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Abstract

Substantial evidence suggests that the phasic activities of dopaminergic neurons in the primate
midbrain represent a temporal difference (TD) error in predictions of future reward, with
increases above and decreases below baseline consequent on positive and negative prediction
errors, respectively. However, dopamine cells have very low baseline activity, which implies that
the representation of these two sorts of error is asymmetric. We explore the implications of this
seemingly innocuous asymmetry for the interpretation of dopaminergic firing patterns in
experiments with probabilistic rewards which bring about persistent prediction errors. In
particular, we show that when averaging the non-stationary prediction errors across trials, a
ramping in the activity of the dopamine neurons should be apparent, whose magnitude is dependent
on the learning rate. This exact phenomenon was observed in a recent experiment, though being
interpreted there in antipodal terms as a within-trial encoding of uncertainty.

Introduction

There is an impressively large body of physiological, imag-
ing, and psychopharmacological data regarding the pha-
sic activity of dopaminergic (DA) cells in the midbrains of
monkeys, rats and humans in classical and instrumental
conditioning tasks involving predictions of future rewards
[1-5]. These data have been taken to suggest [6,7] that the
activity of DA neurons represents temporal difference
(TD) errors in the predictions of future reward [8,9]. This
TD theory of dopamine provides a precise computational
foundation for understanding a host of behavioural and
neural data. Furthermore, it suggests that DA provides a
signal that is theoretically appropriate for controlling
learning of both predictions and reward-optimising
actions.

Some of the most compelling evidence in favour of the TD
theory comes from studies investigating the phasic activa-

tion of dopamine cells in response to arbitrary stimuli
(such as fractal patterns on a monitor) that predict the
proximate availability of rewards (such as drops of juice).
In many variants, these have shown that with training,
phasic DA signals transfer from the time of the initially
unpredictable reward, to the time of the earliest cue pre-
dicting a reward. This is exactly the expected outcome for
a temporal-difference based prediction error (eg. [1,2,10-
13]). The basic finding [7] is that when a reward is unex-
pected (which is inevitable in early trials), dopamine cells
respond strongly to it. When a reward is predicted, how-
ever, the cells respond to the predictor, and not to the
now-expected reward.

If a predicted reward is unexpectedly omitted, then the
cells are phasically inhibited at the normal time of the
reward, an inhibition which reveals the precise timing of
the reward prediction [10], and whose temporal metrics
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are currently under a forensic spotlight [14]. The shift in
activity from the time of reward to the time of the predic-
tor resembles the shift of the animal's appetitive behav-
ioural reaction from the time of the reward (the
unconditioned stimulus) to that of the conditioned stim-
ulus in classical conditioning experiments [7,10].

In a most interesting recent study, Fiorillo et al. [15] exam-
ined the case of partial reinforcement, in which there is
persistent, ineluctable, prediction error on every single
trial. A straightforward interpretation of the TD prediction
error hypothesis would suggest that in this case (a)
dopamine activity at the time of the predictive stimuli
would scale with the probability of reward, and (b) on
average over trials, the dopaminergic response after the
stimulus and all the way to the time of the reward, should
be zero. Although the first hypothesis was confirmed in
the experiments, the second was not. The between-trial
averaged responses showed a clear ramping of activity
during the delay between stimulus onset and reward that
seemed inconsistent with the TD account. Fiorillo et al.
hypothesised that this activity represents the uncertainty
in reward delivery, rather than a prediction error.

In this paper, we visit the issue of persistent prediction
error. We show that a crucial asymmetry in the coding of
positive and negative prediction errors leads one to expect
the ramping in the between-trial average dopamine sig-
nal, and also accounts well for two further features of the
DA signal - apparent persistent activity at the time of the
(potential) reward, and disappearance (or at least weaken-
ing) of the ramping signal, but not the signal at the time
of reward, in the face of trace rather than delay condition-
ing. Both of these phenomena have also been observed in
the related instrumental conditioning experiments of
Morris et al. [16]. Finally, we interpret the ramping signal
as the best evidence available at present for the nature of
the learning mechanism by which the shift in dopamine
activity to the time of the predictive stimuli occurs.

