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Abstract 

Genetic variants of DCX, COMT and FMR1 have been linked to neurodevelopmental disorders related to intellectual 
disability and social behavior. In this systematic review we examine the roles of the DCX, COMT and FMR1 genes in the 
context of hippocampal neurogenesis with respect to these disorders with the aim of identifying important hubs and 
signaling pathways that may bridge these conditions. Taken together our findings indicate that factors connecting 
DCX, COMT, and FMR1 in intellectual disability and social behavior may converge at Wnt signaling, neuron migration, 
and axon and dendrite morphogenesis. Data derived from genomic research has identified a multitude of genes that 
are linked to brain disorders and developmental differences. Information about where and how these genes function 
and cooperate is lagging behind. The approach used here may help to shed light on the biological underpinnings in 
which key genes interface and may prove useful for the testing of specific hypotheses.
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Introduction
The aim of this systematic review is to gain an under-
standing of the genetic underpinnings linking intellec-
tual disability (ID) and social behavior in the context of 
three critical risk factor genes DCX, COMT, and FMR1. 
In the study by Kwan et al. [1] the authors used a method 
similar to ours which involved identifying signaling path-
ways associated with Autism Spectrum Disorder (ASD) 
and ID based on risk factor genes linked to these disor-
ders that were identified in genomic studies. In this study 
we have started with three risk factors genes associated 
with a multitude of neuro-related disorders and have 
found through a review of the literature that they con-
verge in Wnt signaling, neuron migration, axon, and den-
drite morphogenesis. To provide further insight we use 
systems biology methods to investigate how these genes 

could interface at the molecular and cellular level. Our 
approach employs a literature review and an assessment 
of legacy RNA-Seq datasets to identify genes with cor-
relative expression patterns to DCX, COMT, and FMR1 
in the developing hippocampus [2]. The gene correlates 
were evaluated using integrative genomics methods 
which include an analysis of gene set intersection [3] and 
functional enrichment [4]. Additional insight concerning 
the relationship between DCX, COMT and FMR1 was 
obtained by an evaluation of protein–protein interaction 
(PPI) networks [5, 6].

Hippocampal neurogenesis and Wnt signaling
In neurogenesis, neural stem cells proliferate, migrate, 
and differentiate into mature neurons. The production of 
new neurons is most active during development but con-
tinues throughout life in many species including humans 
[7, 8]. Hippocampal neurogenesis occurs in the subgran-
ular zone of the dentate gyrus (DG) in a tightly regulated 
and sequential manner [9]. It is well established that dys-
regulation of hippocampal neurogenesis is linked to a 
variety of neurological disorders such as ASD, Fragile-X 
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Syndrome (FXS) and ID [10–12]. This is not surprising 
given the role of the hippocampus in learning, long term 
memory, and the processing of emotional response [13].

Hippocampal neurogenesis is regulated by Wnt signal-
ing which has been suggested as a conserved feature in 
both embryonic and adult neurogenesis [14–16]. The 
Wnt signaling pathway regulates cell fate decisions, tissue 
patterning, neuronal differentiation, axon outgrowth and 
guidance, dendrite development, synaptic function, and 
neuronal plasticity [17, 18].

