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Abstract
Background: The role of impaired sound and speech sound processing for auditory
language comprehension deficits in aphasia is unclear. No electrophysiological studies of
attended speech sound processing in aphasia have been performed for stimuli that are
discriminable even for patients with severe auditory comprehension deficits.

Methods: Event-related brain potentials (ERPs) were used to study speech sound
processing in a syllable detection task in aphasia. In an oddball paradigm, the participants
had to detect the infrequent target syllable /ta:/ amongst the frequent standard syllable
/ba:/. 10 subjects with moderate and 10 subjects with severe auditory comprehension
impairment were compared to 11 healthy controls.

Results: N1 amplitude was reduced indicating impaired primary stimulus analysis; N1
reduction was a predictor for auditory comprehension impairment. N2 attenuation
suggests reduced attended stimulus classification and discrimination. However, all
aphasic patients were able to discriminate the stimuli almost without errors, and
processes related to the target identification (P3) were not significantly reduced. The
aphasic subjects might have discriminated the stimuli by purely auditory differences,
while the ERP results reveal a reduction of language-related processing which however
did not prevent performing the task. Topographic differences between aphasic
subgroups and controls indicate compensatory changes in activation.

Conclusion: Stimulus processing in early time windows (N1, N2) is altered in aphasics
with adverse consequences for auditory comprehension of complex language material,
while allowing performance of simpler tasks (syllable detection). Compensational
patterns of speech sound processing may be activated in syllable detection, but may not
be functional in more complex tasks. The degree to which compensational processes
can be activated probably varies depending on factors as lesion site, time after injury,
and language task.
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Background
The analysis of speech sounds is a necessary step in the
process of language comprehension. Since most aphasic
patients have auditory comprehension deficits, the ques-
tion whether and to what degree speech sound perception
is impaired in aphasia has been much investigated [1-15].
Several studies have indeed shown that aphasic subjects
perform significantly worse than healthy controls in e.g.
tasks where they have to decide whether two consonants
(or two syllables with different consonants) are the same
or not [1,3,4,8,9].

However, most authors did not find correlations between
these speech perception impairments and auditory com-
prehension abilities as measured by classical aphasia
assessments [2,4,7,11]. Rather, several studies have
revealed patients with severe auditory comprehension
deficits but no or minor speech sound perception impair-
ments, or patients with mild auditory comprehension def-
icits who performed poorly in speech sound
discrimination and identification tasks [2-4,6,9,15]. Thus,
a dissociation – at least partially – between speech percep-
tion and auditory comprehension has been found, which
also has been quoted as evidence for a dual pathway
framework of language comprehension [16]. However, a
rather strong correlation between speech sound percep-
tion and auditory comprehension has also been reported
[13].

Brain activity related to different stages of speech sound
processing can be studied with event-related brain poten-
tials. At about 100 ms after stimulus onset, a negativity
can be recorded as the N1 wave which is generated in both
temporal and frontal brain areas [17]. N1 reflects an inter-
mediate stage in auditory analysis as well as sound detec-
tion and orienting functions [18]. Concerning the
processing of speech sounds, N1 is suggested to reflect
integrative processing of acoustic features of the incoming
stream of speech, but not a neurological representation of
phonemes [18-20].

Also the N2 waveform – recorded at about 150 to 300 ms
after stimulus onset – is a summation of several compo-
nents [21]. While early parts of the N2 (N2a or mismatch
negativity, MMN) reflect automatic deviance detection,
later stages of the N2 wave are regarded as correlates of
attentional deviance detection (N2b) and of classification
processing (N2c). Starting with N2b and in further stages,
the processing of speech sounds seems to differ from that
of non-speech sounds, while sound processing is com-
mon for speech and non-speech in earlier stages as
reflected by N2a [22]. With regard to the time course of
attentional discrimination of stimuli, it is suggested that
the N2 component reflects processes of transient arousal
triggered by unattended discrimination processes

(reflected by N2a/MMN) which in turn trigger a target
reaction [23]. Cognitive processes related to target detec-
tion and to the engagement of a target reaction are
reflected by the P3 component which is mainly generated
in parietal regions and in the case of auditory stimuli in
superior temporal cortex [24-26].

Electrophysiological studies of sub-lexical speech sound
processing in aphasia have mainly focused on unattended
phonetic/phonologic processing often using the mis-
match negativity component (MMN; for a short overview
of these studies, see [27]). To our knowledge, no ERP-
investigations of attended processing of sub-lexical speech
stimuli have been performed in aphasia. While the
number of studies using simple language stimuli in
attended paradigms in order to investigate auditory
processing is small, more studies with non-speech stimuli
have been conducted, often using tones presented in odd-
ball paradigms. There is good evidence for N1 amplitude
reduction to an attended and frequent tone stimulus in
aphasia [28-32]. Regarding topographic distribution of
the N1 component, a right hemisphere maximum has
been observed in an aphasic group while a control group
showed an even hemispheric distribution [30]. Lesions
located in either left or right superior temporal gyrus were
found to be the cause for N1 amplitude reduction [33,34].
When using monaural presentation in left hemisphere
injured patients, right-ear stimulation led to bilateral N1
reduction [35].

Regarding the response to the target stimulus, reduced P3
amplitudes have been reported, especially in patients with
severe comprehension deficits [29,31,36]. The temporo-
parietal junction has been shown to be crucial for normal
P3 amplitudes to tone stimuli [37].

