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Abstract
Background: Speech perception is based on a variety of spectral and temporal acoustic features
available in the acoustic signal. Voice-onset time (VOT) is considered an important cue that is
cardinal for phonetic perception.

Methods: In the present study, we recorded and compared scalp auditory evoked potentials (AEP)
in response to consonant-vowel-syllables (CV) with varying voice-onset-times (VOT) and non-
speech analogues with varying noise-onset-time (NOT). In particular, we aimed to investigate the
spatio-temporal pattern of acoustic feature processing underlying elemental speech perception and
relate this temporal processing mechanism to specific activations of the auditory cortex.

Results: Results show that the characteristic AEP waveform in response to consonant-vowel-
syllables is on a par with those of non-speech sounds with analogue temporal characteristics. The
amplitude of the N1a and N1b component of the auditory evoked potentials significantly correlated
with the duration of the VOT in CV and likewise, with the duration of the NOT in non-speech
sounds.

Furthermore, current density maps indicate overlapping supratemporal networks involved in the
perception of both speech and non-speech sounds with a bilateral activation pattern during the N1a
time window and leftward asymmetry during the N1b time window. Elaborate regional statistical
analysis of the activation over the middle and posterior portion of the supratemporal plane (STP)
revealed strong left lateralized responses over the middle STP for both the N1a and N1b
component, and a functional leftward asymmetry over the posterior STP for the N1b component.

Conclusion: The present data demonstrate overlapping spatio-temporal brain responses during
the perception of temporal acoustic cues in both speech and non-speech sounds. Source estimation
evidences a preponderant role of the left middle and posterior auditory cortex in speech and non-
speech discrimination based on temporal features. Therefore, in congruency with recent fMRI
studies, we suggest that similar mechanisms underlie the perception of linguistically different but
acoustically equivalent auditory events on the level of basic auditory analysis.
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Background
Auditory language perception is based on a variety of
spectral and temporal acoustic information available in
the speech signal [1]. One important temporal cue used to
distinguish between stop-consonants is the voice onset
time (VOT). The VOT, defined as the duration of the delay
between release of closure and start of voicing, character-
izes voicing differences among stop consonants in a wide
variety of languages [2] and can thus be considered one of
the most important acoustic cues encoding linguistically
relevant information. The perceptual ability of resolving
two signals as temporally discrete requires that the brain
has a temporally segregated representation of those
events.

Electrophysiological studies have consistently demon-
strated VOT-related auditory evoked potential (AEP) dif-
ferences in the N1 component with a single peak in
response to short VOTs, and with a double-peaked in
response to longer VOTs in humans [3-7], monkey [8,9]
and guinea pig [10]. In humans it has been shown that
non-speech sounds with related temporal characteristics
as consonant-vowel-syllables (CV) resemble these pattern
of acoustic temporal processing [11]. In particular, this
study showed using intracerebral depth electrodes that the
evoked responses of the left, but not the right primary
auditory cortex are differential for the processing of voiced
and voiceless consonants and their non-speech ana-
logues.

Further support for a general mechanism for encoding
and analysing successive temporal changes in acoustic sig-
nals has been evidenced by studies demonstrating that
patients with acquired brain lesions and aphasia [12,13],
children with general language-learning disabilities
[14,15] and children and adults with dyslexia [16] show
impaired auditory processing of temporal information in
non-verbal stimuli. Furthermore, children with reading
disabilities are deficient in phoneme perception, which is
reflected by inconsistent labelling of tokens in VOT series
[17,18], and these children also perform less consistently
in labelling of tone onset time tokens [19] and exhibit
poorer auditory order thresholds [20]. Moreover, it is
known that the ability for phoneme discrimination in
these children can be increased by a behavioural training
using more salient versions of the rapidly changing ele-
ments in the acoustic waveform of speech [21,22].