Wnt proteins are involved in all aspects of the devel-
oping brain [19]. In neuronal development Wnt proteins 
bind Frizzled receptors, Tyrosine kinase receptors or the 
Insulin-like growth factor receptor to activate Dishev-
elled which results in different fates depending on the 
cellular context [20]. This includes gene transcription, 
regulation of axon and dendrite morphology and pre 
synaptic function via small GTPases of the Rho family, 
which in turn modulate neuronal polarity, dendritic spine 
morphology and synapses [21, 22]. The Wnt/Dishev-
elled axis may also proceed through a calcium signaling 
pathway or other pathway intermediates to modulate the 
guidance and branching of dendrites and axons, as well 
as synapse formation and remodeling [20, 23]. There is 
a great deal of evidence derived from genetically altered 
animals, cell based, and human studies supporting the 
role of Wnt signaling in ID and ASD [24–28]. In individ-
uals with ASD, ID varies widely. However, in cases where 
[29] the two conditions coexist the GSK3 and CTNNB1 
genes are strongly implicated [26, 30, 31]. The CTNNB1 
gene, which encodes β-catenin, is a main modulator of 
the canonical Wnt signaling pathway and is linked to 
sporadic ASD and ID [1, 29, 32]. In mice, a conditional 
knockout of Ctnnb1 deleted in parvalbumin interneu-
rons significantly impaired object recognition and social 
interactions and increased repetitive behaviors [24]. 
Moreover, data derived from large scale exome sequenc-
ing studies investigating ASD and ID have identified non-
sense and missense mutations in CTNNB1 [30, 33].

DCX, FMR1, and COMT in hippocampal neurogenesis
i. Role of DCX in hippocampal neurogenesis and disease
The DCX gene product, doublecortin, stabilizes micro-
tubules and stimulates their polymerization to facilitate 
the migration of post mitotic neurons and cortical lay-
ering in the developing brain [34]. Doublecortin acts 
via microtubules to form a scaffold within the cell that 
elongates in a specific direction, altering the cytoskel-
eton and moving the neuron to a targeted location [35, 
36]. Doublecortin is used as a neuronal differentiation 
and migration marker to assess the various stages of the 
neurogenic process in the sub granular zone (SGZ) of the 
hippocampus [37]. A lack of normal doublecortin affects 

the stability, organization and movement of microtubules 
which impairs their ability to move neurons [36]. Migrat-
ing neurons in the developing brain are particularly 
affected because they are mis-localized which disrupts 
connectivity resulting in neurological problems [38].

While the role of doublecortin in microtubule stabili-
zation and neuronal migration is well established [39]. 
There is evidence that doublecortin is also involved in 
axon guidance via actin association and dendrite branch-
ing and complexity [35, 40, 41].
Dcx knockout mice have a simplified dendrite morphol-

ogy in hippocampal pyramidal neurons [37]. Knockdown 
of Dcx in cultured rat neurons also led to a simplified 
dendrite morphology [15, 19]. Conversely, overexpres-
sion of doublecortin increases dendrite complexity [37]. 
Interestingly, daily mild stress exposure in mice altered 
dendrite length and complexity in doublecortin positive 
immature neurons of the dentate gyrus [42].

Several diseases are linked to DCX variants such as 
Isolated Lissencephaly Sequence (ILS) which is a disor-
der characterized by abnormal brain development that 
results in the brain having a smooth surface (lissenceph-
aly) instead of normal gyri and sulci [43, 44]. This causes 
severe neurological issues such as ID and recurring sei-
zures which begin in infancy. Most of the DCX gene 
mutations that cause ILS are a result of a single amino 
acid substitution in doublecortin producing a protein 
with little or no function [45].

Subcortical Band Heterotopia (SBH) is another disor-
der associated with mutation in the DCX gene [46]. This 
condition causes abnormal brain development that is 
less severe than ILS but has a similar pathology. In peo-
ple with subcortical band heterotopia, some neurons 
that should be part of a certain region of the brain do not 
reach their destination [47]. Neurons stop their migra-
tion process in areas of the brain where they are not sup-
posed to be and form band-like clusters of tissue. Male 
and female differences have been noted in lissencephaly 
and SBH related to DCX mutations which predominantly 
causes lissencephaly in hemizygous males and SBH in 
heterozygous females. Both males and females exhibit 
language impairment and epileptic seizures however cog-
nitive ability varies between the two sexes. Males exhibit 
early and severe cognitive impairment whereas cognitive 
ability ranges from mild to severe in females [48, 49].

ii. Role of COMT in hippocampal neurogenesis and disease
The COMT gene encodes the enzyme, catechol-O-meth-
yltransferase which catalyzes the transfer of a methyl 
group from S-adenosylmethionine to catecholamines in 
several neurotransmitters such as dopamine, epineph-
rine, and norepinephrine. This O-methylation results in 
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one of the major degradative pathways of the catechola-
mine transmitters.