On the background of a still unclear relation between
speech sound perception and auditory comprehension
and sparse ERP-research on the attended processing of
speech sounds in aphasia, we aimed in this study to fur-
ther explore neurophysiological correlates of automatic
and cognitive processes involved in speech sound process-
ing in aphasic subjects. A major problem in interpreting
ERP-results and behavioral findings is that when the study
person fails to perform the task correctly, it is impossible
to determine what underlying processes are active. Our
strategy is therefore to study ERP in a relevant linguistic
task which can be performed adequately by aphasic sub-
jects, and to investigate the relevance of deviations in
processing for the performance of a more complex task.
Having investigated automatic discrimination of syllables
in an earlier study [27], we used the same stimuli in this
present study in an attended oddball design. A central
research question was at which processing stages changes
may be found in aphasia. Current research is focusing on
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changes of brain activation during recovery from brain
injury, suggesting different activation patterns in patients
with successful recovery compared to those with a less
favorable outcome (e.g. [38]). Therefore, we grouped the
participating patients with regard to aphasia severity. Fur-
thermore, differences in topographic distribution of the
components identified may give further information
about functional or dysfunctional changes in brain activa-
tion, especially with regard to activation of ipsilesional
and contralesional processes.

Methods
Subjects
A total of 20 aphasic subjects were consecutively recruited
from patients admitted to our hospital for rehabilitation.
11 control subjects were recruited from hospital staff and
non-brain damaged patients of the hospital. All partici-
pants with the exception of two severe and one moderate
aphasic patient reported to be right-handed. Informed
consent was obtained from all subjects. The study was
approved by the regional research ethics committee of
Eastern Norway.

All participants were examined with the auditory compre-
hension section of the Norwegian Basic Aphasia Assess-
ment (NGA; [39]) and the Token test [40]. These tests
measure comprehension in relation to both single words
and short sentences, and with regard to both naturalistic
objects, body parts, and geometric tokens. In addition, the
patients were investigated with the complete NGA. Fur-
thermore, all patients were assessed by a neuropsycholo-
gist as part of their routine rehabilitation program.
Etiology and lesion location were retrieved from the
patient's medical charts – the latter from descriptions of
CT or MRI scans.

In order to investigate whether different electrophysiolog-
ical patterns depend on the severity of the auditory com-
prehension deficit, the aphasic subjects were distributed
into two groups: a group with aphasic subjects with mild
or moderate auditory comprehension impairment (mod-
erate aphasia group) and a group of subjects with severe
or very severe auditory comprehension impairment
(severe aphasia group). The parameter for dichotomiza-
tion was a score of 16.5 in the shortened version of the
Token test which corresponds to the border between mod-
erate and severe aphasia as described by the authors [40].

Table 1 presents the patients with regard to sex, age, etiol-
ogy, lesion site, aphasia type, language functions and neu-
ropsychological impairments. The aphasic subjects
represent a wide range of auditory comprehension
impairment. Global and Wernicke's aphasia dominate the
severe aphasia group, while anomia and Broca's aphasia
were most common in the moderate aphasia group. In

both groups, most patients have lesions in the frontal
and/or temporal lobes; the most common cause for apha-
sia was brain infarction, but some more infrequent etiol-
ogy was also present as for example traumatic brain injury
or subarachnoid hemorrhage. Besides apraxia, neuropsy-
chological impairments were mainly from the areas of
attention, memory, executive and visual spatial functions.

One-way analysis of variance (ANOVA) revealed signifi-
cant differences (p < 0.001) between groups for all three
clinical aphasia measures. Neither the severe nor the mod-
erate aphasia group differed significantly from each other
or the control group with regard to sex, age, years of edu-
cation or time post injury (see table 2).

Stimuli
The participants were presented with a syllable detection
paradigm using the same natural speech sounds as in our
earlier study of automatic syllable discrimination [27]:
The frequent standard syllable /ba:/ (p = 0.85) and the
infrequent target syllable /ta:/ (p = 0.15) were presented
with a stimulus onset asynchrony of 1.5 s in a pseudo ran-
domized order with the restriction that two targets could
not follow each other (see additional file 1, a 30 s sample
of the auditory stimuli). The syllables were digitally
recorded from a female, middle-aged native speaker and
cut and re-spliced at zero crossings of the steady-state
vowel to obtain syllables of same length (/ba:/ = 245.9
ms; /ta:/ = 245.2 ms). The recordings of the syllables were
low-pass filtered at 8 kHz. The syllables had rise/fall times
of 20 ms. A total number of 205 syllables, amongst these
30 target syllables, were presented binaurally via head-
phones at approximately 80 dB SPL. The participants were
seated comfortably in a rest chair or their wheel chair and
were instructed to press a button with the index finger of
their preferred hand as soon as possible when they heard
the target syllable /ta:/. Since many of the subjects had
severe comprehension deficits, the stimuli (up to 15 tar-
gets and 40 standards) were first presented without EEG-
recording, and the subject's reaction was observed to
assure that the participants had understood the task. Addi-
tionally, prior to the recordings for this present study all
subjects had been presented for the same syllable stimuli
in an unattended paradigm [27] in the same session.

ERP-procedure
EEG was recorded continuously with a sample frequency
of 500 Hz and an online band-pass filter with a range
from 0.05 to 70 Hz at the following electrode sites: Fz, Cz,
Pz, Fp1/2, F3/4, C3/4, P3/4, F7/8, T3/4, T5/6, O1/2, M1,
and M2. A nose reference electrode was used. The contin-
uous EEG-data were post-hoc analyzed using band-pass
(1 – 15 Hz), zero-phase filtering and ocular artifact reduc-
tion using vertical oculograms [41]. Sweeps with ampli-
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Table 1: Demographical and clinical data of the aphasic subjects participating in this study.