Recent electrophysiological and neuroimaging studies
point to the important role of the primary and secondary
auditory cortex for the processing of acoustic features in
speech and non-speech sounds. Several investigations
using intracranial recording [9,11], scalp EEG [23,24],
MEG [25] as well as fMRI [26,27] demonstrated an ele-
vated role of the human primary auditory cortex for the

temporal processing of short acoustic cues in speech and
non-speech sounds. Furthermore, auditory association
areas along the posterior supratemporal plane, in particu-
lar the bilateral planum temporale (PT) have also been
associated with the processing of rapidly changing audi-
tory information during sub-lexical processing
[26,28,29]. However, due to BOLD-related limitations in
temporal resolutions, the EEG method is far more suitable
for elucidating the temporal organization of speech per-
ception. In combination with a recently developed source
estimation algorithm [30], it even allows the mapping the
spatiotemporal dynamics of elemental aspects of speech
perception, i.e. VOT decoding. Thus, the most important
goal of this study is the validation of the aforementioned
left middle and posterior auditory cortex recruitment in
speech and non-speech discrimination based on temporal
features.

In the present study, we recorded and compared scalp
AEPs in response to CV-syllables and non-speech ana-
logues with varying VOT and noise-onset-time (NOT),
respectively. Here we aimed to investigate the neural cod-
ing of acoustic characteristics underlying speech percep-
tion and relate this temporal processing mechanism to
specific activations of the auditory cortex. It has been
demonstrated that these processing mechanisms are
reflected by modulations of the AEP. The N1 deflection in
particular is an obligatory component considered to
reflect the basic encoding of acoustic information of the
auditory cortex [31,32]. Furthermore, this component
reflects the central auditory representation of speech
sounds [33,34] and non-speech sounds [35]. Thus, in the
context of the present study we focused on the modula-
tions during the N1 time window elicited by brief audi-
tory stimuli that varied systematically along an acoustic
and a linguistic dimension. In addition, we examined the
extent to which the pattern of neural activation differs in
distinct portions of the auditory cortex. As mentioned
above, both the middle compartment of the supratempo-
ral plane (STP) accommodating the primary auditory cor-
tex and the posterior compartment of the supratemporal
plane harbouring the planum temporale are crucial for
processing transient acoustic features in speech and non-
speech sounds. In order to systematically investigate the
contribution of these auditory cortex sections, we applied
a low-resolution brain electromagnetic tomography
(LORETA) approach and predicted functional leftward
asymmetric responses to rapidly changing acoustic cues
over the middle and posterior portion of the STP.

Methods
In a behavioural pilot study, 24 healthy, right-handed
native speakers of German (mean age = 26.7 ± 4.56 years,
13 female) performed a phonetic categorization task. A
synthetic VOT continuum was used ranging from 20 to 40
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ms VOT in 1 ms steps. Participants were instructed to lis-
ten to each syllable and to decide whether the syllable was
[da] or [ta] by pressing a corresponding button as quickly
and accurately as possible. Figure 1 illustrates results of
this pilot study. The graph shows the averaged identifica-
tion curve indicating the percentage of syllables that were
identified as /ta/. As illustrated in Figure 1, the mean cate-
gorization boundary as indicated by the inflection point
of the fitted polynomial function was at a VOT of 30 ms.
The results of this behavioural study formed the basis for
the subsequent electrophysiological investigation. As a
consequence, we used syllables with a VOT of 5 ms, as
they were consistently identified as the syllable /da/, a
VOT of 60 ms, consistently identified as the syllable /ta/
and syllables with the VOT of 30 ms reflecting the aver-
aged categorization boundary between /da/ and /ta/. We
used a VOT of 5 ms for the voiced CV-/da/ and a VOT of
40 ms for the unvoiced CV-/ta/ to ensure the use of VOT
stimuli that are clearly in the voiced segment (5 ms) and
in the unvoiced segment (60 ms).

The electrophysiological experiment was conducted in a
dimly lit, sound attenuated chamber. Subjects were placed
in a comfortable chair at 110 cm distance from the moni-
tor and scalp recorded event-related potentials (ERPs) in
response to CV-syllables and non-speech sounds were
obtained from 18 male right-handed, native German
speaking healthy volunteers (mean age = 28.6 ± 3.45
years). None had any history of hearing, neurological, or
psychiatric disorders. After a full explanation of the nature
and risks of the study, subjects gave their informed con-

sent for the participation according to a protocol
approved by the local ethics committee.