COMT has both soluble and membrane-bound iso-
forms and is expressed in many different tissues. The 
membrane bound form (MB-COMT) has a preference 
for brain tissue and especially the hippocampus [50]. 
MB-COMT is located on axons and neuron cell bod-
ies in pre and postsynaptic structures [51]. Analyses of 
MB-COMT orientation with computer simulation, flow 
cytometry, and a cell surface enzyme assay indicates that 
the C-terminal catalytic domain of MB-COMT is in the 
extracellular space, which suggests that MB-COMT can 
inactivate synaptic and extrasynaptic dopamine on the 
surface of presynaptic and postsynaptic neurons [51].

MB-COMT is expressed by postsynaptic neurons and/
or surrounding glia (Gogos et al. 1998; Schott et al. 2010; 
Rivett et  al. 1983b; Karhunen et  al. 1995a; Matsumoto 
et  al. 2003) where it modulates synaptic dopamine lev-
els. Dopamine levels are increased by as much as 60% 
in Comt knock-out mice [7] (e.g., Chen et al. 2004; Leb-
edeva et al. 2009; Grigorenko et al. 2007).

COMT localization has also been observed in den-
drites [51, 52] Localization of COMT in rats using immu-
noelectron microscopy results in the presence of reaction 
product in dendritic processes and spines associated 
with postsynaptic membranes [50]. COMT is particu-
larly important in the prefrontal cortex, the region of 
the brain associated with personality, executive func-
tion, inhibition of behaviors, abstract thinking, emotion, 
and working memory [53, 54]. Several studies have also 
demonstrated its relevance in the hippocampus [55–57] 
and neurogenesis [53, 58, 59]. Copy number elevation of 
COMT is associated with reduced proliferation of neural 
stem/progenitor cells in vitro and the migration of their 
progeny in the hippocampus granular layer in  vivo [58] 
as well as hippocampal volume changes in the CA2/CA3 
regions [59]. The COMT genotype influenced the matu-
ration of working memory associated with problem solv-
ing and knowledge acquisition skills in both mice and 
humans [40, 41].

COMT and Wnt signaling are both linked to schizo-
phrenia which has been postulated to arise from abnor-
mal neurogenesis associated with embryonic neural stem 
cells [60–62]. The relationship between COMT and Wnt 
signaling in the context of neurogenesis may be based 
on dopamine regulation. The COMT gene has long been 
considered a candidate gene for schizophrenia because 
it degrades dopamine and individuals with schizophre-
nia have increased dopamine levels [63]. Wnt signal-
ing is associated with schizophrenia, particularly via the 
GSK3 gene which acts downstream of the dopamine (D2) 
receptor [64, 65]. Drugs that induce psychosis increase 
D2 receptors and drugs that are used to treat psychosis 

alter GSK3 signaling. GSK3 phosphorylates CTNNB1 
resulting in its degradation and the down regulation of 
the Wnt signal [66].
COMT is also associated with 22q11.2 Deletion Syn-

drome which results from a deletion of a region of chro-
mosome 22 that contains 30–40 genes [58]. Learning 
disabilities and psychiatric disturbances such as ASD, 
schizophrenia, and attention deficit hyperactivity disor-
der (ADHD) are associated with 22q11.2 Deletion Syn-
drome [67, 68].

