children and analyzed
dependent variables for each target digit in depth. This
approach goes beyond studying a potential logarithmic-
linear representational shift in estimation and allows
further insight into the development of children’s esti-
mation strategies.
Several studies (e.g. [2,5,7-11]) have investigated devel-

opmental changes in numerical estimation in school-
aged children. Estimation requires the translation
between alternative quantitative representations. For
example presenting a child with a number and asking
them to position it on a number line can be described
as a translation from a numerical to spatial representa-
tion [5].
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Much of the research into numerical estimation (here-
after: estimation) has focused on how magnitudes might
be mentally represented and how this representation
changes with maturity. It is assumed that estimation is
based on internal models of magnitudes. Two models
attempt to describe the internal representation of num-
ber, namely the accumulator (linear) model [12] and the
logarithmic model [13]. The accumulator model sug-
gests that magnitudes are represented linearly and that
the accuracy of this mental representation decreases
with increasing magnitude [8]. The variability of estima-
tions in relation to the magnitudes estimated remains in
a constant ratio; this is termed ‘scalar variability’ [14].
Dehaene [13] argued that quantities are represented in a
logarithmic fashion. This mental representation results
in an exaggeration of the distance between small num-
ber magnitudes in comparison to distances between
large number magnitudes. In relation to the core sys-
tems of number; namely the small number system for
small number enumeration and the approximate num-
ber system (ANS) for larger numerosities [15], it is the
approximate number system that would encode the
numerosities in an estimation task. Specifically, Halberda
and Feigenson [16] found that ANS acuity was still
developing in children aged 3-6 years and speculated
that sharpening of the ANS was not complete until late
in adolescence. Furthermore, Berteletti et al. [7] argues
for an approximate number system that is a logarithmic
representation first, with numerate children and adults
acquiring greater precision, and thus a linear representa-
tion. This shift to a linear representation is evident first
with familiar number contexts and then subsequently
with less familiar number ranges [17].
Many of the developmental studies have used pure

numerical estimation with large number scales (e.g. 0-
100 and 0-1000: [2,5,10]). On a 0-100 number line, this
research ([2,5,10]) purports that both representations
are evident and pinpoints a logarithmic-linear shift at
around Grade 2 (7-8 years). Booth and Siegler [2]
declare a linear best fit for 74% of Grade 2 children in
their study; with the remainder of participant behaviors
being best represented by a logarithmic model or in a
minority of cases, an exponential model. With younger
participants the logarithmic-linear distinction is less
clear; for example in Siegler and Booth [5], 5% of kin-
dergarteners produced a series of estimates better char-
acterized by the linear than the logarithmic model and
45% were best modeled by a logarithmic representation.
It could also be argued that these results, particularly

those of children in kindergarten, could be influenced
by the unfamiliarity of the number ranges. Verifying this
proposition Ebersbach et al. [8], in a similar 0-100 task,
found that only 17% of kindergarteners and 38% of
Grade 1 children who participated in the study could

count to 100. While this might question the validity of
the logarithmic-linear claim, Berteletti et al. [7] utilized
1-10, 1-20 and 0-100 number lines in an estimation task
and found evidence for the logarithmic to linear repre-
sentational shift. Of the preschool aged children (3.5-6.5
years) who participated in the 0-100 task all groups dis-
played a logarithmic dominant representation. For the
1-10 task the youngest group (approximately 4 years)
was best fit by both models, the middle and older
groups (approximately 5 and 6 years respectively) were
now demonstrating a linear preference for this reduced
number scale. In the 1-20 estimation task the youngest
group was best fit by a logarithmic model, whereas the
middle and oldest groups were equally well represented
by logarithmic and linear models. These findings
[2,5,7,10] reinforce the belief that child estimation beha-
viors demonstrates a logarithmic phase prior to linearity
and that this transition is evident first with familiar and
then unfamiliar number contexts.
Berteletti et al. [7] acknowledges that the exact path

that leads from logarithmic to linear representations is
still unclear. Siegler, Thompson and Opfer [18] argue it
to be a process important to education. Thompson and
Siegler [11] interpret the flexibility/variability of beha-
viors within Siegler’s [19] overlapping waves theory;
whereby representations and strategies are used selec-
tively when most effective and that individual choice of
learned (external) mechanisms contribute to numerical
representations. In various adult studies of numerical
processing (e.g. [20-23]), it has been determined that
many different strategies can be used to solve a single
problem, whether that be estimation, multiplication or
equation solving. Dowker [20] in her study of expert
mathematicians found that individual strategy selection
for the same problem can vary between trials. Smith
[24], in a study with school aged children and adoles-
cents, investigated reasoning with rational numbers
(expressed as fractions) and found that higher level
competence required rich and diverse knowledge,
numerically specific and invented strategies, as well as
those general strategies learned through educational
instruction. Huntley-Fenner [25] attributes the variability
children demonstrate in estimation tasks as being the
result of reduced knowledge of estimation strategies.
While the influence of individual strategies was men-
tioned in the numerical estimation child studies of Sieg-
ler and Booth [5] and Siegler and Opfer [10], Barth and
Paladino [26] and Ebersbach et al. [8] discussed the use
of estimation strategies and proposed the need for an
alternative modeling approach in order to capture child
behaviors. The alternative models were found to factor
in the use of a half-way reference point [26] and num-
ber familiarity [8]. Ebersbach et al. [8] posited a model
composed of two linear segments, with the change point
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an indicator of number familiarity. Thompson and
Opfer [17] found that the segmented model change
point varied depending on number scale and questioned
the claims of Ebersbach et al. [8]. Importantly, Opfer,
Siegler and Young [27] still maintain the validity of the
transition from logarithmic to linear representations,
and caution that the fit of power models, as used by
Barth and Paladino [26], could be influenced by the
noise created during averaging procedures. Using an
eye-tracking methodology, along with gaze pattern and
fixation analysis Schneider et al. [28] found that children
in the first years of school do spontaneously use orienta-
tion points (external markers) to support spatial-numer-
ical processes such as numerical estimation. In light of
these studies ([17,27,28]) we chose to focus on the
established logarithmic and linear (not segmented) mod-
els and have only included the power model at the coef-
ficient of determination analysis, with subsequent
analyses focusing on individual target digits which were
likely to have been positioned with the aid of an exter-
nal factor or strategy.
A common strategy would be to utilize the number