Severe aphasia group

Sexa Years 
of age

Type of 
aphasiab

Etiologyc Site of 
lesiond

Months 
post injury

Token 
test

NGA 
compe

NGA 
totalf

Areas of neuropsychological deficits

F 53 GA BI FT 5,7 1 34 51 apraxia, visual spatial function

F 53 GA BI FTP 6,6 2 34 60 memory, visual spatial function

F 49 GA SAH FTP 2,5 4 13 35 apraxia, perseveration, problem solving, 
working memory

M 54 WA BI P 4,3 6 46 116 apraxia, executive function, abstract 
reasoning, visual attention, visual spatial 

function

M 59 GA BI FT 1,7 6.5 57 87 working memory, memory, problem solving

M 53 MTA BI P* 3,1 8 55 161 apraxia, memory, problem solving, visual 
scanning

F 48 GA SAH, BI F 4,7 10 54 163 attention, working memory, perseveration

M 45 GA MS n.d. 8,9 10.5 48 114 working memory, visual spatial function

M 67 WA BI FT* 3,6 11.5 28 107 executive function, problem solving, visual 
spatial function

F 55 WA SAH n.d. 97,7 11.5 51 n.d. attention

Moderate aphasia group

Sexa Years 
of age

Type of 
aphasiab

Etiologyc Site of 
lesiond

Months 
post injury

Token 
test

NGA 
compe

NGA 
totalf

Areas of neuropsychological deficits

F 66 TSA BI FT 3,3 19 68 209 memory, visual spatial function

M 61 TSA CH FP 2,2 19.5 63 192 attention, executive function, visual 
discrimination

F 63 GA BI FT* 2,7 21 52 165 attention, executive function, memory, 
abstract reasoning

M 61 BA BI FTP 2,1 21.5 65 155 apraxia, attention, problem solving, visual 
spatial function

M 64 TSA CH PO 2,0 22.5 61 191 acalculia, apraxia, working memory, abstract 
reasoning, visual attention

M 41 BA Tumor 
resection

F 0,8 23 66 185 working memory, visual spatial function

F 56 AA TBI FP 5,3 28 69 204 apraxia, memory

F 65 AA Encephalitis FT** 3,6 30.5 61 202 memory, visual attention

F 18 AA TBI F, T, P, 
O

3,5 30.5 69 209 attention, executive function, visual scanning 
and discrimination

M 36 AA BI P 20,6 32 70 n.d. executive function

a M = male; F = female
b AA = anomic aphasia; BA = Broca's aphasia; GA = global aphasia; MTA = mixed transcortical aphasia; TSA = transcortical sensory aphasia; WA = 
Wernicke's aphasia
c BI = brain infarction; CH = cerebral hemorrhage; MS = Multiple sclerosis; SAH = subarachnoid hemorrhage; TBI = traumatic brain injury
d F = frontal; T = temporal; P = parietal; O = occipital
e NGA comp = Norwegian Basic Aphasia Assessment, subsection auditory comprehension
f NGA total = Norwegian Basic Aphasia Assessment, total score
* indicates patients with right hemisphere lesions.
** In addition, this patient had a small lesion in the right temporal lobe.
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tudes exceeding +/- 100 μV in any channel except of the
vertical oculogram were excluded from the analysis.

The three left-handed participants had CT-verified right
hemisphere lesions and left hemiparesis. For these partic-
ipants, symmetrical and corresponding electrode labels
were swapped between hemispheres. Thus, in this paper
odd numbered electrode indices (F3, F7 ...) refer to the
brain damaged hemisphere (normally the left) and even
numbered electrode indices (F4, F8 ...) refer to the contral-
esional hemisphere. For the controls – all being right-
handed – electrode labels of the left hemisphere are
referred to as ipsilateral.

The standard syllable (/ba:/) waveforms were analyzed for
the N1 component, the responses to the target syllable (/
ta:/) for N1 and P3. For each group separately, mean peak
latencies for the components were defined as the mean of
the individual peak latencies located at maxima in the fol-
lowing time windows: N1 = 60 – 180 ms and P3 = 300 –
700 ms. Cz electrode was used to define the latencies for
standard and target N1, while Pz was used for target P3.
For each component respectively, time intervals were cen-
tered at the relevant group's mean peak latency to calcu-
late mean amplitudes. These intervals had a duration of
30 ms for the N1 and 50 ms for the P3 component. Using
the respective intervals which were derived by the above
described procedure, mean amplitudes for the following
electrode sites were calculated and further analyzed: Fz,
Cz, Pz, F3/4, C3/4, P3/4, F7/8, T3/4, T5/6. A similar anal-
ysis was performed separately for the mastoid electrodes
(M1/2); these results do not give additional information
and are therefore not reported.

Furthermore, subtraction waveforms (target - standard)
were analyzed to elucidate the process of discriminating
targets from standards. Mean average amplitudes of suc-
cessive time windows of 50 ms duration in the range from
75 ms to 475 ms were calculated and analyzed; this time
span contains the N2 component.

Statistical analysis
We analyzed the mean amplitudes using a two-way
ANOVA model with the between subjects factor "group"

(severe aphasia vs. moderate aphasia vs. control) and the
within group factors anterior-posterior "line" (frontal vs.
central vs. parietal) and "electrode" (5 levels; for example
F7, F3, Fz, F4, and F8 for the frontal electrode line). Thus
a significant interaction involving the "electrode" factor
might indicate a hemisphere difference, but would have
to be further analyzed focusing on the relevant electrode
contrasts. Greenhouse-Geisser and Bonferroni corrections
were applied when appropriate. Latencies were compared
between groups using one-way ANOVAs.

