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Abstract

Subjects were tested for their ability to identify objects that were represented by an array of dots that marked the
major contours, usually only the outer boundary. Each dot was briefly flashed to make its position known, and a
major variable was the time interval that was required to flash all the dots for a given shape. Recognition declined
as the total time for display of the dot inventory was increased. Each shape was shown to a given subject only
once and it was either recognized — named — or not. Although the recorded response was binary, a large number
of subjects was tested, which made it possible to derive regression functions and thus specify an intercept and
slope for each shape. Shapes differed substantially in their slopes, which is likely due to the amount of redundant

information provided by neighboring dots. Indices of shape attributes were also derived, specifically Attneave’s
indices of complexity, mean curvature, inflection count, and symmetry. Three of the four shape attributes were
significantly related to intercept and slope levels, but none made a substantial contribution. This suggests that
these attributes are not essential properties that define shapes and allow for recognition.

Keywords: Shape recognition, Contour attributes, Shape encoding

Background
Numerous stimulus cues can be useful for identifying
objects. Distinctive coloration, texture and depth cues
contribute to our ability to distinguish one object from
another [1-5]. The lines and edges of the object, i.e., the
contours, are considered to be especially critical [6-8]. In
many cases it is possible to discard all cues other than
the outer boundary of an object, as shown by the silhou-
ette in Figure 1, and the object can still be identified [9].
One can further probe the object recognition system
by reducing the cues even more. In the lower panel of
Figure 1 the boundary contour has been replaced by a
string of dots, yet one can still recognize the stimulus as
having the shape of a monkey. Here the dots have fairly
close spacing that follow the path of the boundary, and
one might presume that recognition of the shape
depends on the nervous system being able to register
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alignment among a set of adjacent dots much as it
would respond to a continuous contour.

However, previous work from this laboratory has sug-
gested otherwise. Greene [10] found that shapes could
be identified with display of very few evenly spaced dots
that marked the outer boundary. The location of dots in
the pattern were not chosen to mark specific features of
the shapes, such as major inflection points, and sparse
dot patterns allowed for recognition of asymmetrical as
well as symmetrical shapes. Based on this and related
evidence, Greene [10,11] has proposed: a) that the dots
can serve as independent markers of locations within
contour segments, and b) distances among these mar-
kers or from the markers to a centroid provide “metric”
information that is summarized and provides a basis for
shape (and thus object) recognition.

One can challenge the perceptual system even more
by presenting each dot for only a very brief instant or
with successive display of the inventory of dots that
mark the boundary. This has previously been designated
as the minimal transient discrete cue (MTDC) protocol
[11-16]. The brief flash of a given dot activates the
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Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
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available in this stimulus, the color, texture, shading, internal contours, and

contour markers.

Figure 1 The upper panel shows a number of cues that may contribute to recognition of a given object. Although 3D cues are not

silhouette in the middle panel provides only the boundary contours, but this is still adequate for recognition. The bottom panel has replaced the
boundary contours with an array of dots. This stimulus is sufficient for recognition with substantial reliability even when the dots are displayed for
only a brief moment. It is possible that identification of the shape does not depend on registering collinearity of the dots that are serving as
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boundary contours all allow the monkey to be identified. The

retina, providing a small amount of information that
persists for a limited amount of time. Recognition of a
given shape depends on being able to combine across
the aggregate of traces provided by the successive dots,
and the odds of being successful declines as a function
of the total time interval for display of the dot inventory.
Being able to better specify the rate of decline for vari-
ous shapes should provide more insight into how the in-
dividual cues combine for purposes of recognition.

For the present study, we tested a large inventory of
shapes using the MTDC protocol, varying the total time
required to display all dots that mark the boundary of each
shape. A large enough number of subjects was tested to
allow the rate of decline to be established for each shape
in the inventory. Across shapes, we observed major differ-
ences in this rate of decline. It seems unlikely that these
differences in slope were due to differential salience of in-
dividual dots, or shape-specific factors that would modify
information persistence. We provide evidence that the dif-
ferences in the rate at which recognition declines is

determined by the amount of information redundancy
among the dots of a given shape.

We also examined whether shape characteristics, specif-
ically the ratio of the perimeter length to the enclosed
area, amount of curvature, number of inflection points,
and symmetry were predictive of the recognition-potential
of a given shape. Although some significant relationships
were found, none accounted for much of the total vari-
ance. This weighs against theories that these attributes
define a given shape and determine how readily it can be
identified.

Methods

Stimulus display board

Display sets were presented to the observer by brief
emissions from a 64 x 64 array of LEDs, designated as
the display board. This board differed in several respects
from one previously used by this laboratory, most not-
ably in being able to display any number of dots simul-
taneously. The array was comprised of AlGaInP LEDs,
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specifically RL5-R8030 (Super Bright LEDs, Inc.), which
have a wavelength of 630 nm (red). The diameter of each
LED was 5 mm, center-to-center spacing of the array
was 9.4 mm, and the array measured 60 cm between the
centers of outer elements in both the horizontal and ver-
tical directions.

The plane of the array was tangent to the line of sight
of the observer, and positioned at a distance of 3.5 m.
From this distance LED diameters and center-to-center
distances were 4.92 and 9.23 minutes of visual angle, re-
spectively, and the full array was 9.80 x 9.80 degrees of
visual angle. With the diameter being less than 5 minutes
of visual angle, it is appropriate to consider each LED to
be a point source, and thus to specify brightness as lumi-
nous intensity, as detailed below.

The stimulus display was delivered from a Propox
MMnet101 microcontroller that ran at a clock speed of
16 Mhz. Firmware instructions were processed at an
average speed of 12 MIPs. This system allowed for con-
trol of pulse duration with a maximum error of 1 ps.
Instructions to the microcontroller were provided by a
Mac G4 Cube, which specified experimental protocols
using Tcl/tk custom applications written for OS-X.