Uncertainty in reward occurrence: DA ramping
Fiorillo et al. [15] associated the presentation of five dif-
ferent visual stimuli to macaques with the delayed, proba-
bilistic (p,= 0, 0.25, 0.5, 0.75, 1) delivery of juice rewards.
They used a delay conditioning paradigm, in which the
stimulus persists for a fixed interval of 2s, with reward
being delivered when the stimulus disappears. After train-
ing, the monkeys' anticipatory licking behavior indicated
that they were aware of the different reward probabilities
associated with each stimulus.

Figure 1a shows population histograms of extracellularly-
recorded DA cell activity, for each p,. TD theory predicts
that the phasic activation of the DA cells at the time of the
visual stimuli should correspond to the average expected
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reward, and so should increase with p,. Figure 1a shows
exactly this — indeed, across the population, the increase
is quite linear. Morris et al. [16] report a similar result in
an instrumental (trace) conditioning task also involving
probabilistic reinforcement.

By contrast, at the time of potential reward delivery, TD
theory predicts that on average there should be no activity,
as, on average, there is no prediction error at that time. Of
course, in the probabilistic reinforcement design (at least
for p,# 0, 1) there is in fact a prediction error at the time
of delivery or non-delivery of reward on every single trial.
On trials in which a reward is delivered, the prediction
error should be positive (as the reward obtained is larger
than the average reward expected). Conversely, on trials
with no reward it should be negative (see Figure 1c). Cru-
cially, under TD, the average of these differences, weighted
by their probabilities of occurring, should be zero. If it is
not zero, then this prediction error should act as a plastic-
ity signal, changing the predictions until there is no pre-
diction error. At variance with this expectation, the data in
Figure 1a which is averaged over both rewarded and unre-
warded trials, show that there is in fact positive mean
activity at this time. This is also evident in the data of Mor-
ris et al. [16] (see Figure 3¢). The positive DA responses
show no signs of disappearing even with substantial train-
ing (over the course of months).

Worse than this for the TD model, and indeed the focus of
Fiorillo et al. [15], is the apparent ramping of DA activity
towards the expected time of the reward. As the magni-
tude of the ramp is greatest for p, = 0.5, Fiorillo et al. sug-
gested that it reports the uncertainty in reward delivery,
rather than a prediction error, and speculated that this sig-
nal could explain the apparently appetitive properties of
uncertainty (as seen in gambling).