Furthermore, Spearman's rank test was used to analyze
ERP-amplitudes and latencies for correlations with time
after brain-injury, reaction time (RT) and clinical aphasia
assessment results (NGA auditory comprehension, NGA
total, and Token test). Only aphasic subjects were
included in these analyses, except for the RT-analysis
where all participants were included. In order to reduce
the risk of type I error – on the background of the large
number of correlation analyses performed – the signifi-
cance level for correlations was set to 0.01.

Results
Behavioral results
Almost all subjects detected all 30 targets; only three
severe aphasic patients missed one target syllable each.
Many participants had a few false alarms, but none more
than four; no significant differences regarding false alarm
rates were found. These results indicate that the task was a
rather easy one.

The target response time was significantly prolonged in
the patient groups (p < 0.05): While the mean reaction
time was 383 ms in the control group, it was 465 ms in the
moderate and 586 ms in the severe aphasic group.

Standard syllable N1
Grand average waveforms for the three groups respectively
are presented in figure 1, mean amplitudes and standard
deviations for selected electrodes in table 3.

The N1 component was registered as a centrally peaking
component with the following mean group latencies and
amplitudes: control: 115 ms, -7.01 μV; moderate aphasia:

Table 2: Overview over the three investigated groups.

Severe (N = 10) Moderate (N = 10) Control (N = 11)

sex (female/male) 5/5 5/5 6/5
age (years) 53.5 (45.1 – 66.9) 53.1 (18.0 – 66.0) 58.2 (33.0 – 74.1)

education (years) 12.4 (9 – 15) 14.2 (11 – 20) 13.8 (10 – 18)
NGA* aud. comprehension (0 – 71) 42 (13 – 57) 64 (52 – 70) 71 (71)

NGA total (0 – 217) 99 (35 – 163) 190 (155 – 209) -
Token test (0 – 36) 7.1 (1 – 11.5) 24.8 (19 – 32) 33.6 (31 – 35)

time post onset (months) 4.5 (1.7 – 97.7) 3.0 (0.8 – 20.6) -

No significant differences in sex distribution, age, years of education or time post onset were found. Mean values are reported, except for time post 
onset where median is used; minimum and maximum values in parentheses.
* = Norwegian Basic Aphasia Assessment
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Grand average waveformsFigure 1
Grand average waveforms. Vertex grand average waveforms for the standard (green) and the target stimulus (orange) and 
the difference curve (blue grey) for the three groups respectively.
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115 ms, -4.31 μV; severe aphasia: 110 ms, -2.54 μV (figure
2 and 3). The two-way ANOVA revealed a significant
between groups effect (F [2.28] = 10.67, p < 0.001). Post-
hoc analysis showed a significant difference between the
control and the severe aphasia group (p < 0.001) and a
marginally significant difference between the control and
the moderate aphasia group (p = 0.053).

A significant line * group interaction was found (F [2, 28]
= 3.15, p < 0.05). Analysis of each electrode line separately
indicated that while the group differences were still
present in all lines, the anterior-posterior N1 distribution
varied. The mean N1-amplitudes in the controls were
evenly balanced frontally and parietally, whereas the
moderate aphasia group had larger amplitudes over fron-
tal than parietal sites (F [1,9] = 6.40, p < 0.05) and the
severe aphasia group showed a non-significant tendency
for an inverse pattern. Furthermore, the two-way ANOVA
revealed a highly significant electrode * group interaction:
F [2, 28] = 8.20, p < 0.001, which reflected differences in
hemisphere distribution of the N1 (figure 4). The controls
had an even hemispheric N1 distribution (difference
between corresponding electrodes < 0.2 μV) while the
moderate aphasia group showed a minor relative laterali-

zation (~0.4 μV) to the ipsilesional hemisphere and the
severe aphasia group a distinct relative lateralization (~1.2
μV) to the contralesional hemisphere. This lateralization
difference was most prominent in central areas. A ten-
dency to a significant interaction line * electrode * group
(F [2, 28]  = 2.00, p = 0.076) was observed for an analysis
of the frontal and central line only. When using a hemi-
sphere model with the electrodes F3/4 and C3/4, we
found a significant hemisphere * group interaction
(F [1,28]  = 3.38, p < 0.5).

Target syllable N1
The N1 to the target syllable could be visually distin-
guished from the N2 component especially at frontal and
central sites (figure 5). It peaked about 10 ms later than
the N1 elicited by the standard syllable (127 ms, 124 ms,
and 119 ms for the control, the moderate and the severe
aphasia group respectively). The vertex amplitude of the
target syllable N1 was comparable to that of the standard
syllable N1 (see also table 3): -7.20 μV (controls), -2.96
μV (moderate aphasia), and -2.70 μV (severe aphasia).