The auditory stimuli were generated with a sampling
depth of 16 bits and a sampling rate of 44.1 kHz using the
SoundForge 4.5 Software [36] and PRAAT [37]. We used a
modified version of the stimulus material described by
Zaehle et al., (2004) [26]. Figure 2 shows wave-forms of
the applied stimuli. Stimuli material consisted of CV syl-
lables with varying voice-onset-times (5 ms, 30 ms and 60
ms) as revealed in the pilot behavioural study and analo-
gously, non-speech sounds with varying noise-onset-
times (5 ms, 30 ms and 60 ms). For the non-speech con-
dition, we created stimuli containing two sound elements
separated by a gap. The leading element was a wideband
noise burst with a length of 7 ms. The trailing element was
a bandpassed noise centred on 1.0 kHz and a width of 500
Hz. The duration of the gap was varied. The duration of
each single stimulus was consistent (330 ms). Auditory
stimuli were presented binaurally using hi-fi headphones
(55 dB sound pressure level). Stimulation and recording
of the responses were controlled by the Presentation soft-
ware (Neurobehavioral Systems, USA).

The EEG experiment comprised ten blocks. Within each
block, 18 trials of each stimulus category were presented
in a randomized order resulting in presentations of 180
stimuli-pairs. For each trial, volunteers performed a same-
different discrimination task on a pair of stimuli belong-
ing to one stimulus category. The stimuli varied with
respect to the temporal manipulation of the NOT and
VOT. Stimuli of one pair were presented with an inter
stimulus interval of 1300 ms. Participants indicated their
answers by pressing one of two response buttons. We uti-
lized this task to ensure subjects' vigilance throughout the
experiment and to engage the subjects to attend to the
auditory stimulation. However, we were primarily inter-
ested in the electrophysiological responses to acoustic fea-
tures underlying pure and elemental speech perception.
We also aimed to avoid confounds with the neural corre-
lates of decision making instantly following the second
stimulus of each pair of VOT and NOT. Thus, only the first
stimulus of each stimulus pair was analysed and included
into the following analysis.

EEG was recorded from 32 scalp electrodes (30 channels
+ 2 eye channels) located at standard left and right hemi-
sphere positions over frontal, central, parietal, occipital,
and temporal areas (subset of international 10/10 system
sites: Fz, FCz, Cz, CPz, Pz, Oz, Fp1, Fp2, F3, F4, C3, C4,
P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, TP7, TP8, FT7, FT8,
FC3, FC4, CP3, and CP4) using a bandpass of 0.53 -70 Hz
with a sampling rate of 500 Hz. We applied sintered sil-
ver/silver chloride electrodes (Ag/AgCl) and used the FCz
position as the reference. Impedances of these electrodes

Averaged identification curve (+/-1 standard deviation) indi-cating the percentage of CV-syllables that were identified as /ta/ in relation to their VOT (black, diamonds) and fitted poly-nomial function (gray) [y = 0.0011x5 - 0.059x4 + 1.0989x3 - 8.0781x2 + 25.458x - 14.507]Figure 1
Averaged identification curve (+/-1 standard deviation) indi-
cating the percentage of CV-syllables that were identified as /
ta/ in relation to their VOT (black, diamonds) and fitted poly-
nomial function (gray) [y = 0.0011x5 - 0.059x4 + 1.0989x3 - 
8.0781x2 + 25.458x - 14.507]; Inflection point: x|y 
[10.98|63.86]; corresponding to a VOT of 29.98 ms.
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were kept below 5 kΩ. Trials containing ocular artefacts,
movement artefacts, or amplifier saturation were excluded
from the averaged ERP waveforms. The processed data
were re-referenced to a virtual reference derived from the
average of all electrodes. Each ERP waveform was an aver-
age of more than 100 repetitions of the potentials evoked
by the same stimulus type. The EEG recordings were sec-
tioned into 600 ms epochs (100 ms pre-stimulus and 500
ms post-stimulus) and a baseline correction using the pre-
stimulus portion of the signal was carried out. ERPs for
each stimulus were averaged for each subject and grand-
averaged across subjects.

In order to statistically confirm the predicted differences
between AEP components at Cz as a function of experi-
mental stimuli, mean amplitude ERPs time-locked to the
auditory stimulation were measured in two latency win-
dows (110–129 ms and 190–209 ms) determined by vis-
ual inspection covering the prominent N1a and N1b
components. Analyses of variance (ANOVAs) with factors
temporal modulation (5, 30, 60 ms) and speechness (VOT/
NOT) were computed for central electrode (Cz), and the

p values reported were adjusted with the Greenhouse-
Geisser epsilon correction for nonsphericity.