Both the ramping activity and the activity at the expected
time of reward pose critical challenges to the TD theory.
TD learning operates by arranging for DA activity at one
time in a trial to be predicted away by cues available earlier
in that trial. Thus, it is not clear how any seemingly pre-
dictable activity, be it that at the time of the reward or in
the ramp before, can persist without being predicted away
by the onset of the visual stimulus. After all, the p,-
dependent activity in response to the stimulus confirms
its status as a valid predictor. Furthermore, a key aspect of
TD [17], is that it couples prediction to action choice by
using the value of a state as an indication of the future
rewards available from that state, and therefore its attrac-
tiveness as a target for action. From this perspective, since
the ramping activity is explicitly not predicted by the ear-
lier cue, it cannot influence early actions, such as the deci-
sion to gamble. For instance, consider a competition
between two actions: one eventually leading to a state
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Averaged prediction errors in a probabilistic reward task (a) DA response in trials with different reward probabilities.
Population peri-stimulus time histograms (PSTHs) show the summed spiking activity of several DA neurons over many trials,
for each p,, pooled over rewarded and unrewarded trials at intermediate probabilities. (b) TD prediction error with asymmet-
ric scaling. In the simulated task, in each trial one of five stimuli was randomly chosen and displayed at time t = 5. The stimulus
was turned off at t = 25, at which time a reward was given with a probability of p, specified by the stimulus. We used a tapped
delay-line representation of the stimuli (see text), with each stimulus represented by a different set of units ('neurons'). The TD
error was Xt) = r(t) + w(t - 1)x(t) - w(t - 1)-x(t - I), with r(t) the reward at time t, and x(t) and w(t) the state and weight vec-
tors for the unit. A standard online TD learning rule was used with a fixed learning rate o, w(t) = w(t - |) + adt)x(t - 1), so
each weight represented an expected future reward value. Similar to Fiorillo et al., we depict the prediction error &t) averaged
over many trials, after the task has been learned. The representational asymmetry arises as negative values of Jt) have been
scaled by d = 1/6 prior to summation of the simulated PSTH, although learning proceeds according to unscaled errors. Finally,
to account for the small positive responses at the time of the stimulus for p, = 0 and at the time of the (predicted) reward for
p,= | seen in (a), we assumed a small (8%) chance that a predictive stimulus is misidentified. (c) DA response in p,= 0.5 trials,
separated into rewarded (left) and unrewarded (right) trials. (d) TD Model of (c). (a,c) Reprinted with permission from
[15]©2003 AAAS. Permission from AAAS is required for all other uses.
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with a deterministic reward and therefore no ramp, and
the other leading to a state followed by a probabilistic
reward with the same mean, and a ramp. Since the ramp
does not affect the activity at the time of the conditioned
stimulus, it cannot be used to evaluate or favour the sec-
ond action (gambling) over the first, despite the extra
uncertainty.

We suggest the alternative hypothesis that both these
anomalous firing patterns result directly from the con-
straints implied by the low baseline rate of activity of DA
neurons (2-4 Hz) on the coding of the signed prediction
error. As noted by Fiorillo et al. [15], positive prediction
errors are represented by firing rates of ~270% above base-
line, while negative errors are represented by a decrease of
only ~55% below baseline (see also [14,18]). This asym-
metry is a straightforward consequence of the coding of a
signed quantity by firing which has a low baseline,
though, obviously, can only be positive. Firing rates above
baseline can encode positive prediction errors by using a
large dynamic range, however, below baseline firing rates
can only go down to zero, imposing a restriction on cod-
ing of negative prediction errors.

Consequently, one has to be careful interpreting the sums
(or averages) of peri-stimulus-time-histograms (PSTHs)
of activity over different trials, as was done in Figure 1a.
The asymmetrically coded positive and negative error sig-
nals at the time of the receipt or non-receipt of reward
should indeed not sum up to zero, even if they represent
correct TD prediction errors. When summed, the low fir-
ing representing the negative errors in the unrewarded tri-
als will not "cancel out" the rapid firing encoding positive
errors in the rewarded trials, and, overall, the average will
show a positive response. In the brain, of course, as
responses are not averaged over (rewarded and unre-
warded) trials, but over neurons within a trial, this need
not pose a problem.

This explains the persistent positive activity (on average)
at the time of delivery or non-delivery of the reward. But
what about the ramp prior to this time? At least in certain
neural representations of the time between stimulus and
reward, when trials are averaged, this same asymmetry
leads TD to result exactly in a ramping of activity toward
the time of the reward. The TD learning mechanism has
the effect of propagating, on a trial-by-trial basis, predic-
tion errors that arise at one time in a trial (such as at the
time of the reward) towards potential predictors (such as
the CS) that arise at earlier times within each trial. Under
the asymmetric representation of positive and negative
prediction errors that we have just discussed, averaging
these propagating errors over multiple trials (as in Figure
1a) will lead to positive means for epochs within a trial
before a reward. The precise shape of the resulting ramp of
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activity depends on the way stimuli are represented over
time, as well as on the speed of learning, as will be dis-
cussed below.