Two-way ANOVA showed a significant between group
effect (F [2, 28]  = 4.44, p < 0.05) which post-hoc analysis

Table 3: Mean amplitudes

electrode group N1 N1 target P3 N2 175–225 ms N2 225–275 ms N2 275–325 ms

severe -0,16 (1,02) -1,55 (1,82) 1,43 (4,39) -1,41 (4,26) -1,89 (4,32) -1,98 (3,35)
F3 moderate -2,44 (1,43) -1,98 (2,16) 1,67 (2,58) -0,46 (1,96) 0,35 (2,83) 1,61 (3,16)

control -3,18 (1,09) -4,04 (1,35) 1,93 (2,99) -3,21 (1,62) -3,57 (3,07) -2,34 (4,77)
severe -1,12 (1,26) -1,35 (1,34) 3,11 (4,40) -0,53 (1,94) -0,31 (2,24) -0,11 (3,63)

Fz moderate -3,22 (1,44) -2,51 (2,23) 2,80 (3,31) -0,82 (1,99) -0,05 (3,09) 1,70 (3,11)
control -4,52 (1,39) -4,92 (1,97) 2,60 (3,87) -3,20 (2,14) -4,84 (3,81) -3,91 (5,13)
severe -0,76 (1,12) -1,13 (0,97) 1,98 (3,48) -1,41 (1,64) -1,01 (3,07) 0,17 (3,87)

F4 moderate -2,13 (1,72) -2,14 (1,44) 2,36 (3,75) -0,54 (1,45) 0,37 (2,59) 1,78 (3,55)
control -3,09 (0,65) -3,54 (1,96) 2,14 (3,66) -1,86 (2,90) -3,26 (3,86) -1,78 (5,46)
severe -1,13 (2,16) -2,71 (3,43) 1,82 (3,45) -2,61 (7,36) -1,34 (5,78) -1,68 (4,02)

C3 moderate -3,76 (1,38) -3,42 (3,16) 3,52 (3,48) -3,82 (3,51) -0,49 (4,46) 2,80 (3,31)
control -5,65 (2,02) -7,05 (2,73) 2,12 (4,23) -7,03 (3,46) -6,87 (4,44) -5,29 (5,96)
severe -2,54 (2,12) -2,70 (2,49) 3,03 (4,10) -1,60 (4,35) -0,98 (4,25) -0,94 (4,37)

Cz moderate -4,31 (1,30) -2,96 (2,84) 3,94 (3,93) -4,25 (4,64) -1,33 (4,78) 2,51 (3,89)
control -7,01 (2,09) -7,20 (3,11) 2,50 (4,20) -5,56 (3,93) -8,87 (6,86) -8,28 (7,36)
severe -2,38 (1,96) -3,17 (2,63) 2,89 (3,85) -2,91 (2,83) -2,24 (3,36) -1,11 (4,57)

C4 moderate -3,20 (1,74) -3,39 (2,23) 3,63 (3,64) -4,74 (3,62) -2,47 (2,64) 1,40 (3,40)
control -5,45 (1,06) -6,02 (2,45) 2,60 (3,94) -5,60 (3,67) -7,68 (5,08) -5,93 (5,61)
severe -0,98 (2,20) -2,20 (2,63) 2,06 (3,42) -1,57 (2,79) -0,85 (3,17) -0,73 (3,76)

P3 moderate -1,55 (1,10) -1,50 (3,20) 3,47 (3,83) -2,51 (3,26) 0,56 (3,55) 3,67 (4,51)
control -3,09 (1,25) -4,02 (2,14) 3,63 (3,61) -6,18 (3,69) -7,25 (4,95) -5,35 (6,38)
severe -1,79 (1,81) -3,08 (2,61) 2,60 (4,08) -1,45 (2,83) -1,20 (2,88) -0,71 (4,24)

Pz moderate -2,26 (1,18) -2,14 (3,50) 4,58 (3,96) -3,77 (4,10) -0,76 (3,89) 2,90 (5,04)
control -4,37 (1,59) -5,22 (2,48) 4,32 (4,25) -6,08 (4,33) -8,54 (6,43) -6,89 (6,94)
severe -0,98 (1,59) -2,61 (2,10) 2,83 (3,70) -2,35 (2,42) -2,33 (2,54) -1,25 (4,50)

P4 moderate -0,94 (1,00) -1,49 (2,52) 3,38 (3,12) -3,57 (3,59) -1,04 (3,15) 1,65 (4,67)
control -2,92 (1,57) -4,29 (2,51) 3,47 (3,81) -6,14 (3,52) -7,77 (4,98) -4,92 (6,03)

Mean amplitudes and standard deviations (parentheses) for some selected electrodes for each group respectively. N1 elicited by standard and 
target syllable and P3 are shown; in addition those intervals from the subtraction wave where significant differences between groups were 
observed.
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revealed to be significant for the control vs. moderate
aphasia comparison (p < 0.05) and marginally significant
for the control vs. severe aphasia comparison (p = 0.066).
Further analysis of topographic anterior-posterior distri-
butions showed the same tendencies as for standard-N1,
but generally at a non-significant level. Visual inspection
indicated a tendency towards the same hemisphere distri-
bution differences as observed for the standard syllable
elicited N1; a significant electrode * group interaction was
found (F [2, 28] = 4.77, p < 0.001). The severe aphasia
group showed larger amplitudes over the contralesional
hemisphere especially at central and parietal sites.

P3
The P3 component (figure 5, table 3) was observed in the
controls as the typical large positivity with a parietal max-
imum peaking at 436 ms (4.32 μV). A somewhat earlier
maximum was observed in the moderate aphasia group

(peak: 419 ms, 4.58 μV). In the severe aphasia group, P3
was somewhat attenuated and peaked over the frontal
midline (451 ms, 3.11 μV). However, no significant dif-
ferences between groups in P3 mean amplitudes or laten-
cies were found.

