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Abstract
Background: Vesicular monoamine transporters (VMATs) mediate accumulation of
monoamines such as serotonin, dopamine, adrenaline, and noradrenaline from the cytoplasm
into storage organelles. The VMAT1 (alternatively solute carrier family 18: SLC18A1) regulates
such biogenic amines in neuroendocrine systems. The VMAT1 gene maps to chromosome
8p21.3, a locus with strong evidence of linkage with schizophrenia. A recent study reported that
a non-synonymous single nucleotide polymorphism (SNP) of the gene (Pro4Thr) was associated
with schizophrenia.

Methods: We attempted to replicate this finding in a Japanese sample of 354 schizophrenics and
365 controls. In addition, we examined 3 other non-synonymous SNPs (Thr98Ser, Thr136Ile,
and Val392Leu). Genotyping was performed by the TaqMan allelic discrimination assay.

Results: There was no significant difference in genotype or allele distribution of the three SNPs
of Pro4Thr, Thr136Ile, or Val392Leu between patients and controls. There was, however, a
significant difference in genotype and allele distributions for the Thr98Ser polymorphism
between the two groups (P = 0.01 for genotype and allele). When sexes were examined
separately, significant differences were observed in females (P = 0.006 for genotype, P = 0.003
for allele), but not in males. The Thr98 allele was more common in female patients than in female
controls (odds ratio 1.69, 95% CI 1.19–2.40, P = 0.003). Haplotype-based analyses also provided
evidence for a significant association in females.

Conclusion: We failed to replicate the previously reported association of Pro4Thr of the
VMAT1 gene with schizophrenia. However, we obtained evidence for a possible role of the
Thr98Ser in giving susceptibility to schizophrenia in women.
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Background
Vesicular monoamine transporters (VMATs) mediate
accumulation of monoamines such as serotonin,
dopamine, adrenaline, noradrenaline, and histamine
from the cytoplasm into storage organelles with an abso-
lute dependence on a vacuolar ATPase-generated proton
gradient to transport the cationic amine substrates into
the storage organelle in exchange for protons [1-3]. There
are two isoforms of VMATs identified in rats and humans
[4-8]: VMAT1 (previously known as chromaffin granule
amine transporter; CGAT) and VMAT2 (alternatively des-
ignated as synaptic vesicle monoamine transporter;
SVMT). They are also the first and second members of the
solute carrier family 18 (SLC18A1 and SLC18A2, respec-
tively). These proteins share 60% sequence identity; how-
ever, they demonstrate a range of differences in their
physiologic and pharmacologic properties. VMAT1 is
expressed primarily in neuroendocrine cells such as the
adrenal medulla and pineal gland, while VMAT2 is
expressed in all aminergic neurons in the mammalian
CNS [6,9,10]. The expression of the two isoforms in a
given cell type is usually, but not always, mutually exclu-
sive [2,11]. Furthermore, the two isoforms differ in recog-
nition of substrates (e.g., histamine) and sensitivity to
inhibitors such as tetrabenazine and methamphetamine
[12]. Since biogenic amines play critical roles in con-
sciousness, mood, thought, motivation, cognition, per-
ception, and autonomic responses, alterations in genes
encoding VMATs might play an important role in the
pathogenesis of neuropsychiatric diseases including schiz-
ophrenia.

With respect to the human VMAT2 gene, we previously
reported exon/intron boundaries, novel polymorphisms,
and association analysis with schizophrenia; however, we
did not find any polymorphism that resulted in an amino
acid change [13]. In addition, we failed to obtain evidence
for a significant association of the detected polymor-
phisms with schizophrenia [13]. The other VMAT,
VMAT1, is also an attractive candidate gene for schizo-
phrenia not only because it plays a critical role in the
maintenance of monoaminergic endocrine systems but
also it maps to chromosome 8p21.3 [14], a locus with
strong evidence for linkage with schizophrenia [15-21]. In
accordance with the possible role of the VMAT1 gene in
schizophrenia, a recent study reported that an SNP in
exon 3 of the gene that results in an amino acid change
(277C > A resulting in Pro4Thr) was significantly associ-
ated with schizophrenia [22]. The C/C genotype
(homozygosity for proline residue at codon 4) occurred in
21.4% of the schizophrenic group and only 2.6% of the
control group. The A/A genotype (homozygosity for thre-
onine), on the other hand, occurred in 28.6% of the schiz-
ophrenic group and 73.6% of the control group. Such a
dramatic difference in one polymorphism of the VMAT1

gene in a Caucasian population prompted us to attempt
replication of this finding in a Japanese population. In
addition, we examined other non-synonymous polymor-
phisms in the VMAT1 gene for association with schizo-
phrenia.