Individuals with this disorder have only one copy of 
the COMT gene in each cell instead of the usual two cop-
ies making them more likely to develop neuropsychiat-
ric disorders. COMT variants and dopamine levels have 
been linked to ASD [69]. In a study of 52 individuals 
diagnosed with ASD, COMT genotypes and dopamine 
levels correlated with ASD phenotype severity [69]. In 
another study investigating dopaminergic effects in two 
mouse models of ASD, differential expression of tyrosine 
hydroxylase (TH), the rate-limiting enzyme of catecho-
lamine biosynthesis, was observed between the strains. 
There was a reduction of TH in BTBR/J mice and normal 
levels in Fmr1-KO animals. Striatal dopamine transporter 
expression was reduced in both strains. Interestingly, 
application of intranasal dopamine to Fmr1-KO animals 
alleviated their impairment of social novelty, in altered 
association with reduced striatal TH [70]. (https:// 
molec ularb rain. biome dcent ral. com/ artic les/ 10. 1186/ 
s13041- 020- 00649-7).

Besides schizophrenia, ID, and ASD, COMT function 
in the context of dopamine regulation is also associated 
with addiction and depression [71–73].

iii. Role of FMR1 in hippocampal neurogenesis and disease
The FMR1 gene encodes the FMRP protein. Results 
from many years of research indicate that FMRP acts as 
a transporter carrying mRNA from the nucleus to areas 
of the cell where proteins are assembled [74]. Altered 
neurogenesis has been reported in an Fmr1-/-knockout 
mouse model. Animals displayed an increase in neuronal 
differentiation in the DG but no significant difference in 
the number of neurons added to the DG [12]. The con-
nection between FMR1 and Wnt signaling is supported 
by the finding that GSK3β, a negative regulator of Wnt 
signaling, is elevated in FXS animal models [65]. Cor-
rection of the increased GSK3 activity with lithium or 
GSK3β inhibitors in mice rescues neurobehavioral and 
brain morphological abnormalities [75]. Furthermore, 
inhibition of GSK3β is reported to improve hippocam-
pus-dependent spatial learning tasks and restore neuro-
genesis in a mouse model of FXS [65].

FMRP localizes to axons and dendrites [76]. Studies 
involving both humans and mice support the role of 

https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-020-00649-7
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FMRP expression in normal spine morphological devel-
opment [77, 78]. The data obtained from human post 
mortem tissue derived from donors with FXS and ani-
mal models in which FMRP is underexpressed or not 
expressed at all indicate an increase in spine density, 
spine length and immature spine morphology [76, 79].

FMRP has an inhibitory effect on mRNA transla-
tion and regulates translation in pre- and post-synaptic 
terminals [80]. A possible explanation of the effects of 
FMRP in spine dynamics and morphology is by influ-
encing local mRNA translation [81]. A trinucleotide 
repeat mutation in the FMR1 gene is the underly-
ing cause of FXS [82]. The CGG repeat disrupts gene 
expression and as a consequence little or no protein 
is produced [82]. FXS is one of the most commonly 
inherited forms of ID and monogenic causes of ASD 
[83, 84].

Methods
Literature review
The literature review for identifying common themes 
associated with DCX, COMT, and FMR1 was per-
formed using PubMed, Google Scholar, and the Online 
Mendelian Inheritance in Man database [85]. Reposi-
tories and databases were searched using keywords 
associations.

Gene sets and evaluation
Microarray data were collected from the Allen Brain 
Database Developing Human Brain Atlas (https:// 
human. brain- map. org/, https:// human. brain- map. org/). 
To obtain the data, a gene search for DCX, COMT, 
and FMR1 was performed. Each of these genes were 
used to query the atlas for correlates to the developing 
hippocampus.

Genes whose expression pattern correlated with DCX, 
COMT, and FMR1 were collected for analysis. Correlates 
with a range of Pearson r values from |0.7 to 1.0| were 
considered in the analysis (Additional file  1: Workbook 
S1). The rationale was to investigate genes with a similar 
expression pattern in order to identify correlates specific 
and common to DCX, COMT, and FMR1 associated with 
neurogenesis, Wnt signaling, ID, and social behavior.

