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Abstract
The transitive inference (TI) task assesses the ability to generalize learned knowledge to new
contexts, and is thought to depend on the hippocampus (Dusek & Eichenbaum, 1997). Animals or
humans learn in separate trials to choose stimulus A over B, B over C, C over D and D over E, via
reinforcement feedback. Transitive responding based on the hierarchical structure A > B > C > D
> E is then tested with the novel BD pair. We and others have argued that successful BD
performance by animals – and even humans in some implicit studies – can be explained by simple
reinforcement learning processes which do not depend critically on the hippocampus, but rather
on the striatal dopamine system. We recently showed that the benzodiazepene midazolam, which
is thought to disrupt hippocampal function, profoundly impaired human memory recall
performance but actually enhanced implicit TI performance (Frank, O'Reilly & Curran, 2006). We
posited that midazolam biased participants to recruit striatum during learning due to dysfunctional
hippocampal processing, and that this change actually supported generalization of reinforcement
values. Greene (2007) questions the validity of our pharmacological assumptions and argues that
our conclusions are unfounded. Here we stand by our original hypothesis, which remains the most
parsimonious account of the data, and is grounded by multiple lines of evidence.

Background
Our interpretation of our findings was based on the fol-
lowing premises. When humans are prevented from
becoming explicitly aware of the hierarchy they can still
perform better than chance at the novel "inference" test
using an implicit reinforcement learning system [1]. Sev-
eral mathematical and neural models show that when
trained with the TI task procedure, stimulus B develops a
higher associative strength then stimulus D, and that tran-
sitive responding can be achieved simply by comparing
these implicit values [1-5]. Thus although under some cir-
cumstances the hippocampus can play a subtle modula-
tory role in setting up these values [4] (and is likely critical

for genuine, explicit logical inference), neural models sug-
gest that the elemental associative learning process itself
does not depend on the hippocampus, but rather on the
striatal dopamine system [6,7]. Moreover, the striatal and
hippocampal systems often compete, such that disruption
of one system can lead to enhanced performance of tasks
that depend on the other (for review: [8,9]).

We therefore posited that midazolam would disrupt the
hippocampus [10-18], thereby removing its normal
inhibitory interaction with the striatum, and allowing that
system to dominate. The resulting impaired hippocampal
learning but enhanced implicit reinforcement encoding
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led to (i) impaired explicit memory recall; (ii) a pattern of
learning in the initial training phase of the TI task that is a
characteristic signature of associative models: greater per-
formance on the end anchor pairs AB and DE, which can
be solved purely on the basis of reinforcement values, and
worse performance on the conjunctive inner pairs BC and
CD; (iii) substantially enhanced generalization of rein-
forcement values in the transitive test [19]. These results
support predictions from more abstract mathematical
models in which conjunctive learning is detrimental to
subsequent transitive responding [5]. Finally, in another
probabilistic learning task associated with the striatal
dopamine system [7], midazolam led to spared perform-
ance and only caused deficits in the very first few trials of
the task [19], when the hippocampus is usually most
active in such tasks [20], consistent with other accounts
on the role of the hippocampus in the early acquisition of
probabilistic learning [21].

In his critique, Greene argued that our theory entails three
critical assumptions that are "required but not met" [22]
(pp. 1–2):

1. that other areas critical to TI are not affected by mida-
zolam administration, so only hippocampal deactivation
can explain the effect;

2. that midazolam deactivates the hippocampus so that it
no longer functions in a mnemonic capacity; and

3. that midazolam influences explicit but not implicit
memory.

It is reasonable to question the assumptions of our logic.
Nevertheless, on the whole we believe this criticism is mis-
guided. First, there is ample evidence to suggest that hip-
pocampal function is dramatically impaired by
midazolam administration, and critically, no indication
that the striatal reinforcement learning system – strongly
predicted to support reinforcement-based generalization
in this task – is negatively affected. Second, while it is cer-
tainly possible that areas other than the hippocampus are
affected by the systemic drug, it is entirely unclear why
this would result in an enhancement in TI performance as
was observed [19]. In contrast, our theoretical framework
clearly accounts for the effect, and is supported by other
diagnostic converging data in our study. Third, the notion
that midazolam impairs explicit memory substantially
more than implicit memory, while well supported by psy-
chological data, is actually not a critical assumption of our
logic, which depends more specifically on striatal-
dependent implicit associative learning rather than on
implicit learning in general.

Discussion
Below we elaborate these and other issues in response to
Greene's three criticisms, and identify some new avenues
for research to more directly address the question.

Assumption 1: other areas critical to TI account for the 
effect
Greene takes issue with our suggestion that midazolam
improved TI performance by deactivating the hippocam-
pus [19], stating that "it is entirely possible that the effects
of midazolam on the TI task are attributable to deactiva-
tions of areas other than the hippocampus". He cites PET
evidence that midazolam inactivates some of the very
same frontal and parietal regions that have been shown to
be activated during explicit TI performance in other stud-
ies [23,24]. We are puzzled by this point, as it is difficult
to imagine how deactivation of a region that is normally
activated during TI would lead to enhanced performance.
Admitting possible additional frontal cortical effects of
midazolam, our key point was that thus far no studies
implicate striatal deactivation following midazolam.
Other evidence from Parkinson's patients and dopamine
medication manipulations support predictions from
computational models of the basal ganglia, which suggest
that this system is involved in learning reinforcement
associations in the TI task [7]. These data provide converg-
ing evidence for a role of striatal DA system in learning
implicit associative values in the TI task.