Methods
Subjects
Subjects were 354 patients with schizophrenia (212
males, mean age of 44.0 years [SD 13.7]) and 365 healthy
controls (113 males, mean age of 39.7 years [SD 14.1]).
All subjects were biologically unrelated Japanese and
recruited from the same geographical area (Western part
of Tokyo Metropolitan). Consensus diagnosis by at least
two psychiatrists was made for each patient according to
the Diagnostic and Statistical Manual of Mental Disor-
ders, 4th edition (DSM-IV) criteria [23] on the basis of
unstructured interviews and information from medical
records. The majority of the patients (318 patients, 90%)
had a history of admission to a psychiatric hospital. Mean
age of onset was 24.4 years [SD 8.6]. Twenty-nine percent
of the patients (102 patients) had a family history of
schizophrenia spectrum disorders within the second
degree relatives. The controls were healthy volunteers
recruited from hospital staffs and their associates. Control
individuals were interviewed and those who had current
or past history of psychiatric treatment were not enrolled
in the study. The study protocol was approved by the eth-
ics committee at the National Center of Neurology and
Psychiatry, Japan. After description of the study, written
informed consent was obtained from every subject.

Genotyping
Since genetic variations that result in an amino acid
change are most likely to alter function, we searched for
non-synonymous polymorphisms of the VMAT1 gene in
silico based on the NCBI dbSNP database and found 4
well-validated SNPs with a heterozygosity value of > 0.10.
They were rs2270641 (SNP1, 277C > A, Pro4Thr),
rs2270637 (SNP2, 560C > G, Thr98Ser), rs1390938
(SNP3, 674C > T, Thr136Ile), and rs17092104 (SNP4,
1441G > C, Val392Leu). The numbers of base and amino
acid positions were according to NM_003053 and
NP_003044, respectively. Venous blood was drawn from
the subjects and genomic DNA was extracted from whole
blood according to the standard procedures. The SNPs
were genotyped using the TaqMan 5'-exonuclease allelic
discrimination assay; the assay ID (Applied Biosystems)
for each SNP was C_22271506_10 for SNP1,
C_2716008_1 for SNP2, C_8804621_1 for SNP3, and
C_2715953_10 for SNP4. Thermal cycling conditions for
polymerase chain reaction (PCR) were 1 cycle at 95°C for
10 minutes followed by 50 cycles of 92°C for 15 seconds
and 60°C for 1 minute. Genotype data were read blind to
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the case-control status. Ambiguous genotype data were
not included in the analysis.

Statistical analysis
Deviations of genotype distributions from the Hardy-
Weinberg equilibrium were assessed with the χ2 test for
goodness of fit. Genotype and allele distributions were
compared between patients and controls by using the χ2

test for independence. These tests were performed with
the SPSS software ver 11 (SPSS Japan, Tokyo, Japan). Hap-
lotype-based association analyses were examined with the
COCAPHASE software ver 2.4 [24]. The expectation-max-
imization (EM) and "droprare" options were used. Haplo-
types with frequencies less than 3 % were considered to be
rare. We examined associations by permutation procedure
(10,000 replications) to determine the empirical signifi-
cance.

Results
Genotype and allele distributions of the examined SNPs
in patients and controls are shown in Table 1. The geno-
type distributions did not significantly deviate from the
Hardy-Weinberg equilibrium in patients and controls for
any SNPs. With respect to SNP1, there was no significant
difference in genotype or allele distributions between
patients and controls. Both genotype and allele distribu-
tions were approximately the same in the two groups;
therefore, we failed to replicate the finding of Bly [22]. For
the remaining SNPs, however, we found a significant dif-
ference in genotype and allele distributions of SNP2, but
not SNP3 or SNP4, between patients and controls. For
SNP2, the Thr98 (560C) allele was significantly more
common in patients than in controls (P = 0.01, odds ratio
= 1.39, 95% CI 1.09–1.77). When men and women were
examined separately, genotype and allele distributions of
SNP2 significantly differ in females, but not in males,
between the two groups (Table 2). The excess of the Thr98
allele in patients was highly significant in females (χ2 =
8.54, df = 1, P = 0.003, odds ratio = 1.69, 95% CI 1.19–
2.40), whereas genotype and allele distributions were
quite similar in male patients and controls.

