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Abstract

protein on the response to treatment.

Membrane-stabilizing drugs have long been used for the treatment of chronic tinnitus, suggesting an underlying
disturbance of sensory excitability due to changes in ion conductance. The present study addresses the potassium
channel subunit gene KCNE3 as a potential candidate for tinnitus susceptibility. 288 Caucasian outpatients with a
diagnosis of chronic tinnitus were systematically screened for mutations in the KCNE3 open reading frame and in
the adjacent region by direct sequencing. Allele frequencies were determined for 11 known variants of which two
(F66F and R83H) were polymorphic but were not associated with the disorder. No novel variants were identified
and only three carriers of R83H were noted. However, owing to a lack of power, our study can neither rule out
effects of KCNE3 on the risk for developing chronic tinnitus, nor can it exclude a role in predicting the severity of
tinnitus. More extensive investigations are invited, including tests for possible effects of variation in this ion channel

Findings

Tinnitus is an unpleasant sensation often described as
‘ringing in the ears’ that may manifest in a variety of set-
tings, e.g. after acoustic trauma, as a side effect of medi-
cation, or spontaeously [1]. Epidemiological studies
suggest that close to 15% of the adult population may
be affected to varying degrees [2]. In severe cases,
patients develop a chronic course of illness marked by
sleep disturbances, depressed mood, increased muscle
tension and loss of attention, or other comorbidities [3].
While the underlying biological mechanisms are still
incompletely understood, early research into the phar-
macological treatment of tinnitus has emphasized a role
for cellular ion regulation and transport [4]. Interest in
the disruption of ion conductance in the inner ear has
been renewed following recent discoveries in other heri-
table pathologies of auditory perception. Specifically,
dysfunctional K"-extruding cells of the stria vascularis
are known to interfere with potassium homeostasis and
the endocochlear potential in Jervell and Lange-Nielsen
Syndrome (JLNS) types 1 and 2 [5,6], in DNFA2 [7],
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and in EAST syndrome [8], among others. Variants in
the genes encoding voltage-gated potassium channel
proteins KCNQ1, KCNQ4, and KCNE1 have also been
proposed as candidate risk modifiers in more common
disorders of the auditory pathway, e.g. in Meniere’s dis-
ease [9], in noise-induced hearing loss [10,11], in age-
related hearing loss [12], and in chronic tinnitus [13].

A further candidate gene, encoding the potassium
channel 3 subunit KCNE3/MIRP2, has been adressed in
Meniére’s disease [9]. Like KCNE1, KCNE3 is expressed
in the mammalian inner ear [14] and brain [15,16]. Both
proteins interact to regulate trafficking, surface expres-
sion, and activation of another potassium channel,
KCNHS3, in the cortex and in other parts of the central
nervous system [17]. So far, a limited number of investi-
gations has addressed sequence variation in KCNE3
which maps to chromosome 11q13-14, a linkage hot-
spot for autosomal recessive, non-syndromal hearing
impairment [18]. In view of the frequent association of
tinnitus and hearing impairment [19], and of its cooc-
curence with Meniére’s disease [20], we hypothesized
that tinnitus may be part of the phenotypic spectrum
that is caused by KCNE3 variants.

In 288 outpatients (202 men and 86 women, age 50.1
+ 12.6 yrs, mean + SD) consulting for chronic tinnitus
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(minimum duration of 6 months), the diagnosis was
confirmed by a detailed neurootological examination
including otoscopy, stapedius reflexes, middle ear pres-
sure measurements, pure tone audiometry, tinnitus
pitch and loudness matches. For the present study,
those patients with a history of vestibular schwannoma,
Meniére’s disease, or pathological middle ear conditions
were excluded. The remaining subjects suffered from
primary tinnitus and family histories were available in
139 subjects. Of these, 38% reported at least one first-
degree relative affected by tinnitus. Tinnitus severity was
assessed by the Tinnitus Questionnnaire (TQ) [21] in
283 patients (98.3%). All participating subjects were
Caucasians and most originated from the Upper Palati-
nate region of Bavaria. Nine external control popula-
tions, matched for Caucasian background, served to test
for association of KCNE3 variants with tinnitus suscept-
ibility ([22-25], PharmGKB, dbSNP, HapMap-CEU and
HapMap-TSI populations). The level of statistical signifi-
cance was set at p < 0.05.