Each gene set was evaluated using Gene Ontology 
(GO) enrichment via the Database for Annotation, Visu-
alization and Integrated Discovery (DAVID, version 6.8) 
[86]. Gene Set overlap among the correlates for DCX, 
COMT, and FMR1 was assessed using Venny 2.0 [87], an 
online program that compares lists of items to determine 
the shared and unique genes.

Network analysis
The String database (version 11.0) was used to build a 
protein–protein interaction network (PPI) for DCX, 
COMT, and FMRP [5, 88]. The network was constructed 
based on experimentally validated interactions using the 
medium confidence score of 0.4. The combined scores 
for the interactions are computed by combining the 
probabilities from the different evidence channels and 
corrected for the probability of randomly observing an 
interaction. First and 2nd shell interactions are included 
in the network. The network was exported from STRING 
and analyzed in Cytoscape (version 3.7) [6, 89]. Net-
work clusters and enriched themes were identified with 
Cytoscape plugins MCODE (version 1.6.1) and ClueGo 
(version 2.5.7) [4, 90]. The nodes in the networks have 
been manually arranged for proper visibility.

Results
To investigate how these genes may interact we per-
formed a literature review which supported that Wnt 
signaling, neuron migration, and axon and dendrite mor-
phogenesis were common factors in connecting DCX, 
COMT, and FMR1 in ID and social behavior. Based on the 
results of the literature review, we examined RNA-Seq 
datasets of genes with correlating expression patterns to 
DCX, COMT, and FMR1 in the developing hippocampus 
in order to gain further insight. GO annotation was used 
to identify gene correlates associated with Wnt signal-
ing, neurogenesis, social behavior, and ID. Among the 
correlates, many genes are linked to Wnt signaling, neu-
rogenesis, and ID and to a lesser extent social behavior 
(Tables 1, 2, 3, 4). All of the results from the GO analysis 
which includes biological processes, cellular localization, 
molecular function, as well as pathway and disease infor-
mation are provided in Additional file 2: Workbook S2.

The results from the analyses of gene set overlap which 
was performed to shed light on how these genes might 
interact at the molecular level, consisted of identifying 
common genes among the correlates for DCX, COMT, 
and FMR1. Findings indicate that there were many 
shared relevant genes inversely correlated with COMT, 
DCX, and FMR1 expression patterns particularly in the 
context of ID (CHAMP1, DCHS1, EML1, MCPH, TCF4, 
CTCF, FAT4, FXR2, GATAD2B, KIAA2022, SETBP1, 
TAF2, BCAP31, BRWD3, NUFIP1, ATRX) and to a lesser 
extent social behavior (AUTS2, PCM1). Other shared 
correlating genes with relevance are linked to neurogen-
esis, Wnt signaling, transcription regulation, microtubule 
and axon related processes (Table 5 and Additional file 2: 
Workbook S2).

The majority of ID related genes are shared between 
DCX positive and COMT negative correlates. A possible 

https://human.brain-map.org/
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explanation could be related to the roles of COMT and 
DCX and their effects on brain structure and neurogene-
sis. In patients with schizophrenia the COMT Val allele is 
associated with smaller temporal and frontal brain areas 
[91] and as described in the Introduction, DCX variants 
cause severe lamination defects in the cortical and hip-
pocampus regions [92]. In addition, there is supporting 
evidence that increased dopamine neurotransmission 
stimulates neurogenesis [93, 94].

The shared genes between COMT and FMR1 are also 
inversely correlated and are associated with similar rel-
evant themes (Table  5). There were no relevant genes 
common between FMR1 and DCX.

To gain further insight, an analysis of protein–pro-
tein interaction networks of experimentally validated 

interactions for DCX, COMT, and FMRP was per-
formed. An assessment of network topology and con-
nectivity indicates that the individual PPI networks for 
these genes connect (Fig. 1, Additional file 3: Workbook 
S3).