Subsequently, we applied an inverse linear solution
approach – LORETA (low-resolution electromagnetic
tomography) to estimate the neural sources of event-
related scalp potentials [38,39]. In order to verify the esti-
mated localization of the N1a and N1b component, we
calculated the LORETA current density value (µA/mm2)
for the AEPs within the 3D voxel space. We used a trans-
formation matrix with high regularization (1e3 * (first
eigenvalue)) to increase signal to noise ratio. The maxima
of the current density distributions were displayed on a
cortical surface model and transformed in stereotactic
Talairach space [40]. Subsequently, to specifically test the
neurofunctional hypothesis of the bilateral middle and
posterior STP, we calculated a post hoc region-of-interest
(ROI) analysis. We defined four 3D ROIs in STP (left mid-
dle STP, right middle STP, left posterior STP, right poste-
rior STP). The landmarks of ROIs were determined by an
automatic anatomical labelling procedure implemented
in LORETA. We collected mean current density values
from each individual and each distinct 3D ROI by means

Waveforms of the auditory stimulationFigure 2
Waveforms of the auditory stimulation. The left panel shows speech stimuli (CV) with varying VOT (5, 30, 60 ms), and the 
right panel shows non-speech stimuli with varying NOT (top to bottom: 5, 30, 60 ms).
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of the ROI extractor software tool [41]. The mean current
density values for each ROI were submitted to a 3 × 2 × 2
ANOVA with the factors temporal modulation (5, 30, 60
ms), hemisphere (left/right) and speechness (VOT/NOT)

Results
Grand averaged waveforms evoked by each of the three
speech and three non-speech stimuli recorded from Cz are
shown in Figure 3. We observed that all stimuli elicited a
prominent N1a component with the shortest VOT/NOT
modulation (5 ms) yielding the most enhanced ampli-
tude. Furthermore, we noticed a second negative deflec-
tion peaking around 200 ms after stimulus onset (N1b)
also revealing sensitivity to the temporal modulation of
the sounds. In order to statistically examine the ERP
effects, mean amplitude of the ERP waveforms were meas-
ured in two 20 ms latency windows.

Results of the 3 × 2 ANOVA with the factors temporal mod-
ulation (5, 30, 60 ms) and speechness (VOT/NOT) for the
N1a (TW I: 110–129 ms latency window) revealed a sig-
nificant main effect of the factor temporal modulation
(F(1.77, 30.1) = 12.45, p < 0.001). Similarly, the N1b
(190–209 ms latency window) ANOVA revealed a signifi-

cant main effect of the factor temporal modulation (F(1.58,
26.92) = 15.7, p < 0.001). Furthermore, the ANOVA for
the N1b also revealed a significant main effect of the fac-
tor speechness (F(1, 17) = 19.88, p < 0.001) and a signifi-
cant temporal modulation by speechness interaction (F(1.6,
27.4) = 4.79, p < 0.05).

Subsequently, post-hoc analyses were conducted separately
for the speech and non-speech stimulation. Figure 4
shows plots of mean amplitude of the temporal modula-
tion separated for speech and non-speech for a) N1a and
b) N1b. The results of the one-factorial ANOVAs are listed
in Table 1. For the N1 (110–129 ms latency), separate
one-factorial ANOVA revealed a significant main effect of
the factor temporal modulation for the non-speech sounds
(F(1.8, 30.9) = 8.14 p < 0.001). Test for linear contrast
demonstrated a significant linear relationship of the N1a
mean amplitude and length of the NOT in the non-speech
sounds (F(1,17) = 15.53, p = 0.001). Similarly, one – fac-
torial ANOVAs with the factor temporal modulation in the
speech sounds revealed a significant main effect (F(1.61,
27.4) = 5.34, p < 0.05) and test for linear contrast revealed
significant linear relationship of the N1a mean amplitude
and length of the VOT in the speech sounds (F(1,17) =
9.39, p < 0.05). The same pattern of activation was present
at the 190 – 209 ms latency window (N1b). Separate one-
factorial ANOVAs revealed a significant main effect of the
factor temporal modulation for the non-speech sounds
(F(1.23, 21.1) = 18.09, p < 0.001), and a one-factorial
ANOVA with the factor temporal modulation revealed a sig-
nificant main effect (F(1.79, 30.49) = 3.85, p < 0.05) for
the speech sounds. Tests for linear contrast revealed a sig-
nificant linear relationship of the N1b mean amplitude
and length of the NOT in the non-speech sounds (F(1,17)
= 24.18, p < 0.001), and VOT in the speech sounds
(F(1,17) = 4.99, p < 0.05).