Figure 2 illustrates this view of the provenance of the ram-
ping activity. Here, a tapped delay-line representation of
time since the stimulus is used. For this, each unit ('neu-
ron') becomes active (i.e., assumes the value 1) at a certain
lag after the stimulus has been presented, so that every
timestep after the stimulus onset is consistently repre-
sented by the firing of one unit. Learning is based on the
(dopaminergically-reported) TD error, formalized as J(t)
=1(t) + V(t) - V(¢ - 1), with V(t) the weighted input from
the active unit at time ¢, and r(t) the reward obtained at
time ¢. Updating the weights of the units according to the
standard TD update rule with a fixed learning rate, allows
V(t) to, on average, represent the expected future rewards
(see Figure 1 caption). As each subsequent timestep is sep-
arately represented, TD prediction errors can arise at any
time within the trial. Figure 2a shows these errors in six
consecutive simulated trials in which p, = 0.5. In every
trial, a new positive or negative error arises at the time of
the reward, consequent on receipt or non-receipt of the
reward, and step-by-step the errors from previous trials
propagate back to the time of the stimulus, through the
constant updating of the weights (eg. the error highlighted
in red). When averaging (or, as in PSTHs, summing) over
trials, these errors cancel each other on average, resulting
in an overall flat histogram in the interval after the stimu-
lus onset, and leading up to the time of the reward (black
line in Figure 2b, summed over the 10 trials shown in thin
blue). However, when summed after asymmetric scaling of
the negative errors by a factor of d = 1/6 (which simulates
the asymmetric coding of positive and negative prediction
errors by DA neurons), a positive ramp of activity ensues,
as illustrated by the black line in Figure 2c. Note that this
rescaling is only a representational issue, resulting from the
constraints of encoding a negative value about a low base-
line firing rate, and should not affect the learning of the
weights, so as not to learn wrong values (see discussion).
However, as PSTHs are directly sums of neuronal spikes,
this representational issue bears on the resulting
histogram.

Figures 1b,d show the ramp arising from this combina-
tion of asymmetric coding and inter-trial averaging, for
comparison with the experimental data. Figure 1b shows
the PSTH computed from our simulated data by averaging
over the asymmetrically-represented J(t) signal in ~50 tri-
als for each stimulus type. Figure 1d shows the results for
the p, = 0.5 case, divided into rewarded and unrewarded
trials for comparison with Figure 1c. The simulated results
resemble the experimental data closely in that they repli-
cate the net positive response to the uncertain rewards, as
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Backpropagation of prediction errors explains ramping activity. (a) The TD prediction error across each of six con-
secutive trials (top to bottom) from the simulation in Figure Ib, with p, = 0.5. Highlighted in red is the error at the time of the
reward in the first of the trials, and its gradual back-propagation towards the time of the stimulus in subsequent trials. Block
letters indicate the outcome of each specific trial (R = rewarded; N = not rewarded). The sequence of rewards preceding
these trials is given on the top right. (b) The TD error from these six trials, and four more following them, superimposed. The
red and green lines illustrate the envelope of the errors in these trials. Summing over these trials results in no above-baseline
activity on average (black line), as positive and negative errors occur at random 50% of the time, and so cancel each other. (c)
However, when the prediction errors are asymmetrically represented above and below the baseline firing rate (here negative
errors were asymmetrically scaled by d = 1/6 to simulate the asymmetric encoding of prediction errors by DA neurons), an
average ramping of activity emerges when averaging over trials, as is illustrated by the black line. All simulation parameters are

the same as in Figure Ib,d.

well as the ramping effect, which is highest in the p, = 0.5
case.