Subtraction curve analysis
The different time courses and distributions of the sub-
traction curves (target - standard waveform) for the three
groups in successive 50 ms intervals in the time range 75
to 475 ms are illustrated in figures 6 and 7 (see also table
3). The negative processing difference of the control group
started in the 125 – 175 ms window over left hemisphere
temporo-parietal areas and developed into a large, central
negativity that was registered over the whole scalp and
lasting until about 325 ms. In the moderate aphasia
group, the negative difference started in the same time
window, but had a shorter duration and a more posterior

Standard syllable waveformsFigure 2
Standard syllable waveforms. Grand average waveforms elicited by the standard syllable /ba:/ for the control (green), the 
moderate (blue) and the severe aphasia group (red) respectively.
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and contralesionally centered maximum. The severe
aphasia group showed low negative difference amplitudes
at most electrode sites, but no clear lasting central negativ-
ity. Analysis of variance revealed significant differences
between groups solely in the three time-windows between
175 and 325 ms which are described in the following.

For the 175 – 225 ms interval, the ANOVA showed a
between groups effect (F [2, 28]  = 3.67, p < 0.05); post-
hoc analysis resulted only in a tendency to significance for
the control vs. severe aphasia group comparison (p =
0.062). A significant line * group interaction was found (F
[2, 28] = 2.69, p < 0.05). Further analysis of the frontal
line resulted in a tendency towards a between group effect
(p = 0.089), while we observed a significant difference for
the parietal electrodes (p < 0.05). The largest amplitudes
at this stage were found parietally in the control group,
but centrally in the aphasic groups. For the parietal line,
we also found an electrode * group interaction (F [2, 28]
= 2.48, p < 0.05) with significantly different amplitudes
between groups at P3, P4, and Pz electrode site. In this
early segment of the processing difference, the control
group's negativity was lateralized to the left hemisphere,
whereas the moderate aphasia group showed higher
amplitudes over the contralesional hemisphere at central
and parietal sites.

The processing difference between target and standard
stimulus in the 225 – 275 ms time-window increased – com-
pared to the preceding interval – in the controls, but
decreased in the aphasic groups. Analysis of variance
showed a between groups effect (F [2, 28] = 10.80, p <
0.001) which was present between the controls and both
the moderate (p < 0.01) and the severe aphasia group (p
< 0.001). A significant line * group effect was found (F [2,
28]  = 4.42, p < 0.01). The processing difference of the
control group was now centered between Cz and Pz elec-
trode and centrally localized with regard to hemisphere
distribution while it still showed larger amplitudes over
the hemisphere contralesional to the brain damage in the
moderate aphasia group.

Topographical distribution of the N1 componentFigure 4
Topographical distribution of the N1 component. The control (left) and the moderate aphasia group (middle) show an 
even hemispherical distribution while the N1 of the severe aphasia group (right) is clearly lateralized to the contralesional hem-
isphere.
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In the 275 – 325 ms interval, the vertex mean amplitudes of
the control and the severe aphasia group remained rather
unchanged, while a positive amplitude indicated the start
of a P3 effect in the moderate aphasia group. Also in this
time-window the processing difference showed a between
group effect (p < 0.01). Post-hoc analysis resulted in a sig-
nificant difference between the control and the moderate
aphasia group (p < 0.01). Line * group (F [2, 28]  = 3.37,
p < 0.05) and electrode * group (F [2, 28]  = 3.44, p <
0.05) interactions were significant, and a significant line *
electrode * group interaction was found (F [2, 28] = 2.24,
p < 0.05), but the pattern of electrode differences did not
indicate systematic hemispheric differences.

Correlations ERP-parameters – clinical aphasia measures
Correlations between the results from the Norwegian
Basic Aphasia Assessment (NGA), i.e. subsection auditory
comprehension and the NGA total score, and ERP-com-

ponents were found for mean amplitudes of the standard
stimulus N1 in ipsilesional and midline fronto-central
sites and for the mean amplitude of the 325 – 375 ms sub-
traction curve interval in left lateral parieto-temporal sites
(table 4). Additionally we found tendencies for correla-
tions (p < 0.05) at other fronto-central sites and also
between the Token test and ipsilesional fronto-central
electrodes.

For the target stimulus N1, tendencies (p < 0.1) for corre-
lations between the Token test and amplitudes at C3 and
Cz electrode were observed, furthermore between M1 and
the NGA total score.

Correlations with reaction time
A positive correlation was found between P3 latency and
reaction time (rs = 0.49, p < 0.01): the later the P3 compo-
nent peaked, the longer was RT.

Target syllable waveformsFigure 5
Target syllable waveforms. Grand average waveforms elicited by the target syllable /ta:/ for the control (green), the moder-
ate (blue) and the severe aphasia group (red) respectively.
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Correlations ERP-parameters – time after brain injury
Moderate correlations between ERP-amplitudes and the
time between brain injury and ERP-investigation were
found for the N1 component elicited by the standard and
the target syllable (table 4). Mean N1 amplitudes were
smaller, the more time that had passed since brain injury.