line itself, providing two external anchor points that
could improve estimation accuracy of numbers located
within close proximity to the end numbers (e.g. 97 is 3
units back from 100). The youngest participants may
be limited to a counting strategy and may not factor in
the spatial representation, as is their level of concep-
tual understanding. A more advanced possibility, as
posited by both Barth and Paladino [26] and Ebersbach
et al. [8], could be the application of mental anchor
points, however, such a strategy would require under-
standing of the part-whole (proportion) relation. For
example on a scale of 0-100, 50 could be a mental
anchor point that arises from the participant dividing
the number scale into two equal parts and matching
this spatial division with the knowledge that 50 is half
of 100. As with external anchor points, estimations
that occur near these mental partitions are likely to
have increased accuracy in comparison to those num-
bers located a greater distance away from a reference
point; as suggested earlier, further individual variation
is likely to be associated with number knowledge. Stu-
dies ([29,30]) have given corrective feedback for target
digits near a particular landmark (150 on a 0-1000
number line) and found that estimates were less accu-
rate when the target numbers were more distant from
the landmark. This evidence from feedback studies (e.
g. [29,30]) indicates that children can utilize both
external and mental anchor points. In the Barth and
Paladino [26] study the midpoint was highlighted to
participants prior to commencing the task, but this
prompt was not an inclusion within the present
investigation.

This study further examines the putative logarithmic-
linear shift of mental representations for the familiar
number range (0-20) with children in Years 1, 2 and 3;
with a focus on determining if external factors (i.e. strat-
egy) may be at play during the estimation of specific tar-
get digits. Using the most established logarithmic and
linear regression analysis of Berteletti et al. [7], Booth
and Siegler [2]; Siegler and Booth [5] and Siegler and
Opfer [10] as a foundation, this research extends the
analysis systematically to investigate estimation beha-
viors of individual target numbers. First, a logarithmic
or linear best fit model will be determined for individual
data and used as a reference point to the Berteletti et al.
[7] study that also utilized a number line with a maxi-
mum of 20. Second, the residuals to each target digit
from both the logarithmic and linear models will be
investigated to identify how well the two models repre-
sent the estimates of specific numeric values. Third and
finally, the accuracy of estimation for individual target
digits will be scrutinized, without any regression model-
ing. It is proposed that employing a familiar number
range will increase the likelihood of strategy application
and the novel analysis will indicate individual digits
which might be the target of selective strategy use as
suggested by Ebersbach et al. [8] and Thompson and
Siegler [11]. It is hypothesized that the developmental
shift from logarithmic to linear mental representation,
after approximately two years of school ([2,5,10]), will
also be the transition period where strategy use becomes
evident. Based on existing speculation (e.g. [8,26]), this
is likely to be located in close proximity to external
anchor points or, in an advanced circumstance, mental
anchor points which require the division of the number
line into equal portions. For this reason, the present
study is interested in main effects, but also the interac-
tion between the variables, with a particular focus on
separate year group behaviors. For example, it may be
for particular target digits that the linear and logarith-
mic models demonstrate the greatest disparity, and that
this varies developmentally. It is intended that this infor-
mation will inform subsequent investigations that will
seek to determine the various components (e.g. cogni-
tive mechanisms, learned strategies) that contribute to
the developmental path from logarithmic to linear
representations and/or to the development of strategy
use in numerical estimation, and any relationship
between mental representations and strategy use.

Methods
Participants
Participants were 67 British children from Years 1, 2
and 3 (Year 1: n = 20, mean age 6.4 ± 0.24 years, 11
females. Year 2: n = 24, mean age 7.3 ± 0.33 years, 13
females. Year 3: n = 23, mean age 8.5 ± 0.36 years, 10
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females). All participants performed within one and a
half standard deviations of the mean on a brief version
of the Wechsler Intelligence Scale for Children, 3rd edi-
tion (WISC-III: Vocabulary, Blocks and Digit Span);
with no significant difference between the year groups
for the WISC-III triad (F (2, 64) = 1.592, p = 0.211).
Written informed consent was obtained from the par-

ents/guardians of the children in this study. The study
obtained ethical approval from the Cambridge Psychol-
ogy Research Ethics Committee.