The DCX and FMRP networks are more highly inter-
connected via proteins associated with RNA binding 
and cell cycle such as FXR1/2 and CYFIP2, whereas the 

Table 1 Wnt pathway genes associated with DCX, COMT and FMR1 correlates in the hippocampus

Positive and negative associations are indicated with “+” and “−” respectively

DCX + ACTB, ACTG1, ACVR1B, ARID1A, ARID1B, BCL9, CDH2, CELSR3, CSNK1E, CSNK1G1, CSNK2A1, DACT1, 
DCHS1, FAT4, FZD7, GNB1, GNG2, HDAC2, MYCN, PCDHB12, PCDHB14, PCDHB2, PCDHB8, PCDHB9, 
PPP2R5E, PYGO1, SIAH1, SMAD1, SMAD4, SMARCA4, SMARCB1, SMARCD1

DCX − CDH19, DCHS1, GNA14, GNA15, GNG13, GNG7, KREMEN2, MYH13, MYH7B, WNT10A, WNT6, WNT9B

COMT + BMPR1B, GNA14, ITPR3, KREMEN2, NFATC1, NFATC2
PPARD, PPP2R5A, SMARCD2, TCF7

COMT − CELSR3, CSNK1G1, CSNK1G3, DACT1, FAT4, GSK3B, HDAC2, MAP3K7, PCDHB3, PPP2R5E, PRKCI

FMR1 + LRP6, PPP2CA, PRKCI, SMARCA5, TBL1XR1

FMR1 − DVL1, DVL1P1

Table 2 DCX, COMT and FMR1 gene correlates associated with intellectual disability

Positive and negative associations are indicated with “+” and “−” respectively

DCX + ACTB, ACTG1, ADNP, ARID1A, ARID1B, AUTS2, BBS9, CASK, CHAMP1, CTCF, DCHS1, DYRK1A, EDC3, EFTUD2, EHMT1, EML1, EXT2, FAT4, FGD1, 
FOXG1, FRMD4A, FTSJ1, FXR2, GATAD2B, GNB1, IGBP1, KAT6A, KIAA2022, LMAN2L, MCPH1, NONO, OPHN1, POGZ, RBMX, RSPRY1, SETBP1, 
SMARCA4, SMARCB1, SMC3, SOX11, TAF2, TCF4, TTI2, TUBGCP4, ZC4H2, ZEB2, ZNF711

DCX − BCAP31, MAP2K1

COMT + BCAP31, CHI3L2, CLIC2, HEPACAM, PGAP3, PIGV, PPIC, SLC6A8, TECR, VWA3B

COMT − ATP8A2, ATRX, AUTS2, BRWD3, CHAMP1, CTCF, DDX3X, EML1, FAT4, FXR2, GATAD2B, KDM6A, KIAA2022, MCPH1, MED13L, NUFIP1, PAK3, 
PGAP1, SETBP1, SOX5, TAF2, TCF4, TTC21B, UPF3B

FMR1 + AMMECR1, ATRX, BRWD3, COG6, CRBN, CUL4B, FMR1, KIAA0196, KIAA1033, NIPBL, NUFIP1, NUFIP2, RAB3GAP2, RAD21, RBBP8, RPS6KA3, 
TBL1XR1, TDP2, TTC21B, USP9X, ZDHHC15