Genomic DNA was extracted from lymphocytes using
standard pocedures prior to amplification of the KCNE3
coding region by PCR. Briefly, a 748 bp amplicon was
generated using the following oligomers: 5’-CCA TCC
CCT CTC TCT TTT CT-3 (forward) and 5-CCA GAG
CAT CTT CCT GTC TC-3’ (reverse). PCR products
were purified for Sanger sequencing and for the identifi-
cation of variants against the human genome reference
(Genome Reference Consortium Build 37, February
2009 release). Multiple sequence alignments were con-
ducted with DNA Dynamo 1.0 (Blue Tractor Software,
UK). STATA 8.0 (Stata Corporation, College Station,
TX, USA) was used for statistical analyses. KCNE3 allele
frequencies from reference populations were compared
to the present data using Fisher’s exact test. All p values
are uncorrected for multiple testing.

For assessing the functionality of coding variants
observed in our sample, evolutionary conservation was
assessed with a phylogenetic hidden Markov model-
based method, PhastCons, that describes the process of
DNA substitution at each site in a genome and the way
this process changes from one site to the next [26].
Genomic sequences from 46 placental mammals were
aligned to the human reference delimited by forward
and reverse primers using a Threaded Blockset Aligner
[27] as implemented in the conservation track of the
UCSC Genome Browser [28]. Linkage disequilibrium
and conformity with Hardy-Weinberg equilibrium was
measured with HaploView 4.2. [29] and PS V2.1.15 [30]
was used for power simulations.

We confirmed two known coding variants with
observed heterozygosities of 0.215 (F66F) and 0.01
(R83H), and featuring genotype distributions that con-
formed to the Hardy-Weinberg equilibrium (p > 0.79,
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Table 1). Five additional KCNE3 variants listed in
dbSNP were absent from our sample (rs34604640,
rs17215444, rs17221826, rs17221833, rs11822977). Four
previously reported KCNE3 mutations were also absent:
T4A [31], V17M [32], R53H [33], and R99H [31,34]. No
novel sequence variants were observed. When minor
allele frequencies for F66F and R83H were compared to
reference frequencies from nine Caucasian control
populations, no significant difference was noted (p >
0.22, Table 2). Power simulations, based on the entire
sample of patients diagnosed with chronic tinnitus and
on published control data, indicated that we should
expect a statistical power of >80% to detect a suscept-
ibility factor with an allelic relative risk of >1.56 for the
F66F variant, and of >3.27 for the R83H amino acid
exchange. The number of tinnitus cases needed to reach
this power was estimated at 2,707 and 65,083,
respectively.

We next examined whether KCNE3 variants could
serve as predictors of tinnitus severity in the population
under study. Overall, TQ scores averaged 40.0 + 18.4
(mean + SD) out of 84 points (N = 283). By this mea-
sure, tinnitus was rated mild (0 to 30 points) in 94 sub-
jects (33.2%), moderate (31 to 46 points) in 84 subjects
(29.7%), severe (47 to 59 points) in 55 subjects (19.4%),
and extreme (60 to 84 points) in 50 subjects (17.7%).
There was no significant difference in mean TQ scores
between carriers and non-carriers of the minor alleles at
either of the two confirmed polymorphic KCNE3
nucleotides (p > 0.22, data not shown). As we encoun-
tered only three carriers of the rare missense variant
R83H (fi1sg3 = 0.005), the impact of this substitution on
tinnitus severity could not be fully judged. However,
neither of the two variants is expected to be inert by
comparative genomic analysis (Figure 1). More detailed
examinations, e.g. by heterologous expression, are
required to understand the effects of F66F and R83H on
potassium signaling.

The above evidence illustrates that the KCNE3 coding
region is remarkably well conserved in a moderately
sized population with chronic tinnitus, evoking similar
findings in other pathologies [35,36]. The power of the
present study is, however, inadequate to rule out an
association with tinnitus. Considering the phenotypic
overlap of tinnitus and Meniére’s disease, the present
negative findings diverge from the significant association
of KCNE3 with Meniére’s disease claimed by Doi et al.
[9], but this may be due to methodological issues [22].
The possibility remains that among our external control
subjects classified as «healthy», some may have experi-
enced mild forms of tinnitus. Future studies employing
a matched set of cases and controls should put this into
perspective. Moreover, we gave priority to the gene’s
coding region and did not adress regulatory variation, or
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Table 1 Observed allele frequencies for the KCNE3 sequence screened in subjects with chronic tinnitus (2N = 576).