Discussion
In the present study, we investigated the ability of severe
and moderate aphasic patients to detect rare target sylla-
bles amongst frequent standard syllables and studied the
electrophysiological processes involved. The aphasic
groups performed this rather easy task accurately, though
more slowly than the controls. Despite the aphasics' suc-
cessful task performance, we found several significant dif-
ferences in their electrophysiological processing
indicators. No alterations in ERP latencies were observed,
but changes in ERP amplitudes for components found in

the time range from about 100 and up to about 300 mil-
liseconds after stimulus onset indicate differences during
on-line stimulus processing or immediately following.
These changes were primary stimulus processing reduc-
tion in the form of attenuated N1 amplitude for both
standard and target stimuli at a latency of about 110 to
120 milliseconds, and a discrimination deficit between
targets and standards in the time interval between 175 to
325 ms post stimulus onset. In this time range a clear N2
peak could be identified in the controls, whereas the
aphasics showed a less distinct negative processing differ-
ence. P3 latency or amplitude did not differentiate
between the groups, but was associated with reaction
time. N1 amplitude reduction at ipsilesional fronto-cen-
tral sites correlated with severity of auditory comprehen-
sion impairment. In addition, N1 amplitude at fronto-
central electrode sites was smaller with increasing time
after injury.

Subtraction waveformsFigure 6
Subtraction waveforms. Grand average subtraction waveforms (target /ta:/ - standard /ba:/) for the control (green), the 
moderate (blue) and the severe aphasia group (red) respectively.
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Topographic analysis indicated that moderate and severe
aphasics showed different patterns of brain activation in
order to solve the discrimination problem. Salient differ-
ences were that the severe aphasics showed a lateralization
of activity focus to the contralesional hemisphere in an
early processing window (N1), while showing no evi-
dence of discriminatory activation in later time windows.
The moderate aphasics on the other hand showed a more
symmetrical activation in the corresponding early time
window with evidence of discriminatory activity in later
time windows. The implications will be discussed further
below.

The observed attenuation of the N1 component in the
aphasic groups is consistent with earlier findings for tone

[29-34,36] and word stimuli [28,42]. A statistical correla-
tion between N1 amplitude and measures for the severity
of auditory comprehension measurement in aphasia has
not been reported earlier, but in two studies that also
dichotomized the aphasic patient groups in relation to
auditory comprehension function, a larger N1 reduction
in the severe aphasia groups has been reported [36,43].

N1 reduction and its correlations with auditory compre-
hension impairment can be interpreted as impaired
sound detection and orienting functions and deficient
integration of the acoustic properties of speech sounds
[18]. Reduced N1 amplitude was found for both the
standard and the target syllable which argues for a distur-
bance of primary stimulus processing independent of the

Subtraction wave, mean amplitudes from time windowsFigure 7
Subtraction wave, mean amplitudes from time windows. Mean subtraction amplitudes (target /ta:/ - standard /ba:/) at 
vertex illustrating the differences between the control (green), the moderate (blue) and the severe aphasia group (red) in time 
course and size of the N2 component. X-axis: 50 ms time-windows from 75 to 475 ms; y-axis: mean amplitudes in μV. Black 
bars indicate standard deviation (for graphical reasons only shown in one direction). Significant ANOVA between group effects 
are indicated: * p < 0.05, ** p < 0.01, *** p < 0.001.
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role of the stimulus in the task. This is supported by the
fact that the discrimination analysis (subtraction wave)
did not reveal differences between groups in the N1 time
window, but starting after 175 ms.

The deviant electrophysiological patterns in the aphasic
groups between 175 and 325 ms argue for disturbances in
the processes of attentional detection of the infrequent
syllable /ta:/ and of its classification as the target stimulus.
These differences were found in temporal stages of the N2
waveform which have been identified as being different
between speech sound and purely acoustic processes [22].

However, the P3 component was not significantly altered
in the aphasic groups indicating no severe impairments of
target detection and processes of engaging the target reac-
tion; this of course corresponds to the fact that the aphasic
patients were able to detect the target syllables behavio-
rally. The lack of a significant P3 reduction – which con-
trasts some results of earlier P3 studies of aphasic patients
– might be due to the large difference between the stimuli
and to the relatively low difficulty of the task. In earlier
studies, the stimuli were rich tones differing in only one
parameter: frequency [29,31,36,37] or duration [37].
Actually, the reported P3 attenuation in the aphasic
groups in most of these studies [29,31,36] was not caused
by a general processing defect in aphasia, but rather – as
the authors noted – by the fact that several subjects were
unable to perform the task; in this present study, even the
very severe aphasic subjects were able to accomplish the
task almost without errors.

The close relation between the P3 component and the tar-
get response was illustrated by a significant, though weak
correlation between P3 latency and reaction time.
Although reaction time was significantly prolonged in the
aphasic groups, we did not observe P3 latency differences
between groups. This might be explained by disturbances
in "post-P3" executive motor functions in the aphasic sub-

jects, many of whom had sensory-motor deficits involving
the preferred hand.

How can it be explained that the aphasic subjects were
able to perform the current task successfully at the same
time as the electrophysiological parameters are signifi-
cantly attenuated and even correlate with auditory com-
prehension measures? A possible suggestion is that
stimulus discrimination in at least some aphasic subjects
was based not on linguistic analysis, but only or mainly
on purely acoustic features. This strategy is adequate in a
task with a very limited set of stimuli and no demands on
semantic interpretation, but is not functional in a natural-
istic comprehension task. Earlier studies have indeed
shown that the ability to discriminate phonemes is a nec-
essary, but not sufficient condition for the correct identifi-
cation of these phonemes, and report several aphasic
subjects that could discriminate, but not identify speech
sounds [5,15]. We would argue that the severe aphasia
group, which showed the largest N1 amplitude reduction,
has to rely primarily on acoustic analysis. Linguistic
processing – which accounts for parts of the N1 and a
more substantial part of the N2 waveform – might thus be
reduced in these subjects even if these linguistic analyses
were not necessary to perform the task correctly. In this
perspective, one could furthermore argue that speech
sound discrimination based on purely acoustic features
requires more resources and is more exhausting than
"normal" speech sound discrimination; this could be sug-
gested as one reason why aphasic subjects often report
that listening to language is fatiguing (cf. [44]).