It is simple to derive the average response at the time of
the reward (t = N) in trial T, i.e., the average TD error
( 6{(N)», from the TD learning rule with the simplified
tapped delay-line time representation and a fixed learning
rate . The value at the next to last timestep in a trial, as a
function of trial number (with initial values taken to be
zero), is

VT(N—1)=aT§‘_;(1—a)tr(T—t), (1)

where 7(t) is the reward at the end of trial t. The error sig-
nal at the last timestep of trial T is simply the difference
between the obtained reward r(T), and the value predict-
ing that reward V;_; (N - 1). This error is positive with
probability p,, and negative with probability (1 - p,). Scal-
ing the negative errors by a factor of d € (0, 1], we thus get
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<5T(N)> =pr —(1—(1—0() ' )(p12 +dpr(1_pr ))

Tp,(l—pr)(l—d). (2)
For symmetric coding of positive and negative errors (d =
1), the average response is 0. For asymmetric coding (0 <d
< 1), the average response is indeed proportional to the
variance of the rewards, and thus maximal at p, = 0.5.
However, d;is positive, and concomitantly, the ramps are
positive, and in this particular setting, are related to uncer-
tainty, because of, rather than instead of, the coding of J(t).

Indeed, there is a key difference between the uncertainty
and TD accounts of the ramping activity. According to the
former, the ramping is a within-trial phenomena, coding
uncertainty in reward; by contrast, the latter suggests that
ramps arise only through averaging across multiple trials.
Within a trial, when averaging over simultaneously
recorded neurons rather than trials, the traces should not
show a smooth ramp, but intermittent positive and nega-
tive activity corresponding to back-propagating prediction
errors from the immediately previous trials (as in Figure
2a).

Trace conditioning: a test case

An important test case for our interpretation arises in a
variant of Fiorillo et al.'s [15] task, as well as in the analo-
gous instrumental task of Morris et al. [16], both involving
trace conditioning. In contrast to delay conditioning (Fig-
ure 3a) in which the reward coincides with the offset of
the predictive stimulus, here there is a substantial gap
between the offset of the predictive stimulus and the
delivery of the reward (Figure 3b). Clearly, in this case,
uncertainty about the reward could only get larger, owing
to noise in timing the interval between stimulus and
reward [19], so under the uncertainty account, there
should be comparable or even larger ramps. However, the
experimental results show the ramping activity to be
smaller, or even negligible (Figure 3¢;d). Note, though,
that the magnitude of the trial-average activity at the
expected time of reward is maintained, pointing to a dis-
sociation between the height of the ramp and the amount
of positive activity at the expected time of reward.

The TD model of DA readily explains these puzzling data.
As shown in Figure 4, the shape of the ramp, though not
the height of its peak, is affected by the learning rate. The
size of the back-propagating prediction errors is deter-
mined, in part, by the learning rate, as these errors arise as
part of the online learning of new predictions. Indeed,
there is a continuous updating of predictions such that
after a rewarded trial, there is a higher expectation of
reward (and thus the next reward incurs a smaller predic-
tion error), and conversely after a non-rewarded trial [18]
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(see Figure 2a). This updating of predictions is directly
related to the learning rate - the higher the learning rate,
the larger the update of predictions according to the cur-
rent prediction error, and the larger the fraction of the pre-
diction error which is propagated back. In this way, with
higher learning rates, the difference in expectations after a
rewarded versus an unrewarded trial will be larger, and
thus the prediction errors when the next reward is or is not
available will be larger — hence the larger and more grad-
ual ramp.

Indeed, compared to delay conditioning, trace condition-
ing is notoriously slow, suggesting that the learning rate is
low, and thus that there should be a lower ramp, in accord
with the experimental results. A direct examination of the
learning rate in the data of Morris et al. [16], whose task
required excessive training as it was not only a trace con-
ditioning one but also involved an instrumental action,
confirmed it indeed to be very low (Genela Morris - per-
sonal communication, 2004).

Discussion

The differential coding of positive and negative values by
DA neurons is evident in all the studies of the phasic DA
signal, and can be regarded as an inevitable consequence
of the low baseline activity of these neurons. Indeed, the
latter has directly inspired suggestions that an opponent
neurotransmitter, putatively serotonin, be involved in
representing and therefore learning the negative predic-
tion errors [20], so that they also have full quarter. Here,
however, we have confined ourselves to consideration of
the effects of asymmetry on the trial-average analysis of
the dopamine activity, and have shown that ramping DA
activity, as well as an average positive response at the time
of reward, result directly from the asymmetric coding of
prediction errors.

