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Abstract

Attention-deficit/hyperactivity disorder (ADHD) is characterized by numerous behaviors including inattention,
hyperactivity and impulsiveness. ADHD-affected individuals also have high intra-individual variability (IIV) in reaction
time. The genetic control of IIV is not well understood. The single study of the genetics of this phenomenon in
humans detected only marginal associations between genotypes at two candidate genes for ADHD and variability
in response time. The Spontaneously Hypertensive Rat (SHR/NCrl) is an animal model of ADHD, expressing high
activity, inattention and impulsive behavior during operant and task tests. The SHR might be useful for identifying
genes for variability, but it is not known whether it also expresses high IIV, as is symptomatic of ADHD. We there-
fore conducted an investigation of IIV in the SHR. We used 16 SHR/NCrl rats and 15 Wistar-Kyoto (WKY/Nico) con-
trols applying a reinforcement schedule used in the validation of the SHR as an animal model of ADHD. We
represented IIV as the average absolute deviation of individual behavior within the five 18-min segments of each
experimental session from the average behavioral trait value within that session (’individual phenotypic dispersion’,
PDi). PDi for hyperactivity, impulsiveness and inattention in the SHR and WKY rats was analyzed using nonpara-
metric ranking by experimental session. SHR/NCrl rats had higher PDi than WKY/Nico controls for impulsiveness
and inattention. There was a significant upward trend for PDi over experimental segments within sessions for
attention in SHR rats, but not in WKY. PDi for hyperactivity was correlated with PDi for impulsiveness and we there-
fore excluded observations associated with short IRTs (< 0.67s); dispersion in hyperactivity outside this interval was
also significantly higher in SHR rats than in WKY rats. Some studies indicate the sharing of symptoms of hyperactiv-
ity and impulsiveness in SHR and ADHD-affected humans; high IIV in operant behavioral metrics suggests that the
SHR may be useful in elucidating the genetic basis for IIV in humans.

Findings
Attention-Deficit/Hyperactivity Disorder (ADHD) is a
common, highly heritable [1] and costly ($US 67B-116B)
[1,2] disorder characterized by hyperactivity, impulsive-
ness and inattention. ADHD is associated with neurop-
sychological dysfunction [1], structural [3] and
functional [4] brain anomalies. In addition to deficits in
neuropsychological and psychosocial functions, patients
with ADHD have greater variability in task reaction
time [5], spatial placement challenges [6] performance
tasks and Go-NoGo tasks [7] compared to unaffected
individuals. Since this is measured as variability in indi-
vidual subjects within the task, it is termed intra-indivi-
dual variability (IIV). Although initially considered a

form of residual experimental or measurement error,
IIV is frequently observed and may be an endopheno-
type of ADHD [8-10]. Little is known of the control of
this phenomenon, but there is some evidence that it
may be genetic. Cho et al [11] found marginally higher
variability in response time during continuous perfor-
mance tests for CC and GG genotypes at the DraI and
MspI polymorphisms, respectively, in the alpha-2A-adre-
nergic receptor. Individuals inheriting the Val allele at
catechol-O-methyltransferase had higher variability dur-
ing executive functioning tests [12].
Many studies have shown that the Spontaneously

Hypertensive Rat (SHR/NCrl) shows the full range of
ADHD-like symptoms, including increased motor activ-
ity, impulsiveness (short inter-response time) and
decreased attention [13-17]. It also shows biological fea-
tures that parallel those seen in ADHD patients such as
smaller brains [18] and altered activity in dopaminergic,
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norepinephrine and ionic/energetic exchange genes
[15,17,19-21]. Compared to appropriate controls, SHR
as well as ADHD-affected children show increased
responding during a fixed-interval schedule of reinforce-
ment as well as during extinction of learned behavior
[15,16]. Because it is not known whether the SHR also
exhibits variability in hyperactive, attentive and impul-
sive behavior, our objective was to determine whether
the SHR is also a valid model of this feature of ADHD.
We compared IIV in elements of operant behavior

representing activity, attention and impulsiveness in 16
SHR (Charles River, Italy; SHR/CrlNico) and 15 WKY
rats (Charles River, France; WKY/Nico) in a simulta-
neous visual discrimination task using sixteen Campden
Instruments operant chambers (see [see [22,23]]. Five-
week old experimentally naïve rats were acclimatized for
eight days in individual housing with ad libitum access
to food and water before being placed in the experimen-
tal chamber for one hour for initial habituation. After
the first habituation session, rats were deprived of water
for 21 hours each day before each succeeding session.
This is a moderate but sufficient motivational depriva-
tion approved by the Norwegian Animal Research
Authority (NARA), in accordance with Norwegian laws
and regulations on live animal experimentation.
Rats were then trained to use retractable levers in the