Pair-wise linkage disequilibrium values between neigh-
bouring SNPs are shown in Table 3. Fairly tight linkage
disequilibrium was observed in any pair of the SNPs. We
obtained no significant difference in haplotype frequen-
cies for two-, three-, or four-marker analyses between
patients and controls in males (data not shown). In
females, however, we obtained significant differences in
estimated haplotype distributions for any comparisons
when SNP2 was included in the analysis (Table 4). The
most significant result was obtained by the two-marker
haplotype (C-C) consisting of SNP2 and SNP3 (permuta-
tion P = 0.007).

Discussion
We failed to replicate the finding of Bly [22] who reported
a significant association between the Pro4Thr polymor-
phism (SNP1) of the VMAT1 gene and schizophrenia.
This discrepancy may be attributable to ethnic differences
in the effects of SNP1 between Caucasians and Asians. The
possibility of a type-II error is unlikely because our sample
size had a power of approximately 100% to detect the dif-
ference in the frequency of C/C genotype reported in Bly's
study (21.4% in patients and 2.6% in controls). Moreo-
ver, both the genotype and allele distributions of SNP1
were almost the same in our patients and controls. An
alternative possibility might be that the finding of Bly [22]
had arisen by chance due to the small sample size (28
schizophrenics and 38 controls) and thus obtained evi-
dence of statistical significance was not strong (P = 0.036)
in spite of the marked difference in the frequency of C/C
genotype between patients and controls in his sample.

When additional SNPs were genotyped, we found that the
98Thr (560C) allele of SNP2 was significantly increased in
schizophrenics compared to controls, although no signif-
icant results were obtained for SNP3 or SNP4. This signif-
icant excess of the 98Thr allele in patients was observed in
females, but not in males, suggesting that the Thr98 allele
has a sexually dimorphic effect of giving susceptibility to
schizophrenia. Considering that the frequency of the
98Thr allele was greater than the 98Ser allele, it might be
more appropriate to infer that the 98Ser allele has a pro-
tective effect against the development of schizophrenia.
Haplotype-based analyses also yielded several significant
differences in haplotype frequencies between female
patients and controls only when SNP2 was included in
the analysis, providing further support for the possible
role of SNP2 in female schizophrenia. However, since we
examined only non-synonymous SNPs that had been
deposited in the public database (dbSNP) and did not
perform polymorphism screening, we may have missed
unknown functional polymorphisms. It is possible that
such unknown polymorphisms nearby which are in link-
age disequilibrium to the SNP2 might be "truly" responsi-
ble in giving susceptibility to schizophrenia.

The Thr98Ser polymorphism may affect the processing
and overall function of VMAT1 through altering cell sign-
aling and protein trafficking pathways. The human
VMAT1 gene is composed of 18 exons which encode 525
amino acids [5]. There are 12 predicted transmembrane
domains in the VMAT1 secondary structure and a large
luminal loop between transmembrane domains 1 and 2.
The Thr98Ser polymorphism is located on this luminal
loop, in which there are three potential sites for N-linked
glycosylation (asparagines residues at codons 58, 87 and
104) [6]. This loop is the main site of N-glycosylation on
the VMAT1 protein, which is believed to regulate targeting
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Table 1: Genotype and allelic distributions of the VMAT1 SNPs in patients with schizophrenia and controls

dbSNP ID Positiona Inter-SNP distance (bp) Group N Genotype frequency (GF) Allele frequency (AF) Odds ratio (95% CI) Chi-square test
HWE

(df = 1)
GF

(df = 2)
AF

(df = 1)

7883394 C/C A/C A/A C A

SNP1 rs2270641 Exon 2 ____ Patients 351 45 (0.13) 153 (0.44) 153 (0.44) 243 (0.35) 459 (0.65) 0.83 – 1.29 χ2 = 0.48, P = 0.49 P = 0.95 P = 0.75

Pro4Thr Controls 360 49 (0.14) 157 (0.44) 154 (0.43) 255 (0.35) 465 (0.65) 1.04 χ2 = 0.78, P = 0.37 χ2 = 0.11 χ2 = 0.10

7881755 C/C G/C G/G C G

SNP2 rs2270637 Exon 3 1639 Patients 352 11 (0.03) 130 (0.37) 211 (0.60) 152 (0.22) 552 (0.78) 1.09 – 1.77 χ2 = 2.9, P = 0.09 P = 0.01 P = 0.01

Thr98Ser Controls 362 28 (0.08) 144 (0.40) 190 (0.52) 200 (0.28) 524 (0.72) 1.39 χ2 = 0.0, P = 0.92 χ2 = 9.09 χ2 = 7.00

7881641 C/C T/C T/T C T

SNP3 rs1390938 Exon 3 114 Patients 352 188 (0.53) 135 (0.38) 29 (0.08) 511 (0.73) 193 (0.27) 0.70 – 1.13 χ2 = 0.46, P = 0.50 P = 0.44 P = 0.33