Task and procedures
The assessment instrument was a number-to-position
(NP) pencil and paper task, where participants were
given a number and had to mark its position on a 160
mm number line. The number line had the range of 0-
20 and the target digits were evenly distributed across
the scale with 2, 4, 7, 8, 11, 13, 16 and 17. Two exam-
ples (3 and 9) on a 0-10 scale were completed together
by the participant and researcher prior to commence-
ment; this was discussion based to ensure understanding
of the task and did not propose any strategies. During
the testing trials (0-20) no corrective feedback was pro-
vided, just encouragement to continue onto the next
item.

Analysis
The NP task was assessed in the following way: The dis-
tance from the left end point (zero on the number
scale), to the participant marking was measured in milli-
meters. The distances to the line markings were con-
verted to numerical estimates for each target number.
Mirroring the method employed by Siegler and collea-
gues [2,5,10], the following equation was used to deter-
mine the target number estimates:

Distance from left end point to marking (mm)

Total length of line (mm)
× scale of number line

An example of this calculation if a mark was placed 25
mm from the left end point of a 0-20 number line
would be 25 ÷ 160 × 20; which means the target num-
ber estimate equates to 3.125.
The target number estimates were used in two main

analyses; regression modeling and estimation accuracy
for individual target digits. The regression modeling
built on the method initially utilized by Siegler and
Opfer [10] and two derived measures were used: the
Coefficient of Determination values for individual parti-
cipants, as well as Model Residuals for group level mod-
els. The unique component of the analysis was that of
Estimation Accuracy. Taking the foundation from Sieg-
ler and Booth [5], this research gained a more detailed
perspective into the numerical values that are likely to

be estimated more accurately due to the contribution of
external factors, such as learned strategy.
Coefficient of Determination
This analysis began with fitting linear and logarithmic
models to the target number estimates, for each partici-
pant. Then for individual models (linear and logarith-
mic) a coefficient of determination (R2) was calculated.
Comparing the linear coefficient (RLin

2) and logarithmic
coefficient (RLn

2), for each child, it could be determined
which model best represented each child’s mental repre-
sentation. The coefficient of determination values were
entered in a 3 × 2 ANOVA. Factors were: Year (Year 1,
2 or 3) × Model (Linear or Logarithmic).
In addition to this analysis, we explored the propor-

tion judgment power model adopted by Barth and Pala-
dino [26]. On an individual basis, for both 1-cycle and
2-cycle models, values of R2 were determined, along
with the parameter b (the exponent determining the
shape of the power function relating psychological to
physical magnitude). We selected the b with the highest
R2 and subsequently compared the best R2 for the 1-
cycle and 2 cycle models (Figure 1)[31]. These findings
were interpreted in relation to the logarithmic-linear
shift, with b = 1 corresponding to a linear model and
then the further the value from 1, the closer to a loga-
rithmic model. This additional model was then entered
into a separate 3 × 3 ANOVA. Factors were: Year (Year
1, 2 or 3) × Model (Linear, Logarithmic or Power).
Model Residuals
Following the approach of Siegler and Opfer [10] the
target number estimates were tabulated and analyzed at
a group level. The median score for each year group
was used to generate a graph of estimates versus actual
target numbers. The median was selected because it is
less affected by outliers, which could occur in this type
of task. Each year group graph was then used to calcu-
late both a linear and logarithmic regression model. The
Siegler and Opfer [10] method calculated residuals to
the group level median values and entered this into a
paired-samples t-test. This would only determine if
there significant difference between the residuals of the
two models overall, omitting the variation of model resi-
duals that could occur for individual target numbers.
Extending the approach of Siegler and Opfer [10], the
present study calculated residuals to individual target
number estimates of each participant. This allowed the
residuals to be entered into a more powerful 3 × 8 × 2
repeated measures ANOVA. Factors were: Year group
(Year 1, 2 or 3) × Target Number (2, 4, 7, 8, 11, 13, 16
or 17) × Model (Linear or Logarithmic). This analysis
allowed for a more detailed examination of how the
model residuals varied for each target number and
whether this interacted with year group.
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To add further descriptive detail we followed the
approach of Geary, Hoard, Byrd-Craven, Nugent and
Numtee [32] and used the absolute residuals (from the
group level models) to classify all trials as linear or loga-
rithmic based on whether the child’s estimate was closer
to the predicted value of the linear of logarithmic model
(i.e. which model produced the smaller residual). When
the residuals of the linear and logarithmic models had a
difference less than ± 0.4 units these trials were classi-
fied as ambiguous; this value was determined based on
the distribution of the individual residuals.
Estimation Accuracy
The absolute percent error for each target number was
calculated according to the equation:

∣
∣
∣
∣

Estimate − Target Number
Scale of number line

∣
∣
∣
∣
× 100

If the estimate was determined to be 3.125 and the
target number 2, the equation would be |(3.125-2) ÷ 20|
× 100 to obtain the error of 5.625%. In an attempt to
reveal information about estimation accuracy of indivi-
dual target numbers, and thus the potential application
of external and mental anchor point strategies this study
extends the method to reveal accuracy details about
individual target numbers. This more detailed informa-
tion was maintained and the percent absolute error
values were entered into a 3 × 8 ANOVA, with factors:
Year group (Year 1, 2 or 3) × Target Number (2, 4, 7, 8,
11, 13, 16 or 17). The Greenhouse-Geisser epsilon (ε)
correction for sphericity was used in all ANOVAs when-
ever necessary. Reporting indicates the original degrees
of freedom, the epsilon value, followed by the corrected
(more conservative) significance level. All post hoc ana-
lyses were Tukey HSD tests. In the results section values
represent mean ± standard deviation, unless otherwise
stated.
To further investigate the potential for external and

mental anchor points, we sought to explore the standard
deviation of estimates as a function of target number,
used by Cohen and Blanc-Goldhammer [33]. This was

conducted on a year group basis in conjunction with the
percent absolute error; lower standard deviations could
pinpoint the location of an external or mental anchor
point that was consistently applied by members of a
year group.