SNP (dbSNP ID) chr11 variant amino minor allele frequency in chronic homozygous/heterozygous carriers of the minor

position acid tinnitus allele (pywe)

g.15,002T>C 74,168,599 T4A 0.000 -

g.15,041G>A 74,168,560 V17M 0.000 -

g.15,108C>G 74,168,493 P39R 0.000 -

(rs34604640)

g.15,131C>G 74,168,470 R47G 0.000 -

(rs17215444)

g.15,150G>A 74,168,451 R53H 0.000 -

g.15,190T>C 74,168,411 F66F 0.125 5/62 (0.788)

(rs2270676)

g.15,220C>T 74,168,381 176l 0.000 -

(rs17221826)

g.15,240G>A 74,168,361 R83H 0.005 0/3 (0.930)

(rs17215437)

g.15255G>A 74,168,346 R88H 0.000 -

(rs17221833)

g.15,288G>A 74,168,313 R99H 0.000 -

g.15321C>T 74,168,280 - 0.000 -

(rs11822977)

Numbering of SNPs refers to RefSeq NG 0118331.1. Polymorphic variants in bold.

variation in the remaining noncoding regions. Results of
the present screening are therefore preliminary with
regard to a proposed functionality of KCNE3 in tinnitus.

A complex interplay of multimeric potassium channel-
forming proteins in auditory perception calls for follow-
up examinations of interacting molecules that control
the excitability of sensory neurons, including structures
that are targeted by anti-tinnitus drugs. For lidocaine,

these candidates comprise KCNA1 and KCNC1, plus
KCNH2 [37,38], which has also been implicated in phe-
nytoin effects [39].

In view of the limited power of our pilot study and
the need to assesss promotor variation, more research is
invited to address KCNE3 impact on the perception of
phantom auditory sensations. Finally, variation relating
to channel structures that interact with KCNE3 may

Table 2 Reference allele frequencies and measures of association for g.15,190T>C (rs2270676 encoding F66F) and
g.15,240G>A (rs17215437 encoding R83H), based on data from 474 and 1,140 Caucasian controls, respectively.

Healthy controls (Nynreiated) study g.15,190T>C  g.15,190T>C g.15,240G>A g.15,240G>A
(F66F) (F66F) (R83H) (R83H)
frequency in  controls vs. frequency in controls
controls tinnitus patients controls vs.

tinnitus
patients
“White" Brazilian (40) [23] - - 0.000 ns.
French (506) [24] - - 0.008 ns.
German (321) [25] - - 0.005 ns.
U.S., European descent (180) [22] 0117 n.sX* 0.003 ns.
Caucasian (48) PharmGKB 0.083 ns. 0.010 ns.
PS203664
Caucasian (45) dbSNP 0.089 ns. - -
5565626119
Caucasian (45) dbSNP - - 0.011 ns.
5565626296
Utah residents with Northern and Western European HapMap-CEU  0.093 ns. - -
ancestry from the CEPH collection (113) 5538798969
Tuscans in ltaly (88) HapMap-TSI 0.108 ns - -
5538798969

dbSNP data refer to NCBI build 132, HapMap data refer to two out of the 11 populations in phase 3.

*n.s. = not significant
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Figure 1 Evolutionary conservation of the KCNE3 amplicon under study. The degree of conservation (PhastCons score) is plotted against
the physical position based on genomic sequence information from 46 placental mammals. Both g.15,190T>C (rs2270676 encoding F66F) and
g.15,240G>A (rs17215437 encoding R83H) map to a highly conserved part of the open reading frame. The ORF is delimited by positions
74,168,608 and 74,168,296 on the February 2009 Homo sapiens high coverage assembly (Hg19) from the Genome Reference Consortium
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also help in predicting the response to membrane-stabi-
lizing drugs. KCNE3 encodes a beta transmembrane
subunit that assembles with several alpha subunits to
modify gating and pharmacological sensitivity. It is
highly likely that a mutation in KCNE3 alone may not
be indicative of tinnitus, but when mutations are present
in both KCNE3 and the channel with which it is inter-
acting (e.g. KCNQ1) the biophysical properties of the
channel complex are significantly altered.
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