Apart from a clearer view of the error signal, the most
important consequence of the new interpretation is that
the ramps can be seen as a signature of a TD phenomenon
that has hitherto been extremely elusive. This is the pro-
gressive back-propagation of the error signal represented
by DA activity, from the time of reward to the time of the
predictor (Figure 2a). Most previous studies of dopamin-
ergic activity have used p, = 1, so making this back-propa-
gation at best a transitory phenomenon apparent only at
the beginning of training (when, typically, recordings
have not yet begun), and potentially hard to discern in
slow-firing DA neurons. Further, as mentioned, the back-
propagation depends on the way that the time between
the predictive stimulus and the reward is represented - it
is present for a tapped delay-line representation as in [6],
but not for representations which span the entire delay,
such as in [21]. Note that the shape of the ramp also
depends on the use of eligibility traces and the so-called
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a. Delay conditioning (Fiorillo et al.’s [15] classical conditioning task)
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Trace conditioning with probabilistic rewards. (a) An illustration of one trial of the delay conditioning task of Fiorillo et
al. [15]. A trial consists of a 2-second visual stimulus, the offset of which coincides with the delivery of the juice reward, if such
a reward is programmed according to the probability associated with the visual cue. In unrewarded trials the stimulus termi-
nated without a reward. In both cases an inter-trial interval of 9 seconds on average separates trials. (b) An illustration of one
trial of the trace conditioning task of Morris et al. [16]. The crucial difference is that there is now a substantial temporal delay
between the offset of the stimulus and the onset of the reward (the "trace" period), and no external stimulus indicates the
expected time of reward. This confers additional uncertainty as precise timing of the predicted reward must be internally
resolved, especially in unrewarded trials. In this task, as in [15], one of several visual stimuli (not shown) was presented in each
trial, and each stimulus was associated with a probability of reward. Here, also, the monkey was requested to perform an
instrumental response (pressing the key corresponding to the side in which the stimulus was presented), the failure of which
terminated the trial without a reward. Trials were separated by variable inter-trial intervals. (c,d) DA firing rate (smoothed)
relative to baseline, around the expected time of the reward, in rewarded trials (c) and in unrewarded trials (d). (c,d) Reprinted
from [16] ©2004 with permission from Elsevier. The traces imply an overall positive response at the expected time of the
reward, but with a very small, or no ramp preceding this. Similar results were obtained in a classical conditioning task briefly
described in [15], which employed a trace conditioning procedure, confirming that the trace period, and not the instrumental
nature of the task depicted in (b) was the crucial difference from (a).
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Dependence of the ramp on learning rate. The shape
of the ramp, but not the height of its peak, is dependent on
the learning rate. The graph shows simulated activity for the
case of p,= 0.5 near the time of the expected reward, for dif-
ferent learning rates, averaged over both rewarded and unre-
warded trials. According to TD learning with persistent
asymmetrically coded prediction errors, averaging over activ-
ity in rewarded and unrewarded trials results in a ramp up to
the time of reward. The height of the peak of the ramp is
determined by the ratio of rewarded and unrewarded trials,
however, the breadth of the ramp is determined by the rate
of back-propagation of these error signals from the time of
the (expected) reward to the time of the predictive stimulus.
A higher learning rate results in a larger fraction of the error
propagating back, and thus a higher ramp. With lower learn-
ing rates, the ramp becomes negligible, although the positive
activity (on average) at the time of reward is still maintained.
Note that although the learning rate used in the simulations
depicted in Figure Ib,d was 0.8, this should not be taken as
the literal synaptic learning rate of the neural substrate, given
our schematic representation of the stimulus. In a more real-
istic representation in which a population of neurons is active
at every timestep, a much lower learning rate would produce
similar results.