Results
Coefficient of Determination
50% of Year 1, 75% of Year 2 and 74% of Year 3 chil-
dren had higher coefficients of determination for the
linear rather than the logarithmic models. The analysis
of the coefficient of determination values revealed that
the main effect of Model was significant (F (1, 64) =
9.96, p = 0.002, h2 = 0.129). That is, the linear model
(R2

Lin = 0.87 ± 0.20) explained a greater degree of var-
iance than did the logarithmic model (R2

Ln = 0.84 ±
0.18). There was a main effect of Year (F (2, 64) =
10.63, p < 0.001, h2 = 0.249) because the amount of var-
iance explained by either model was significantly lower
for Year 1, than Year 2 (p < 0.001) and Year 3 (p <
0.001); there was no significant difference between Years
2 and 3. There was no Model × Year interaction.
As the power model is sensitive to noise [27], some

participants were discarded from the analysis leaving 51
in total. In terms of 1- or 2-cycle models majority of the
participants were best represented by a 1-cycle model,
with b values often very close to 1 (Table 1). Table 1
presents the individual power model results in compari-
son to the coefficient of determination values (R2) of the
best fit logarithmic and linear models reported in the
previous paragraph. The separate 3 × 3 ANOVA
returned similar results. There was a main effect of
model and a main effect of year (Model: F (2, 96) =
11.92, ε = 0.83, p < 0.001, h2 = 0.196; Year: F (2, 96) =
5.19, p = 0.009, h2 = 0.177). Overall, the linear model
(R2

Lin = 0.90 ± 0.13) explained more variance than both
the power (R2

Pwr = 0.86 ± 0.15, p < 0.001) and logarith-
mic models (R2

Ln = 0.88 ± 0.11, p = 0.007). The main
effect of year also indicated that the variance explained
by any of the three models was significantly lower for

Figure 1 Prediction proportion judgment cyclic power models as used in Hollands and Dyre [31]and Barth and Paladino [26]. a) 1-cycle
model, with no central reference point; b) 2-cycle model, with one central reference point. In both a) and b) b is the exponent in the power
function describing the relationship of psychological to physical magnitude. Legend: Green b = 0.1, Aqua b = 0.3, Blue b = 0.5, Red b = 0.7,
Black b = 1.0. NB. When b = 1, the function is linear.
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Year 1, than Year 2 (p = 0.01) and Year 3 (p = 0.02);
there was no significant difference between Years 2 and
3. There was no Model × Year interaction.
Using individual data and individual regression mod-

els, these results indicate that in Years 2 and 3 the
majority of participants had higher R2 values derived
from a linear model, indicating a linear best fit model.
This was not the case with Year 1 as the variance
explained, by any model, was significantly lower. This
information supports our hypothesis that Year 2 indi-
cates the onset of the dominance of the linear mental
representation. Importantly, these findings do not clearly
argue for a logarithmic to linear shift, as that would

require the Year 1 participants to have the highest var-
iance explained for a logarithmic model; what these
findings argue for the dominance of a linear representa-
tion in Years 2 and 3 only.

Model Residuals
This approach utilized individual residuals for each tar-
get number, calculated from group level median models
(Figure 2). The linear model had a significantly smaller
mean residual than did the logarithmic model (F (1, 51)
= 36.71, p < 0.001, h2 = 0.388. Linear vs. Logarithmic:
1.72 ± 1.96 and 2.01 ± 1.78 units, respectively). The
Model × Year interaction was significant (F (2, 51) =

Table 1 Fits of power, logarithmic and linear models for individual children in Years 1-3

Year 1
n = 13

Year 2
n = 19

Year 3
n = 19

Power Log Linear Power Log Linear Power Log Linear

1-cycle or 2-cycle b R2 R2 R2 1-cycle or 2-cycle b R2 R2 R2 1-cycle or 2-cycle b R2 R2 R2