FMR1 − No associated genes

Table 3 DCX, COMT and FMR1 gene correlates associated with 
social behavior

Positive and negative associations are indicated with “ + ” and “-” respectively

DCX + DNAJC9, AUTS2, EIF4, EBP2

DCX − SHANK3, ANXA7, MYH14, NPAS4

COMT + DRD4, UCN

COMT − KRAS, AUTS2, PCM1

FMR1 + PCM1

FMR1 − DVL1

Table 4 DCX, COMT and FMR1 neurogenesis related gene 
correlates

Positive and negative associations are indicated with “+” and “−” respectively

DCX + AKT1, ARID1A, ARID1B, BCL11B, BZW2, CEP120, DACT1, 
DBN1, DCHS1, DOCK7, DPYSL2, DYNLT1, EFNB2, EPHB1, 
EPHB2, FAT4, FOXN4, GPSM1, IGSF9, INA, INSM1, ISLR2, 
KDM1A, KIAA2022, KIDINS220, NEUROD2, NGFR, OPHN1, 
RBM45, SEMA3A, SEMA3C, SEMA4C, SMARCA4, SMARCB1, 
SMARCD1, SOX11, SRGAP2, STMN1, TCF4, XRCC5

DCX − BCL6, CHN1, CIT, GLDN, HAP1, NPAS4, NTRK1, PAX5

COMT + BCL6, CSPG5, HAP1, METRN, MT3, NDRG2, PLXNB3, SIRT2,
ZC3H12A

COMT − ARHGEF2, BCL11B, BHLHB9, BZW2, CEP120, DACT1, 
EFNB2, EIF2AK4, EPHA4, EPHA7, FAT4, FBXO45, GSK3B, 
KIAA2022, KIDINS220, KIF2A, NEUROD6, PCM1, PRDM8, 
ROBO2, SEMA3A, SEMA3C, SPAST, STMN1, TCF4, XRCC5

FMR1 + CCDC88A, EIF2AK4, HOOK3, IMPACT, PCM1, PHF10
SETX, ZEB1

FMR1 − RFNG
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Table 5 Relevant shared gene correlates for DCX, COMT and FMR1

Positive and negative correlative gene expression patterns are indicated with “+” and “−” respectively

COMT +/DCX −
 BCAP31 Apoptosis, ubiquitin dependent catabolic process protein transport, X-linked mental retardation, dystonia, cerebral hypomyelination

 BCL11B Neurogenesis, axon guidance, neuron projection, transcription, splicing, methylation

 GNA14 Signal transduction phospholipase C-activating dopamine receptor signaling pathway

 HAP1 Synaptic transmission axonal transport, cerebellum development, cell projection organization, neurogenesis, transport along micro-
tubules

 KREMEN2 Wnt signalling

COMT −/DCX +
 AUTS2 Transcription regulation, Autism, mental retardation/ID

 BZW2 Nervous system development, cell–cell adhesion, neurogenesis

 CELSR3 Neuron migration, axonal fasciculation, dopaminergic serotonergic neuron axon guidance, Wnt signaling pathway

 CEP120 Regulation of centrosome duplication, cerebral cortex development, neurogenesis, astral microtubule organization

 CHAMP1 Protein localization to kinetochore, protein localization to microtubule, attachment of mitotic spindle microtubules to kinetochore

 CSNK1G1 Endocytosis, regulation of cell shape, Wnt and Hedgehog signaling

 CTCF Transcription regulation, DNA methylation, mental retardation, Mental retardation, autosomal dominant 21

 DACT1 Transcription regulation, Wnt signaling

 EFNB2 Cell adhesion, axon guidance, neurogenesis

 EML1 Microtubule cytoskeleton organization, epilepsy, mental retardation

 FAT4 Neurogenesis, cerebral cortex development, cell adhesion, mental retardation/ID

 FXR2 RNA transport, negative regulation of translation, Fragile X mental retardation

 GATAD2B Transcription, DNA methylation, mental retardation/ID

 HDAC2 Transcription regulation, chromatin remodeling neuron projection and dendrite development

 KIAA2022 Nervous system development, X-linked mental retardation, neurogenesis mental retardation, X-linked 98, neurite extension and 
migration

 KIDINS220 Dendrite morphogenesis, neuron projection development, neurogenesis

 MCPH1 Mitotic spindle orientation, regulation of gene expression, cerebral cortex development, mental retardation, Microcephaly 1, pri-
mary, autosomal recessive