We note here that Greene is undeniably correct that by
administering a systemic drug one cannot know for cer-
tain that either the observed behavioral decrements in
recall (amnesia) and the associated improvement in TI,
are related specifically to hippocampal deactivation.
However, our central hypothesis is that the critical brain
system supporting reinforcement-based learning in the TI
and other feedback learning tasks is the striatal dopamine
system, and to the best of our knowledge there is no evi-
dence to suggest this system is inhibited by midazolam,
either at the neural level or in learning tasks that depend
on this system. Moreover, there is some evidence in rats
that the two main peptide markers of activity in the direct
and indirect pathways of the basal ganglia (dynorphin
and enkephalin; [25]) are actually substantially enhanced
under systemic midazolam administration [26,27], as are
striatal dopamine levels [28]. These effects could conceiv-
ably result from the removal of the normal inhibitory
interaction with hippocampus, which have been observed
under a variety of conditions in both animals and humans
[8,9]. As one recent (non-pharmacological) example in
humans, when dual task conditions were introduced to
interfere with explicit memory, procedural learning nor-
mally correlated with hippocampal activation and associ-
ated declarative knowledge proceeded instead in a
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habitual fashion that correlated with striatal activation
[29].

Assumption 2: midazolam obliterates hippocampal 
function
Greene also questions whether midazolam disrupts hip-
pocampal function at all. That is, despite the dense expres-
sion of benzodiazepene receptors in the hippocampus
[30], some human neuroimaging studies fail to detect
hippocampal deactivation under midazolam. While one
study did show a dose-dependent hippocampal effect
[15], others using low doses did not. However, the effects
of drugs on BOLD activity are not straightforward. First,
BOLD is a very indirect and imprecise measure of neural
activity, whereas direct administration of midazolam in
the hippocampus show robust disruptions of both neural
activity and plasticity [10-13]. These findings are not
restricted to local injections into the hippocampus. For
example, systemic midazolam administration has been
shown to decrease hippocampal cholinergic activity [14].
While this action should clearly interfere with hippocam-
pal function and memory encoding, it is much less clear
what effect, if any, this would have on BOLD activity – it
could simply add noise to the hippocampal system.
Indeed, this hippocampal noise hypothesis has been
modeled to account for various detrimental memory
encoding effects of midazolam [17]). It is similarly
unclear how midazolam's inhibitory effects on hippoc-
ampal long term potentiation [18] – the central mecha-
nism thought to give rise to hippocampal memories –
would translate into BOLD.

Furthermore, Greene also asserts that our theory requires
midazolam to "deactivate the hippocampus to the point
that it no longer functions in a mnemonic capacity". This
is clearly not the case – while the low dose used in our
study robustly impaired memory encoding/recall, this
memory was far from obliterated altogether. These find-
ings are similar to other studies purporting that mida-
zolam impairs hippocampal function and substantially
degrades, but does not eliminate, episodic memory
[16,17,31]. In contrast, hippocampal amnesics were sub-
stantially impaired at learning the training pairs, particu-
larly the inner pairs that require conjunctive encoding,
never reaching training criteria [32]. Thus although these
amnesics were impaired at the TI probe test, these data are
not meaningful given that they never acquired the rele-
vant premises in the first place. In contrast, participants on
midazolam were impaired initially at the conjunctive
inner pairs relative to control subjects, but this deficit was
subtle enough that they were able to eventually overcome
it. Other studies show that both humans and animals
with hippocampal damage are completely unimpaired at
re-combining learned elemental reinforcement values to

support generalization of learned behavior to novel situa-
tions [33,34].

Assumption 3: midazolam impairs explicit but not implicit 
memory
Finally, Greene claims that our argument requires mida-
zolam to affect explicit but not implicit memory, but that
there are a few studies showing some impairments in
implicit memory. We note that first, there is substantial
evidence to suggest that midazolam has a far greater pro-
portional impairing effect on explicit than implicit mem-
ory [35-38]. Other recent studies showed that the same
experimental procedures (including midazolam dose)
used in our study selectively abolished event-related brain
potentials associated with recall, which had been previ-
ously linked to hippocampal function, without affecting
other memory components [31]. However, the need for
midazolam to spare implicit memories of all types is actu-
ally not a requirement of our theory at all. Indeed, we
posit that midazolam impairs the conjunctive encoding of
stimulus features in the hippocampus, and while this
function is critical for several aspects of explicit memory,
it can also support some aspects of implicit memory [39].
Thus again our argument relies on the notion that mida-
zolam has not been shown to impair striatal-dependent
memories, i.e. in so-called procedural learning tasks.

Future studies
To help further resolve this controversy, midazolam
effects on hippocampal activity ought to be examined in
situations for which the hippocampus is thought to be
critical according to the same computational principles
used to motivate our original hypothesis. It would be par-
ticularly informative to explore the effects of midazolam
on a contrast between conjunctive and elemental memory
encoding in the TI or other task showing hippocampal
sensitivity to conjunctions [40]. Indeed, Greene's own
study [41] showed hippocampal activation for the con-
junctive "inner pairs" in the TI task, and midazolam
impaired acquisition of these same pairs in our study [19],
and impaired conjunctive encoding in other tasks [39].

Conclusion
Our original study was motivated by an explicit theoreti-
cal and neurocomputational framework for why this pat-
tern should be observed, and is consistent with other
psychological and mathematical analysis. In contrast,
while legitimately questioning some of our assumptions,
Greene provides no alternative explanation for the finding
that midazolam substantially improved TI performance in
our study. Until such an interpretation arises, with sup-
porting data, the most parsimonious explanation of our
data is that motivated by a priori theoretical predictions.
Greene's commentary does reaffirm that alternative opin-
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ions are valid and that as is always the case, further
research is necessary.
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