1 0.78 0.70 0.85 0.78 2 0.53 0.69 0.85 0.94 1 1 0.88 0.98 0.97

1 0.7 0.62 0.71 0.77 1 0.73 0.73 0.85 0.79 1 0.82 0.88 0.89 0.88

1 0.84 0.91 0.93 0.95 1 1 0.98 0.90 0.98 1 1 0.98 0.94 0.99

1 0.88 0.71 0.74 0.73 2 0.81 0.96 0.89 0.98 1 0.88 0.63 0.68 0.79

1 1 0.85 0.75 0.86 1 0.97 0.93 0.96 0.93 1 1 0.99 0.95 0.99

1 0.92 0.95 0.89 0.97 1 0.89 0.84 0.87 0.93 1 1 0.92 0.92 0.98

2 0.75 0.89 0.92 0.92 2 0.75 0.89 0.88 0.97 2 0.8 0.91 0.93 0.98

1 0.47 0.24 0.28 0.22 1 0.74 0.96 0.92 0.99 1 0.67 0.43 0.76 0.62

1 1 0.75 0.77 0.87 2 0.93 0.98 0.91 0.99 1 0.93 0.79 0.89 0.86

1 0.73 0.74 0.79 0.73 1 0.69 0.80 0.89 0.79 1 0.98 0.97 0.96 0.97

1 1 0.74 0.77 0.77 1 1 0.94 0.89 0.98 1 0.83 0.81 0.92 0.98

2 0.69 0.96 0.94 0.97 1 1 0.91 0.88 0.94 1 0.76 0.80 0.85 0.84

1 1 0.93 0.96 0.95 1 1 0.98 0.91 0.99 1 1 0.99 0.94 0.99

2 0.53 0.87 0.91 0.95 2 0.65 0.96 0.86 0.96

1 0.95 0.81 0.92 0.99 1 1 0.97 0.96 0.98

2 0.96 0.97 0.94 0.99 1 0.84 0.87 0.97 0.99

1 1 0.95 0.94 0.98 1 1 0.93 0.94 0.95

1 1 0.97 0.87 0.90 1 0.96 0.99 0.94 0.99

1 0.93 0.88 0.95 0.90 1 1 0.96 0.92 0.97

For the power model it indicates whether a 1- or 2-cycle model was better supported by the data and the corresponding coefficient of determination (R2) and
shape of the function (b). For logarithmic and linear models best supported by individual data, the R2 values are reported.

Figure 2 Median estimates for each target number, with linear and logarithmic regression equations for Years 1-3
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3.43, p = 0.040, h2 = 0.073). Linear model residuals were
smaller than logarithmic model residuals for Years 2 and
3, but not Year 1. For Year 1 participants, the mean lin-
ear residual (2.45 ± 2.33 units) was found to be not sig-
nificantly smaller than the mean logarithmic residual
(2.56 ± 2.18 units). The main effect of Year was mar-
ginal (F (2, 51) = 3.00, p = 0.058, h2 = 0.105).
Overall the interaction of Target Number × Model

was significant (F (7, 357) = 8.77, ε = 0.55, p < 0.001, h2

= 0.143). Post hoc comparisons indicated that linear
residuals were significantly smaller than logarithmic for
target numbers 2 (p < 0.001) with a residual difference
of 1.1 units, and 17 (p < 0.001) with a 0.7 unit difference
in residuals. This difference was not significant for any
other target numbers. These numbers were the focus of
separate year group analyses (Table 2), with significant
effects in Years 2 and 3 only.
Using the approach of Geary at al. [32] we further

explored how model residuals would be distributed if
we included an ambiguous category in addition to linear
and logarithmic. As described in the methods, an
ambiguous trial would occur when the residuals of the
linear and logarithmic models had a difference less than
± 0.4 units. The overall percentages of trials classified as
linear, logarithmic or ambiguous are provided in Table
3, including a breakdown by individual target digits in
Table 4. These classifications support the residual
Model × Year analysis, with Years 2 and 3 demonstrat-
ing a higher percentage of trials classified as linear in
contrast to logarithmic, and the linear dominance less
clear in Year 1. Overall, this analysis of model residuals
has further explored the linear and logarithmic mental
representations and the transition at Year 2, but this
time highlighting specific target digits in relation to a
group level model.

Estimation Accuracy
There was a main effect of Target Number (F (7, 357) =
6.61, ε = 0.46, p < 0.001, h2 = 0.109). Tukey post hoc
comparisons indicated that the significant differences
were in reference to the target numbers 2 and 4, which

produced the lowest absolute errors. Error for target
number 2 was significantly lower than for numbers 7, 8
and 13 (p < 0.01), and errors for target number 4 were
significantly lower than for digits 7 and 13 (ps < 0.05).
The mean estimation error rates decreased as years of
education increased (Year 1: 12.40 ± 7.51%, Year 2:
8.39 ± 6.55%, Year 3: 6.47 ± 3.91%), but the main effect
of Year did not reach significance (F (2, 51) = 2.66, p =
0.079, h2 = 0.095).
Figure 3 shows the marginally significant Target Num-

ber × Year interaction (F (14, 357) = 1.56, p = 0.087, h2

= 0.051). To increase the confidence of this marginal
finding and protect against a potential type 2 error, uni-
variate analyses were completed and indicated that there
were significant differences between the year groups for
target digits 11 and 13 (F (2, 53) = 3.38, p = 0.042, h2 =
0.117 and F (2, 53) = 6.10, p = 0.004, h2 = 0.193, respec-
tively). Closer scrutiny demonstrated that for target digit
11 the Year 1 mean error was higher and marginally sig-
nificant in comparison to Year 2 (p = 0.09) and signifi-
cantly higher when compared to Year 3 (p = 0.01). A
similar pattern was evident with target digit 13; Year 1
children had a mean error which was significantly
higher than both Years 2 and 3 (p < 0.01). Years 2 and
3 produced no significant differences for target digits 11
and 13.
Separate Year group ANOVAs indicated a main effect

of target number for Year 1 children (F (7, 91) = 4.33, p
= 0.006, h2 = 0.250). Post hoc analysis of Year 1 data
again pointed towards target digits 11 and 13 and this is
evident in Figure 3. The accuracy of estimating 13 was
significantly poorer than the estimation accuracy of
numbers 2, 4 and 17 (ps < 0.05). This significant accu-
racy difference was also evident with positioning target
numbers 11 and 2 (p < 0.001). In contrast to the Year 1
children, there was no effect of target number in Years
2 and 3. Overall, this analysis has examined number line
estimation, without regression modeling, in order to
pinpoint individual digits that might be the target of
selective strategy use. The year group comparisons indi-
cated that digits 11 and 13 were poorly estimated by the