 SEMA3A Neuron migration, axon guidance, neurogenesis

 SEMA3C Neuron migration, axon guidance, neurogenesis

 SETBP1 DNA binding, Schinzel-Giedion midface retraction syndrome, mental retardation, autosomal dominant 29

 STMN1 Microtubule depolymerization, mitotic spindle organization, axongenesis, neurogenesis

 TAF2 Transcription regulation, mental retardation/ID Mental retardation, autosomal recessive 40

 TCF4 Transcription regulation, neurogenesis, epilepsy, mental retardation, Pitt-Hopkins syndrome

 XRCC5 Transcription, DNA recombination, neurogenesis

FMR1 +/COMT −
 ATRX DNA methylation, chromatin remodeling, transcription, Mental retardation: alpha-thalassemia/mental retardation syndrome, mental 

retardation-hypotonic facies syndrome, X-linked 52/intellectual development disorder

 BRWD3 Transcription regulation, mental retardation X-linked intellectual developmental disorder

 EIF2AK4 Translation, ribosome structure and biogenesis, learning and long-term memory

 NUFIP1 RNA processing, transcription fragile X mental retardation-interacting protein 1

 PCM1 Neuron migration, microtubule organization and anchoring, social behavior, negative regulation of neurogenesis

 TTC21B Transcription regulator, smoothened signaling pathway regulation

FMR1 −/COMT +
 GAS6 Dendritic cell differentiation, apoptosis

 KIF19 Axon, microtubule depolymeriation

 NDUFS7 Synapse, neuron projection
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COMT network is linked to the DCX and FMRP net-
works via the neurotrophic factor S100B which enhances 
hippocampal neurogenesis in rodent models, as well as 
the microtubule associated proteins MAPT, which pro-
motes microtubule assembly and stability and TUBA1A 
which is a fundamental component of microtubules 
[95–98].

Assignment of over-represented themes based on GO 
and pathway analysis of the PPI network modules are: 
Module 1. RNA process translation initiation elongation, 
Module 2. Microtubule tubulin cytoskeleton cell cycle, 
Module 3. Mitogenic cell survival embryonic develop-
ment cell growth morphogenesis tissue repair, Module 
4. Anaphase cell cycle mitotic, cell division and ubiq-
uitin processes, Module 5. Actin polymerization cell 
migration, Module 6. Nuclear transport, RNA processes 
(Fig. 1).

An analysis of neurogenesis related genes from the 
DCX, COMT, and FMR1 correlates in the context of 
enriched functional categories results in thirty-two 
groups and within those groups one hundred and ninety-
one GO annotations. Among the categories there are 
many related to axon, dendrite, and neuron processes as 

well as several other relevant classifications (Fig.  2 and 
Additional file 4: Workbook S4).

Conclusions
Polymorphisms in the DCX, COMT, and FMR1 genes 
are associated with severe and diverse brain develop-
ment and neuropsychiatric disorders. Each of these 
genes has been linked to ID and social behavior. To 
investigate how these genes may interact we performed 
a literature review which pointed to Wnt signaling, 
neuron migration, and axon and dendrite morphogen-
esis as common factors.

Based on the results from the literature review, we 
analyzed gene expression patterns in the developing 
hippocampus to gain additional support and insight 
into the relationship between these genes in the con-
text of identifying molecular interactions and signaling 
pathways that may connect them. The findings from 
these analyses support the results obtained from the 
literature review and provide useful information for fol-
low up studies.

Fig. 1 DCX, COMT, and FMRP PPI network. A topological evaluation of PPI networks of DCX, COMT, and FMRP indicates that DCX and FMRP 
networks are highly interconnected, whereas the COMT network is peripherally associated with the DCX network through second shell interactions. 
Red lines represent first shell interactions which are proteins directly associated with DCX, COMT, and FMRP. Gray lines indicate second shell 
interactions which are proteins linked with the other proteins in the first shell i.e., not DCX, COMT, or FMR1P
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