TD(A) learning rule (simulation not shown), which pro-
vide an additional mechanism for bridging time between
events during learning. Unfortunately, as the forms of the
ramps in the data are rather variable (figure 1) and noisy,
they can not provide strong constraints on the precise TD
mechanism used by the brain.

More recent studies involving persistent prediction errors
also show activity suggestive of back-propagation, notably
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Figure 4 of [13]. In this study, prediction errors resulted
from periodic changes in the task, and DA recordings were
made from the onset of training, thus back-propagation-
like activity is directly apparent, although this activity was
not quantified.

We expect the ramps to persist throughout training only if
the learning rate does not decrease to zero as learning
progresses. Pearce & Hall's [22] theory of the control of
learning by uncertainty suggests exactly this persistence of
learning - and there is evidence from partial reinforce-
ment schedules that the learning rate may be higher when
there is more uncertainty associated with the reward.
Indeed, from a 'rational’ statistical point of view, learning
should persist when there is substantial uncertainty about
the relationship between predictors and outcomes, as can
arise from the ever-present possibility of a change in the
predictive relationships. This form of persistent uncer-
tainty, together with uncertainty due to initial ignorance
regarding the task, have been used to formalize Pearce &
Hall's theory of the way that uncertainty drives learning
[23]. Thus, our claim that uncertainty may not be directly
represented by the ramps, should certainly not be taken to
mean that its representation and manipulation is not
important. To the contrary, we have suggested that uncer-
tainty influences cortical inference and learning through
other neuromodulatory systems [24], and that it also may
determine aspects of the selection of actions [25].

Various other features of the asymmetry should be noted.
Most critical is the effect of the asymmetry on DA-depend-
ent learning [26], if the below baseline DA activity is
responsible by itself for decreasing predictions which are
too high. In order to ensure that the learned predictions
remain correct, we would have to assume that the asym-
metric representation does not affect learning, i.e., that a
mechanism such as different scaling for potentiation and
depression of the synaptic strengths compensates for the
asymmetric error signal. Of course, this would be ren-
dered moot if an opponent neurotransmitter is involved
in learning from negative prediction errors. This issue is
complicated by the suggestion of Bayer [14] that DA firing
rates are actually similar for all prediction errors below
some negative threshold, perhaps due to the floor effect of
the low firing rate. Such lossy encoding does not affect the
qualitative picture of the effects of inter-trial averaging on
the emergence of ramps, but does reinforce the need for
an opponent signal for the necessarily symmetric
learning.

Finally, the most direct test of our interpretation would be
a comparison of intra- and inter-trial averaging of the DA
signal. It would be important to do this in a temporally
sophisticated manner, to avoid problems of averaging
non-stationary signals. In order to overcome the noise in
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the neural firing, and determine whether indeed there was
a gradual ramp within a trial, or, as we would predict -
intermittent positive and negative prediction errors, it
would be necessary to average over many neurons
recorded simultaneously within one trial, and further-
more neurons associated with similar learning rates. Alter-
natively, single neuron traces could be regressed against
the backpropagation response predicted by their preced-
ing trials and TD learning. A comparison of the amount of
variability explained by such a model, compared to that
from a regression against a monotonic ramp of activity,
could point to the most fitting model. A less straightfor-
ward, but more testable prediction is that the shape of the
ramp should depend on the learning rate. Learning rates
can be assessed from the response to the probabilistic
rewards, independent of the shape of the ramp (Nakahara
et al. [18] showed in such a way, that in their partial rein-
forcement trace conditioning task, the learning rate was
0.3), and potentially manipulated by varying the amount
of training or the frequency with which task contingencies
are changed and relearned. Indeed, quantifying the exist-
ence and shape of a ramp in Nakahara et al.'s recorded DA
activity, could well shed light on the current proposal.
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