Table 2 Statistical results for separate year group analyses for the Target Number × Model interaction (including post
hoc analyses for target numbers 2 and 17)

Residuals from group level models (mean ± SD)

Group Interaction Target Number × Model Model Tukey HSD

Target number 2 Target number 17

Year 1 F (7, 91) = 2.02, ε = 0.54, p = 0.06, h2 = 0.134 Linear 0.9 ± 0.7 ns 2.1 ± 2.2 ns

Logarithmic 1.5 ± 1.1 2.6 ± 1.8

Year 2 F (7, 133) = 5.30, ε = 0.45, p < 0.001, h2 = 0.218 Linear 0.5 ± 0.7 p < 0.001 1.8 ± 2.4 p = 0.09

Logarithmic 2.1 ± 1.7 2.5 ± 1.9

Year 3 F (7, 133) = 3.59, ε = 0.43, p = 0.001, h2 = 0.159 Linear 0.7 ± 0.4 p < 0.001 1.0 ± 0.9 p = 0.001

Logarithmic 1.8 ± 0.7 1.9 ± 0.6
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Year 1 participants, thus separating them from Years 2
and 3. This was further confirmed through the compari-
son of the standard deviation of estimates for each tar-
get digit, with 11 and 13 with the highest standard
deviation in Year 1 (Figure 4).

Discussion
The aim of this investigation was to explore the devel-
opmental transitions of the mental representations asso-
ciated with numerical estimation (logarithmic-linear
shift). This was achieved by focusing on the estimation
behaviors of individual target digits within a familiar
number range (0-20), adapting and extending the meth-
ods of Siegler and colleagues [2,5,10] and building on
the ideas of Barth and Paladino [26], Berteletti et al. [7],
Ebersbach et al. [8] and Thompson and Siegler [11].
The statistical analysis of individual numbers inferred
that there is merit in future in depth analyses of strate-
gies application in conjunction with regression
modeling.
On a developmental front, Year 1 children did not

demonstrate a dominance of any representation in either
the individual regression models or group level resi-
duals. In fact, looking at the individual regression mod-
els alone, the variance explained by any model (linear,
logarithmic or power), was significantly lower in Year 1
than in Years 2 and 3. When examining the group level
model, children in Years 2 and 3 demonstrated the low-
est residuals from a linear model, in comparison to a
logarithmic model. The complexity of this transition to
a linear mental representation is indicated by the

categorization of residuals into linear, logarithmic and
ambiguous (Table 4). For selected target digits, there
were a high percentage of Year 1 participants who
demonstrated linear-like behaviors however this was not
always the case (e.g. target digits 7 and 8, Table 4). In
contrast, Years 2 and 3 demonstrated a consistently
high percentage of participants with trials that were best
represented by a linear model. This matches the trend
observed across the three groups of preschool children
in the Berteletti et al. study [7]. In the familiar number
scale tasks used in that study (1-10 and 1-20) the
youngest group (mean age 4 years) did not demonstrate
a bias towards either representation, meanwhile the
middle and oldest groups (4.5-6.5 years) indicated a sig-
nificantly lower linear residual. Furthermore, the present
findings are in line with the 0-100 number line develop-
mental findings of Siegler and colleagues [2,5,10] except
in Year 1 with no significant bias.
Extending the analysis to include 1- and 2-cycle power

functions [26], in this case, did not create any further
clarity in terms of R2 values. Perhaps it was the reduced
number range (0-20) and minor differences in task
instructions that limited the potential for power models
to represent the data, as Barth and Paladino [26]
focused on a 0-100 number line and indicated 50 as

Table 3 Analysis of model residuals, by year group

Group Residual fit (trial-by-trial) Residual from group
level models

Linear Logarithmic Ambiguous Linear Logarithmic

% % % M SD M SD

Year 1 46 37 17 2.5 2.3 2.6 2.2

Year 2 56 25 19 1.5 1.8 2.0 1.6

Year 3 54 21 25 1.3 1.6 1.7 1.4

Percentage of trials with best residual fit for linear and logarithmic models, or
ambiguous (both linear and logarithmic model residuals within ± 0.4 units of
one another). The overall mean ± standard deviation of the model residuals
are summarized by year group.

Table 4 Percentage of trials with best residual fit for linear and logarithmic models, or ambiguous, by year group and
target number

Group 2 4 7 8 11 13 16 17

Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb Lin Ln Amb

Year 1 55 25 20 68 32 0 25 69 5 33 61 6 56 44 0 0 0 100 67 27 6 61 39 0

Year 2 96 0 4 63 29 8 57 39 4 60 36 4 50 37 13 0 0 100 63 29 8 65 26 9

Year 3 70 0 30 74 26 0 43 39 17 57 29 14 52 22 26 0 0 100 50 36 14 83 17 0

The ambiguous category was used when both the linear and logarithmic residuals were within ± 0.4 units of one another. Please note, that for target number
13, all are ambiguous because the residuals are identical as this is the location where the linear and logarithmic models intersect.