There are some other possible reasons for the observed
amplitude reductions. First, compensational pathways
might exist in aphasic brains which are not revealed by
ERPs, at least not as recorded in the present study. These
might be processes asynchronous in relation to the stim-
uli. Alternatively, the N1 and N2 components in healthy
subjects might (partially) be generated by unnecessary,

Table 4: Overview of significant correlations

N1 Processing difference

standard target 175 – 225 225 – 275 325 – 375

NGA auditory 
comprehension

F3 (-0.66)

Fz (-0.59)
C3 (-0.63)

NGA total score F3 (-0.71) T5 (0.63)
Fz (-0.63)

Time post injury F3 (0.61) M1 (0.69) Cz (0.53) Fz (0.47)
F7 (0.64) C4 (0.52) C4 (0.57)

Overview of significant correlations between mean amplitudes (N1, processing difference) and auditory comprehension measures or time post 
injury. Spearman's correlation coefficients for the separate correlations are shown in parentheses. For all correlations: p < 0.01.
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redundant activity that can be reduced in brain injured
individuals without having impact on brain functions.
Also, one could question the usually proposed sequential
nature of the processing steps reflected by the N1, N2, and
P3 components: Rather, different processes might exist in
parallel. In injured brains, due to a conflict of resources,
early processing steps might then be reduced because task-
relevant processes are ongoing and prioritized.

However, an important objection to these interpretations
of the present results is that the observed electrophysio-
logical changes might not be due to impaired language
functions, but rather solely to deficits in purely acoustic
processing. On the other hand, one could argue that the
amplitude attenuations might be only unspecific effects of
brain lesion and lesion size which are not related to apha-
sia in particular. These problems can be addressed in a
study using both a speech sound paradigm and a para-
digm with purely acoustic stimuli, and furthermore by
comparing aphasic patients with brain injured individuals
without aphasia. We are pursuing this approach in an
ongoing study.

Some interesting changes in the hemispherical distribu-
tion of brain activity were observed: As N1 maximum was
located with an even hemispheric distribution in the con-
trols, the aphasic groups showed two contrasting patterns
of N1 hemisphere distribution at fronto-central sites: in
the moderately impaired aphasic subjects, N1 was evenly
distributed or even slightly lateralized to the ipsilesional
side while it had more relative weight over the non-brain
damaged hemisphere in patients with severely impaired
auditory comprehension. Similar to the results regarding
the severe group, relatively enlarged N1 amplitudes at
contralesional fronto-central sites have been reported
[30,42]. In a study using monaural stimulation, a similar
pattern was found only for right-ear, but not for left-ear
stimulation [35].

These findings might be explained by the effect of two dif-
ferent, but interacting mechanisms: First, a general N1
reduction takes place which is directly caused by the brain
damage and which is larger in those patients with larger
brain lesions and more severe impairments, i.e. the severe
aphasia group. This attenuation is probably largest over
brain damaged areas. Second, different compensational
mechanisms in response to the brain damage might exist:
Severely impaired patients activate the contralesional
hemisphere relatively more than the ipsilesional hemi-
sphere, while patients with lesser impairment show
higher activation of the brain damaged than of the cont-
ralesional hemisphere. Thiel et al [38,45,46] have
reported similar lateralization differences between
patients with moderate aphasia and those with more
impaired language function and claim a hierarchy of lan-

guage recovery where the compensational activation of
perilesional areas leads to rather good results, while the
contralesional hemisphere can be activated as part of a
less efficient compensational mechanism. Our results
regarding the N1 component support this hypothesis, and
we note that the majority of significant correlations
between auditory comprehension score and single elec-
trode N1 amplitudes are with ipsilesional fronto-central
electrodes.

The ability to make use of compensational strategies in
speech sound processing probably differs between apha-
sic subjects due to factors as premorbid brain organization
and lesion site and size, but also depending on features of
the speech sounds that are processed. This variation might
be a reason for the complex relation between impaired
speech sound perception and auditory comprehension in
aphasia.

The clinical use of event-related brain potentials in order
to explore and possibly monitor auditory comprehension
in aphasia is under discussion [47-50]. The present study
supports the usefulness of event-related potentials in the
investigation of processes underlying auditory compre-
hension deficits in aphasia. As this study indicates, ERPs
provide information about central auditory processing
deficits even in tasks which are successfully accomplished
by the aphasic subjects. Our results regarding the N1 and
N2 waveforms – particularly the significant correlations of
N1 amplitudes with clinical language comprehension
assessment results – suggest that these waveforms deserve
further attention in the exploration of auditory compre-
hension impairment in aphasia.

Conclusion
This study investigated attended speech sound processing
in aphasia recording event-related potentials during a syl-
lable detection task. The aphasic subjects were able to per-
form the task almost without errors, and processes related
to the target identification (P3) were not significantly
attenuated. However, electrophysiological components
reflecting primary stimulus analysis (N1) and attended
stimulus classification and discrimination (N2) indicated
reduced processing, which constitutes a crucial weakness
in more complex and naturalistic comprehension tasks.
The aphasic subjects might have discriminated the stimuli
by increased reliance on acoustic differences, and topo-
graphic differences between aphasic subgroups and con-
trols indicate compensatory changes in activation. The
degree to which compensational patterns of speech sound
processing can be activated probably varies depending on
lesion site, time after injury, and language task.
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