operant chambers. The behavioral procedure is
described elsewhere [13,24]. In brief, the chamber had
two levers. A 2.8-W cue light was located above each
lever. The reinforcer (0.01 ml tap water) was delivered
by a liquid dipper in a small recessed cubicle. A 2.8-W
cue light was lit in the cubicle when the reinforcer was
present. Opening the door into the cubicle activated a
micro-switch.
A computer system (SPIDER, Paul Fray Ltd., UK)

recorded behavior and scheduled reinforcers (water dro-
plets). Reinforcers for correct responses were delivered
on an unpredictable basis, at a mean of 180 s (a variable
interval 180 s schedule). An extinction schedule (unas-
sociated with any cue light) was present on the wrong
lever. Each 90-min session was divided into five 18-min
segments. For each segment, total number of presses on
correct and incorrect levers, total number of correct
(with water present) and incorrect (no water present)
openings of the door into the recessed cubicle, number
of reinforcers delivered, and the time between consecu-
tive correct lever presses (inter-response time, IRT)
were recorded.
We used the total number of lever presses to repre-

sent general activity (hyperactivity) and the number of
responses with short IRTs (< 0.67 sec) to represent
impulsiveness (see [22,23]). Attention was defined in
this context as the total number of incorrect openings
of the door into the recessed cubicle. These symptoms

are highly similar to behavior in human ADHD; both
the SHR and ADHD-affected children express short
bursts of activity with short IRTs between responses
[14,25] with impulsiveness increasing with task repeti-
tion [26] and general hyperactivity [25]. Responses to
operant behavioral tasks are highly similar between the
SHR and ADHD-affected children on the same operant
schedule [14,15,25]. We therefore considered the oper-
ant tasks in this work as representative of behavior in
human ADHD.
Intra-individual variability (IIV) was measured as the

average absolute deviation from mean individual operant
behavior by session for each trait. Individual phenotypic
dispersion (PDi) was calculated as the average of abso-
lute differences between behavior in each segment
within session and the average behavior for the entire

session as PD avg X Xi i
j

j
i= −= =|( ) |1 1 , where Xi

j=1 is the

operant behavior for rat i within segment j (from 1-5)

and X j
i=1 is the average behavior for the rat within the

complete session. The distribution of PDi was strongly
non-normal for all traits (Figure 1). Therefore, in order
to avoid complications arising from violations of the
normal distribution, we tested for differences in IIV
between strains using Kruskal-Wallis nonparametric
ranking of average PDi across all segments within each
session, and general linear modeling [27] on average
log-transformed PDi, so that one PDi value was available
per individual per session. Behavioral means for each
strain were estimated using general linear modeling of
log-transformed PDi. Variance proportions for PDi were
estimated from log-transformed averages across all ses-
sions and segments [27]. To avoid confounding disper-
sion estimates for impulsiveness and hyperactivity by
the inclusion of short IRTs in estimates of total activity,
we excluded all activity measurements with IRT < 0.67 s
in the estimation of PDi for hyperactivity.
Using repeated ANOVA on log-transformed PDi, we

also tested for temporal changes in IIV by strain i) over
sessions [27] for PDi, fitting effects for strain, consecu-
tive session day (1-5) and their interaction (the ‘among
sessions’ test), ii) by increasing segment (1-5) within ses-
sion, with PDi averaged for each six-minute segment
across all sessions [27] (the ‘within sessions’ test). Since
only one session occurred per day, test i) corresponded
to changes over days and test ii) to temporal changes
within day.
Behavioral dispersion was different in the SHR to the