Figure 3 The absolute percent error for each target number,
by year group. The error bars represent ± 95% confidence interval
from the mean.
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being ‘halfway’ at the beginning of the experiment. The
individual data in the present study was typically best fit
by a 1-cycle model (Table 1), which aligns with the fact
that participants were not directed towards the ‘halfway’
point when task instructions were given. Further explora-
tion into the use of proportional power models is required,
particularly in relation to the appropriateness of using
such an approach, as highlighted by Opfer et al. [27].
Extending the work of Siegler and Opfer [10] the

results from the individual target digits are a unique
contribution to the body of literature, as this begins to
explore the possibility that the development of mental
representations could be marked by the use of the exter-
nal ‘anchor points’ as described by Ebersbach et al. [8].
In the case of this research application of external
anchor points should be observed for target digits 2 and
17. According to existing research [2,5,7,8,10], a low lin-
ear residual would indicate a more accurate mental
representation. The number scale 0-20 is familiar to stu-
dents in Years 1-3, however, the strategies involved in
positioning numbers accurately on an externally repre-
sented number line may not be fully established. For
Year 1 the linear and logarithmic residuals for both of
these numbers were similar (Table 2). Year 2, showed a
significantly lower linear residual for target number 2,
and perhaps as a function of the magnitude effect or
incomplete transition, only a marginal preference for a
linear model for target number 17 (Table 2). Finally
then, for Year 3, the difference between linear and loga-
rithmic residuals for target numbers 2 and 17 was sig-
nificant with a linear model providing the lowest
residual (Table 2). This indicates a developmental transi-
tion, but also highlights that the greatest disparity
between the logarithmic and linear models is likely to
occur in close proximity to external anchor points. It is
this external anchor point reasoning that we use to
speculate that both target digits 2 and 17 have lower lin-
ear residuals in comparison the logarithmic model
residuals.

Parallels can be drawn between the observations of the
present study and the developmental progression seen
with arithmetic strategies in the classroom. Existing
research (e.g. [34-36]) purports the importance of
sequences and counting in the early stages of develop-
ment, but also identifies that the application of the
base-ten structure in constructing novel relationships
among numbers up until approximately 9 years of age.
As a further example, Dutch mathematics education
programs teach mental arithmetic strategies that
employs decomposition as the basis of instruction. From
Grade 2, Dutch children are encouraged to use mental
jumps and decomposition, often beginning on a number
line, in order to encourage flexible mental strategies
[37]. Given this information and linking back to the pre-
sent data, it is proposed that the Year 1 children did not
demonstrate any clear anchor point application because
they were limited to counting strategies and were unable
to link the numerical value to the spatial cues provided
by the number line. Subsequently, in Years 2 and 3 we
do see evidence of the continued development of more
flexible strategies, and use of anchor points, that utilize
decomposition and part-whole relations.
A question that comes out of this discussion is, given

the flexibility of strategy application, is it in fact mean-
ingful to try and model the mental representation of
numbers using a fixed linear/logarithmic model? What
the previous paragraph has posited is that specific num-
bers could exhibit unique behaviors as a function of the
familiarity with the number range, proximity to either
external or mental anchor points, as well as knowledge
of arithmetic strategy. While Ebersbach et al. [8] focused
on the role of external anchor points, the mental anchor
points in particular would relate to more advanced strat-
egy application, such as knowledge of proportions (e.g.
half, quarter etc.) and ability to mentally partition the
external number. This potential for individual difference
represents a limitation of the linear/logarithmic model-
ing approach. In the followings we discuss what a more

Figure 4 The standard deviation of estimates for individual target numbers, by year group
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detailed approach could add to the current knowledge
base.
Siegler and Booth [5], in their first experiment with 0-

100 scale, had error rates of 27% for Kindergartners,
18% for Grade 1 and 15% for Grade 2. The later Booth
and Siegler [2] study demonstrated a more obvious pla-
teau with Kindergartners: 24%, Grade 1: 12%, Grade 2:
10%, and Grade 3: 9%. This could be a function of the
0-100 number scale being in the unfamiliar range. In
these two studies [2,5], the youngest groups were always
significantly different to the subsequent year levels; how-
ever, this was not the case in the present research, as
average percent absolute error was lower and there was
no significant group difference.
Overall, the results from the percent absolute error

data indicated that the most accurately estimated num-
bers on the 0-20 number line were digits 2 and 4. This
could be for two reasons; first, referencing the lower
values (2 and 4) to the external lower anchor point of
zero or their knowledge of one. Second, it could be that
number magnitudes up to 4 have a stronger representa-
tion, because these quantities are understood from
infancy [38-40] in what Feigenson et al. [15] describes
as the small number system. This could also be linked
to how frequently these numbers are encountered in a
young child’s everyday language (e.g. [13,25]). This also
fits with theories of enumeration and subitizing abilities
being present prior to verbal counting (e.g. [41-43]).
The fact that these enumeration and subitizing abilities
are limited to numerosities of four (e.g. [44,45]), and
that they are present from infancy, could explain the
strength of the representation of digits 2 and 4, and
thus producing more accurate estimations. This is
further evidenced in the categorization of trials (Table
4), where all year groups demonstrated a high percen-
tage of linear classifications of digits 2 and 4. Then for
the subsequent numbers 7 and 8, Year 1 stood out with
a high percentage of logarithmic classifications, which
were not evident in Years 2 and 3 (Table 4). It is our
interpretation that for Year 1 digits 7 and 8 are likely to
be less frequently encountered and could contribute to
the variation.
On the developmental front, the Year 1 children again