Results for the source localization analysis are presented
in Table 2. The table lists coordinates and corresponding
brain regions associated with current density maxima for
the speech and non-speech sounds obtained separately
for the N1a and N1b time windows. As shown in Figure 5,
for the N1a time window current density maps indicate
that left and right posterior perisylvian areas contribute to
both speech and non-speech sounds. With regard to the
N1b, source estimation showed enlarged current density
distribution over the left posterior STP and the anterior
cingulate gyrus for speech and non-speech sounds, and
the right posterior STP for non-speech sounds.

Subsequent statistical analysis of ROIs over the bilateral
middle portion of the STP separate for N1a and N1b time
windows revealed that current density values were
strongly lateralized. A 3 × 2 × 2 ANOVA with the factors
temporal modulation (5, 30, 60 ms), hemisphere (left/right)

Averaged electrophysiological data, recorded from 18 partic-ipants time locked at the onset of stimulation at central (Cz) electrode during the perception of VOT (top) and NOT stimuliFigure 3
Averaged electrophysiological data, recorded from 18 partic-
ipants time locked at the onset of stimulation at central (Cz) 
electrode during the perception of VOT (top) and NOT 
stimuli.
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and speechness (VOT/NOT) revealed a significant main
effect of the factor hemisphere (F(1,17) = 18.64, p < 0.001)
for the N1a as well as for the N1b time window (F(1,17)
= 27.97, p < 0.001) demonstrating stronger responses
over the left as compared to the right primary auditory
cortex. Figure 6 shows current density values during the
processing of VOT and NOT stimuli collapsed over the
temporal modulations and extracted from the left and
right primary auditory cortex.

The analysis for the posterior portion of the STP showed
no significant main effect or an interaction for the N1a
time window. For the N1b time window, analysis showed
a significant main effect of the factor hemisphere (F(1,17)
= 5.55, p < 0.05) indicating stronger responses over the
left as compared to the right posterior STP. Figure 7 shows
current density values during the processing of VOT and
NOT stimuli extracted from the left and right posterior
portion of the STP.

a: Plots of mean amplitude for N1a separate for VOT and NOT stimuliFigure 4
a: Plots of mean amplitude for N1a separate for VOT and NOT stimuli. b: Plots of mean amplitude for N1b separate for VOT 
and NOT stimuli.
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Discussion
One of the key questions in understanding the nature of
speech perception is to what extent the human brain has
unique speech-specific mechanisms or to what degree it
processes sounds equally depending on their acoustic
properties. In the present study we showed that the char-
acteristic AEP waveform in response to consonant-vowel-
syllables shows an almost identical spatio-temporal pat-
tern as in response to non-speech sounds with similar
temporal characteristics. The amplitudes of the N1a and
N1b component of the auditory evoked potentials signif-
icantly correlated with the duration of the VOT in CV-syl-
lables and analogously, with the duration of the NOT in
non-speech sounds. Furthermore, current density maps of
the N1a and N1b time windows indicate overlapping neu-
ral distribution of these components originating from the
same sections over the superior temporal plane that
accommodates auditory cortex. For the analysis of the
middle portion of the STP incorporating the primary audi-

tory cortex, we revealed asymmetric activations that point
to a stronger involvement of left supratemporal plane
regardless of TW, speechness or temporal modulation. For
the posterior part of the STP, the analysis of the current
density values revealed a bilateral activation pattern dur-
ing the N1a time window and a leftward asymmetry dur-
ing the N1b time window for both the perception of
speech and non-speech sounds.