Thr136Ile Controls 360 200 (0.56) 139 (0.39) 21 (0.06) 539 (0.75) 181 (0.25) 0.89 χ2 = 0.24, P = 0.62 χ2 = 1.62 χ2 = 0.95

7850482 G/G G/C C/C G C

SNP4 rs17092104 Exon 13 31159 Patients 352 0 (0.00) 23 (0.07) 329 (0.93) 23 (0.03) 681 (0.97) 0.38 – 1.34 χ2 = 0.40, P = 0.53 P = 0.28 P = 0.29

Val392Leu Controls 363 0 (0.00) 17 (0.05) 346 (0.95) 17 (0.02) 709 (0.98) 0.71 χ2 = 0.21, P = 0.65 χ2 = 1.16 χ2 = 1.13

aChromosome position was according to the dbSNP database.
HWE: Hardy-Weinberg equilibrium
P values of < 0.05 are underlined.

Table 2: Genotype and allele distributions of SNP2 (Thr98Ser) in patients with schizophrenia and controls for each sex

N Genotype distribution (frequency) Allele distribution (frequency) HWE

Total CC GC GG χ2 P C G χ2 P χ2 P
Patients 352 11 (0.03) 130 (0.37) 211 (0.60) 9.09 0.011 152 (0.22) 552 (0.78) 7.00 0.008 2.90 0.089
Controls 362 28 (0.08) 144 (0.40) 190 (0.52) 200 (0.28) 524 (0.72) 0.01 0.921

Male
Patients 211 9 (0.04) 79 (0.37) 123 (0.58) 2.27 0.322 97 (0.23) 325 (0.77) 0.20 0.655 0.70 0.404
Controls 112 9 (0.08) 37 (0.33) 66 (0.59) 55 (0.25) 169 (0.75) 1.31 0.252

Female
Patients 141 2 (0.01) 51 (0.36) 88 (0.62) 10.12 0.006 55 (0.20) 227 (0.80) 8.54 0.003 3.26 0.071
Controls 250 19 (0.08) 107 (0.43) 124 (0.50) 145 (0.29) 355 (0.71) 0.39 0.534

HWE: Hardy-Weinberg equilibrium
Significant P values are underlined.
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of the protein. Since the Thr98Ser is closely located to N-
linked glycosylation sites, it is possible that the Thr98Ser
polymorphism may affect glycosylation status. Another
possibility is that the Thr98Ser polymorphism may lead to
altered phosphorylation in the VMAT1 protein, since ser-
ine and threonine residues play a central role in phospho-
rylation (activation/inactivation) of proteins. Indeed,
some serine residues have been shown to undergo phos-
phorylation in the isoform protein VMAT2 [25]. However,
conclusions remain purely speculative and additional
research on protein structure, cell signaling, and protein
trafficking pathways within VMAT1 are required.

We detected a significant association between the VMAT1
gene and schizophrenia only in females. This observation
is not surprising, because there is substantial evidence for
sex differences in the pathogenesis and pathophysiology
of schizophrenia, which may have arisen from interplay
between sex hormones and other developmental factors
[26]. Indeed, there are several other genes (e.g., ZDHHC8
[27] and chimerin 2 [28]) that have been suggested to
have a sexually dimorphic effect on the development of
schizophrenia. Furthermore, there is evidence for crucial
regulation by ovarian steroids on the expression of the
VMAT2 gene [29]. Although there is little information on
such regulation for the VMAT1 gene, it is possible that
similar regulation exists, which may be related to our
observation of the differential effect of the VMAT1 gene
between males and females.

Recently, Lohoff et al [30] reported a significant associa-
tion between the VMAT1 gene and bipolar I disorder.
They genotyped three non-synonymous SNPs (Thr4Pro,
Thr98Ser, and Thr136Ile) and 4 non-coding SNPs, and
found that allele frequencies in the Thr136Ile, and poly-
morphisms in the promoter region and intron 8 differed
significantly between patients and controls of European
descent. Although the associated SNP was again different
with our results, the results of Lohoff et al [30] and ours
might support the view that schizophrenia and bipolar
has several similarities and share susceptibility genes [31].

Conclusion
In conclusion, although we failed to replicate the finding
of Bly [22], our results suggest that another amino acid
substitution (Thr98Ser) of the VMAT1 gene may have a
sexually dimorphic effect of giving susceptibility to schiz-
ophrenia in the Japanese population. If our results are rep-
licated, further investigations on VMAT1 function may
elucidate molecular mechanisms of schizophrenia, per-
mitting the development of novel therapeutic agents.
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