showed separation from the older year groups in the
estimation accuracy of individual target digits. For the
positioning of numbers 11 and 13, Year 1 children pro-
duced estimates that were significantly less accurate
than Years 2 and 3 (Figure 3). This gained further sup-
port when investigating the standard deviations for each
target digit, with the greatest variation evident for digits
11 and 13 for Year 1 participants (Figure 4). The idea of
applying external anchor points to aid in the estimation
of numbers has been purported, although only briefly in
existing studies [5,8]. However, it could be argued that a

further number estimation strategy could be to apply
mental anchor points and divide/partition the external
number line into segments which would increase the
accuracy of positioning. The Year 2 and 3 children of
this study were probably exhibiting these behaviors. A
potential mental partition would be that of halfway, and
number 11 was the closest target digit to the mental
anchor point of 10. It is proposed that, in Year 1, as
both a result of both mental representation (no clear
logarithmic-linear preference) and educational experi-
ence, children lacked the requisite representations/skills
to apply mental anchor point strategies and accurately
estimate these central numbers (i.e. 11 and 13). The
core learning concepts for Year 1, as prescribed by the
National Framework in England focus on counting and
skills related to addition and subtraction, not division or
the part-whole relation. The early understanding of divi-
sion principles often stems from the relationships
between doubling and halving, which is promoted in
Year 2. This knowledge of ‘half’ is required for the appli-
cation of mental anchor point strategies, which as a
function of educational experience the Year 1 children
do not typically possess. The fact that the formal teach-
ing of this concept in Year 2, coincides with increased
accuracy of estimation for central digits (Figure 3), lends
further support to this argument. Further detailed ana-
lyses would be required to strengthen these proposals
and will be the focus of subsequent studies.
Examining percent absolute error for specific target

numbers allowed the discussion to go beyond the limita-
tions of structured modeling to further explore the
potential of strategy application. The merits of both
external and mental anchor points, as estimation strate-
gies were supported. In line with the initial hypothesis,
Year 2 appeared to represent a transitional phase, with
the apparent onset of part-whole strategies to aid the
creation of mental anchor points. It was hypothesized
that the developmental shift from logarithmic to linear
mental representation would likely coincide with evi-
dence of strategy use; the present study supports this.
The development of the anchor point strategy applica-

tion could be described as follows; the first would be to
utilize the external anchor points to assist positioning of
the numbers. Children in the first year of school may
only use the left most point, rather than having the stra-
tegic knowledge to employ both extremes. The develop-
mental progression, along with the logarithmic-linear
shift, extends to include the use of both anchor points
after Year 1. This is followed by some level of mental
partitioning, which again advances in complexity and is
the result of educational experience, which became evi-
dent in Year 2 (Figure 3). It would be an interesting
investigation to more closely map the development of
these individual strategies and educational experience
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with the logarithmic and linear modeling scenarios. This
extension would ideally include saturation of all target
digits within the prescribed number range and a direct
means of determining the strategy used to solve the pro-
blem, whether requesting verbal reports from partici-
pants or applying the use of eye-tracking technology as
introduced by Schneider et al. [28]. Furthermore, it
would be worthwhile to investigate whether the type
and flexibility of strategies used during these first years
of school could predict later mathematical achievement.
It is the combination of these proposals that could facili-
tate the most meaningful insights for informing
education.

Conclusions
To summarize, prior cognitive research into children’s
numerical estimation behaviors has argued for both
logarithmic and linear models being able to describe the
mental representation; with different models having
dominance depending on development and familiarity of
the number range. To convert this understanding to
being more applicable for educational practice and
understand the path from logarithmic to linear domi-
nance the present study took this theoretical basis and
conducted a number-to-position number line estimation
task with children from Years 1-3. The use of a familiar
(0-20) number line meant that our analysis could extend
beyond the more abstract linear and logarithmic model-
ing interpretations and examine the variable strategic
behaviors associated with individual target numbers.
This analysis provided the most meaningful link to
strategy application and identifies a future direction of
research. Results indicated that when operating within a
familiar number range, a linear representation domi-
nates from Year 2, but also there was indication that
beginning in Year 2 children start to apply estimation
strategies, which become more advanced in Year 3.
These most advanced children provided evidence of
applying external anchor point strategies for lower and
upper bound target digits, as well as the possibility of
mental anchor points. For Year 1 children, positioning
central numbers such as 11 and 13 seemed to produce
the highest errors, whereas children in Years 2 and 3
were more accurate and were thought to be applying a
‘halfway’ mental anchor point that improved the place-
ment of central numbers. This study concludes that
further scrutiny of estimation strategies, when combined
with modeling techniques, could greatly increase the
understanding of developing mental representations.
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