In general, our data are in line with former electrophysio-
logical studies investigating the processing of brief audi-
tory cues but delivers novel insight in that it demonstrates
a strong preference of the left middle and posterior audi-
tory cortex for rapidly modulating temporal information
by means of a low-resolution source estimation approach.
Using MEG, it has been demonstrated that the AEP
response to speech sounds exhibits an N100m, which is
followed by a N200m at around 200–210 ms [42]. It has
been proposed that the N200m is specific to acoustic

Table 1: Results of ANOVAs with the factor NOT and VOT for TW I and TW II

Factor linear contrast

df F-value p-value df F-value p-value

Time window I (N1)
VOT 1.61 5.34 0.01 1 9.39 0.007
NOT 1.81 8.14 0.001 1 15.53 0.001

Time window II (N2)
VOT 1.79 3.84 0.03 1 4.98 0.04
NOT 1.24 18.09 0.000 1 24.18 0.000

Grand average (n = 18) three dimensional LORETTA – based current density maxima for AEP components N1 and N2Figure 5
Grand average (n = 18) three dimensional LORETTA – based current density maxima for AEP components N1 and N2. 
(Threshold: 0.001 prop. µA/mm2).
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parameters available in vowels, since acoustic, rather than
phonetic, features of the stimulus triggered the N200m.
Sharma and colleagues showed that the typical change in
the AEP waveform morphology from single to double
peaked N1 components is not a reliable indicator of per-
ception of voicing contrasts in syllable-initial position [3].
In other words, a double-peak onset response cannot be
considered a cortical correlate of the perception of voice-
lessness. Rather, it depends on the acoustic properties of
the sound signal. For the perception of consonants with
the same place of articulation, the critical acoustic feature
that distinguishes between these consonants is the time
between the burst at consonant initiation and the onset of

voicing (VOT). Similarly, in the case of non-speech
sounds the critical acoustic feature is the time (silent gap)
between the trailing and leading noise elements. In both
cases the ability to perform the task requires the listener to
perceptually segregate the two sounds (or their onsets) in
time, which in turn requires that the brain have tempo-
rally segregated responses to the two events (or their
onsets) [43]. As demonstrated by the present data, over-
lapping cortical excitement was found for the detection of
temporal cues in both speech and non-speech sounds.
Therefore, our data support the notion of similar mecha-
nisms underling the perception of auditory events that are

Table 2: Current density maxima [µA/mm2]*10-3 in response to speech (VOT) and non-speech (NOT) sounds

Component Condition Brain Region Current density value Hemisphere X Y Z

N1a VOT Cingulum 1.74 -3 45 1
STG 1.39 L -59 -32 8

1.30 R 60 -39 15

NOT Cingulum 2.70 -3 45 1
STG 1.50 L -59 -32 8

1.78 R 60 -39 15

N1b VOT Cingulum 1.74 -3 45 1
STG 1.39 L -59 -32 8

NOT Cingulum 2.70 -3 52 1
STG 1.50 L -59 -32 8

1.78 R 60 -39 15

Plots of mean current density values obtained by the anatomically defined ROI analysis, separate for the left and right middle portion of the supratemporal plane (BA41): Left panel shows date for N1a (TW I) and the right panel shows data for N1b (TW II)Figure 6
Plots of mean current density values obtained by the anatomically defined ROI analysis, separate for the left and right middle 
portion of the supratemporal plane (BA41): Left panel shows date for N1a (TW I) and the right panel shows data for N1b (TW 
II).
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equal in temporal acoustic structure but differ in their lin-
guistic meaning.

It has been suggested that the primary auditory cortex is
specifically involved in the perceptual elaboration of
sounds with durations or spacing within a specific tempo-
ral grain [43] and this suggestion has been confirmed by
studies demonstrating that primary auditory cortex
evoked responses reflect encoding of VOT [9,11,23,24].
Furthermore, Heschl's gyrus (HG) is known to display a
leftward structural asymmetry [44-47]. This asymmetry is
related to a larger white matter volume of the left as com-
pared to the right HG [44,48], as well as to asymmetries at
the cellular level [49-52]. It has been hypothesized that
this leftward asymmetry of the HG is related to a more
efficient processing of rapidly changing acoustic informa-
tion, which is relevant in speech perception [53].