WKY for all three behavioral traits (Figure 1). The SHR
strain had statistically higher PDi for impulsiveness (p <
0.001), hyperactivity (p < 0.0001) and inattention (p <
0.0001) than WKY rats (Table 1). The proportion of
variance explained by strain varied from a quarter of all
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variance (impulsiveness) to 60% of total variance (inat-
tention) (Table 1).
There was no evidence that IIV increased or decreased

with sessions (days) (p > 0.20) or that there were differ-
ences in IIV over sessions by strain (model i) (p > 0.40).
IIV changed with time within sessions (model ii): PDi

for hyperactivity was negatively correlated with the
sequence of sessions over time in both strains (p <
0.0001; b = -1.17 ± 1.07). PDi for attention was strongly
affected by segment within sessions (p < 0.0001). PDi in

the SHR increased with segment (b = 2.40 ± 0.055) but
decreased significantly in the WKY (b = -1.61 ± 0.057).
Our finding that PDi differed for inattention, activity

and impulsiveness between the SHR and WKY suggests
a genetic component to IIV. In ADHD-affected indivi-
duals, increased IIV is seen in behavior maintained by
reinforcers [6,26], tests of executive functioning [12],
and continuous performance and response time func-
tioning [5,7], the latter being related to attention.
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Figure 1 Histogram distributions of impulsive, inattentive and hyperactive behavior in 16 Spontaneously Hypertensive Rats (SHR) and
15 control Wistar-Kyoto (WKY) rats.

Table 1 Intra-individual variability (IIV) for impulsiveness and inattention, measured as phenotypic dispersion (PDi)
averaged over experimental session repeated by six-minute experimental segment in 16 Spontaneously Hypertensive
Rats (SHR) and 15 Wistar-Kyoto (WKY) rats [27].

Trait c2 P F P μSHR ± 95%CI μWKY ± 95%CI

Impulsiveness 15.3 < 0.0001 15.8 0.0001 1.26 ± 0.201 0.680 ± 0.212

Hyperactivity 52.8 < 0.0001 77.6 < 0.0001 3.65 ± 0.134 2.80 ± 0.136

Inattention 111.5 < 0.0001 452.4 < 0.0001 4.77 ± 0.138 2.62 ± 0.142

Differences in dispersion were estimated using Kruskal-Wallis nonparametric ranking (cχ2) and log-transformed PDi (F); differences in means for dispersion were
estimated from log-transformed PDi. Variance was estimated from behavioral averages for individuals across all sessions and experimental segments [27].
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High behavioral IIV in both the SHR and ADHD-
affected children also obliquely supports the validity of
the SHR as a model of ADHD [8,17,19,22,28]. Intra-
individual variability in ADHD has clinical implications:
IIV might require restructuring of concurrent speed and
accuracy demands in cognitive tasks or the division of
long intervals of repetitive testing into shorter segments
with more immediate reinforcement [8,11,29]. Higher
PDi in the SHR relative to the WKY highly resembles
dispersion for this strain in a related article [30], sug-
gesting that differences in dispersion between these
strains are consistent. Increasing dispersion in the SHR
within experimental sessions suggests that the SHR’s
behavior becomes increasingly erratic with ongoing
repetitive operant testing. Similar increases in variance
over segments within experimental sessions were
observed in ADHD-affected children challenged with
spatial response placements at low reinforcement fre-
quency [31].
There are several physiological pathways that might

explain IIV: Castellanos [5] suggested that IIV resulted
from poor regulation of neural periodicity. Russell [29]
proposed that short-term IIV was due to insufficient lac-
tate supply to highly active neurons and/or slow recov-
ery of neuronal ionic balance, and that long-term IIV
would result from poor myelination of long neurons due
to lactate deficiency during development [29]. Other
work suggests that IIV could result from poor joint
dopaminergic/catecholaminergic regulation in the pre-
frontal cortex. Poor control of noradrenergic output
might cause irregular adrenergic activity in the prefron-
tal cortex, resulting in increased noise in neuron func-
tion and increasing attention to irrelevant stimuli
[11,32]. Sagvolden et al [8] proposed the ‘dynamic devel-
opmental theory of ADHD’, in which reduced dopamine
function changes fundamental behavioral mechanisms
via deficient reinforcement of successful behavior com-
bined with deficient extinction of unsuccessful behavior.
Such mechanisms would slow the association ("chunk-
ing”) of simple response units into elaborate, higher-
order adaptive chains [6] in which one response unit
reliably precedes the next. Deficient or slowed chunking
might make such patterns unreliable, resulting in intra-
individual variability [10]. At this point, the basis for IIV
in the SHR is not known, although these results are
compatible with underlying deficiencies in factors asso-
ciated with reinforcement, as in the shorter delay gradi-
ent in the SHR [33]; SHR/NCrl do also have altered
activity in a number of genes involved in synaptic plasti-
city and learning [17,20,28]. We cannot presently dis-
cern between any of the above explanations, although
behavioral variability in the SHR is strong evidence of
its face validity as a model of ADHD.
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