The posterior part of the left STP that partly covers the pla-
num temporale (PT) has also been associated with com-
petence to mediate spectro-temporal integration during
auditory perception [54,55]. In particular, the left poste-
rior auditory cortex plays a prominent role when speech
relevant auditory information has to be processed
[26,27,56]. Akin to the primary auditory cortex that
resides in HG, the posterior STP also has structural left-
ward asymmetry [57,58], which indicates a relationship
between this brain region and the leftward lateralized spe-
cific functions relevant to speech perception.

The present study revealed a clear asymmetrical response
pattern over the posterior supratemporal plane during the
N1b (TW II) for both the NOT and the VOT condition.
Interestingly, we also observed a symmetrical response
pattern during the N1a component (TW I) over the same
cortical portion. In this vein are the findings of Rimol and
colleagues who reported that the well established right-ear
advantage (REA, indicative of a left hemisphere superior-
ity) during a dichotic listening (DL) syllable task is found
to be significantly affected by VOT [59]. More elaborately,
the authors compellingly demonstrate that the REA
reverses into a left-ear advantage under certain constella-
tions of different VOT in the DL tasks. In addition, a recent
study applying LORETA source estimation revealed differ-
entially lateralized responses over the posterior STP con-
tingent upon constellations of different VOT using the
same DL task [24]. Thus, it can be concluded that the
degree of asymmetry during DL is influenced by the
length of the VOT as evidenced by both behavioural and
electrophysiological measures. Based on these findings it
could be assumed that the early symmetric effect over the
posterior STP might be related to the differentially asym-
metric effects of VOT length since our source estimation
approach did not specifically emphasize this effect.

As mentioned above, a long lasting question in auditory
speech research concerns the nature of the VOT cue and
asks to what extent the VOT is processed by specialized
speech mechanisms or by more basic acoustically tuned
mechanisms [60]. Evidence for a specialized speech
processing stems from the well known observation that

Plots of mean current density values obtained by the anatomically defined ROI analysis, separate for the left and right posterior portion of the supratemporal plane (post BA42): Left panel shows date for N1a (TW I) and the right panel shows data for N1b (TW II)Figure 7
Plots of mean current density values obtained by the anatomically defined ROI analysis, separate for the left and right posterior 
portion of the supratemporal plane (post BA42): Left panel shows date for N1a (TW I) and the right panel shows data for N1b 
(TW II).
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the perception of series of (synthetic) speech stimuli vary-
ing continuously in VOT is almost categorical [61]. This
effect of categorical perception implicates that for a series
of stimuli the percept exists only in one of two categories:
the voiced and voiceless stop. Furthermore, listeners can
discriminate differences in VOT considerably better when
two stimuli lie in different phonetic categories than when
the two stimuli are from the same category. However, the
effect of categorical perception also exists for non-speech
stimuli [60]. As suggested by Phillips (1993), as far as the
stimulus representation in the primary auditory cortex is
concerned, speech may be "special" only in the sense that
spoken language is the most obvious stimulus in which
the identification of the elements is dependent on tempo-
ral resolution [43]. In fact, data of the present study evi-
dence that the middle and posterior auditory cortex
especially of the left hemisphere is significantly involved
in the processing of the acoustical features critical for the
processing of temporal cues in both speech and non-
speech sounds.

This conclusion corroborates recent fMRI research, but in
addition demonstrates that EEG in combination with
low-resolution tomography could be considered an ideal
alternative to map the spatio-temporal patterns of speech
perception. In a way, this approach outperforms the fMRI
technology because it evidently demonstrates the tempo-
ral subtlety of elemental acoustic processing reflected by
differential sensitivity and neural distribution of succeed-
ing N1a and N1b responses to brief speech and speech-
like stimuli. Of course, one should bear in mind that spa-
tial resolution of electrophysiologically based localization
methods is inferior to modern brain imaging techniques.
Thus, one should by no means feel tempted to interpret
the activation maps provided by LORETA in an fMRI-like
manner. However, it has been proven that low-resolution
tomography is capable of reliably distinguishing between
sources originating from distinct sections of the superior
temporal region [62]. This holds particularly true if low-
resolution tomography is used to examine electrophysio-
logical responses emerging from the left or right hemi-
spheres [63].

Conclusion
In essence, the present study delivers further evidence for
the prominent role of the middle and posterior left
supratemporal plane in the perception of rapidly chang-
ing cues, which is thought to be an essential device under-
lying speech perception [53,64,65].
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