LED emission and ambient lighting
Brightness of LED emissions was set by controlling the
voltage level that was applied, with a 220 ohm resister being
placed in series with each LED. The manufacturer provided
a number of measures of luminous intensity as a function
of voltage. These values fit the equation Cd = 0.17492*V?> +
0.17637*V - 1.0634, which provided an extended scale of
control values. Luminous intensity of LED emissions was
set at 1 Cd using this formula. Rise time (10%-to-90%) and
fall time (90%-to-10%) for emission was 200 nanoseconds.
Standard fluorescent fixtures were fitted with occlud-
ing panels so that intensity of room lighting could be
controlled without changing color balance. The occlu-
ders were positioned to provide 10 lux of ambient illu-
mination as measured using a calibrated Tektronix ]
1811 photometer. At this light level the dark gray matrix
within which the LEDs were mounted appeared black.

Calibration of shapes
Shape stimuli were derived from the Macmillan Visual
Dictionary [17], from Hemera Photo-Object files, and
from images that were sampled from the Internet. As
was true for earlier work [10-16], a great many of the
shapes were animals, furniture, vehicles, and tools. In
addition to these categories, the present inventory of
shapes included distinctive human activities, cartoon
characters, well-known iconic symbols, and truncated
portions of objects, e.g., heads, feet.

Discrete locations on the major contours, in particular
on the outer boundary, were marked with the aid of a
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custom program. To mark these positions, each shape
was adjusted for size by overlaying it with a 64 x 64 grid,
which was expanded or contracted until it touched the
outer boundary of the shape in either the horizontal or
vertical direction. Then grid cells that included the
major boundaries of the shape were “marked,” meaning
that the address positions were recorded in a table. For
convenience, these marked address positions may also
be referred to as “dots.”

The panels of Figure 2 show typical shapes in several
of the object categories. A great majority of the shape-
patterns provided only the outer boundary, such as the
swan, gramophone, and cupid. However, internal con-
tours were included for 53 of the shapes, subject to the
requirement that all dots be traceable along a path
where each dot was encountered only once. The Liberty
Bell, cowboy hat, and strawberry provide examples of
shape patterns that included internal contours.

The major contours of 450 shapes were prepared in
this manner, some of them being very similar alternative
versions, as discussed below. The first goal was to deter-
mine which of these many shapes could be reliably
named when briefly displayed. This was established
using 10 subjects, each tested individually, who were
seated opposite to the display board as described above.
Each shape was shown one at a time by simultaneously
flashing all of the dots in the address table for 50 ps.
Subjects were asked to name each shape immediately
after it had been displayed and a response was typically
provided within a second or two. An acceptable set of
alternative names had been decided upon in advance of
testing. However, in some instances the subjects offered
names that were deemed to be reasonable, and these
were added to the list of acceptable names.

Of the initial 450 candidate shapes, a great majority
was identified by all ten of the subjects. Testing could
have been restricted to just this subset, but it was
decided to include all shapes that had at least a 50% level
of recognition (hit rate), to allow comparisons that cov-
ered a larger range of recognition difficulty.

As indicated above, two or three alternative versions
of some objects were scanned and discretized, on the
theory that the one showing the most consistent recog-
nition function would be used in subsequent experi-
ments. Having reached the point where this decision
should be made, the shapes themselves, along with their
respective raw-data plots, were examined. For eight
pairs, one member was rejected as being too similar to
the other member and having a comparable level of po-
tential for recognition. One member of a triplet was also
rejected on this basis. However, in all other cases, there
were sufficient differences in the contours being dis-
played that it seemed prudent to retain each version of
the shape.
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Figure 2 The upper panels provide a sampling of shape patterns in which dots marked only the outer boundary of the shape.
Fourteen percent of the inventory had shapes with internal contour lines, as illustrated in the lower panels.

After removing the 9 redundant shapes from those
that had a 50% minimum hit rate, 376 shapes remained
in the inventory. The number of shapes having hit rates
at 100%, 90%, 80%, 70%, 60% and 50% were 175, 70, 44,
30, 31, and 26, respectively. Mean hit rate for this inven-
tory was 87%. These shapes are listed in Additional file
1: Table SA along with the hit-rate and the number of
dots in the address table of each shape.

Display timing conditions

For display of a given shape, all dots listed in the address
table were displayed, each dot emitting light for 50 s,
which is designated the T1 interval. Hereafter this brief
emission from a dot is described as a “flash”.

One treatment condition displayed all dots in the ad-
dress table at the same moment. Although this condition
provided for a total time of display of 50 ps, it is nomin-
ally designated as TT =0.

Three other treatments displayed one dot at a time,
with the total time (TT) for display being 100, 300, or
700 ms. This was accomplished by adjusting stimulus
onset asynchrony (SOA) — the time from the beginning
of one flash to the next. For each shape, the SOA was
calculated by dividing total time (100, 300, or 700 ms)
by the number of dots to be displayed. Thus when all
the dots were presented in succession using the SOA
that was appropriate for a given shape, all of the dots
were delivered within the total time that the condition
required.

Restating, there were four conditions that varied the
total time across which all dots within the address table
of each shape were displayed, these being: TT =0, 100,
300, and 700 ms. The timing conditions are illustrated
in Figure 3.

Subjects and testing protocols

Eighty subjects were recruited from the USC Depart-
ment of Psychology Subject Pool. Each subject judged
the stimulus displays using both eyes, allowing correc-
tion with contact lenses or glasses as needed. Each was
tested individually, being shown each of the 376 shapes
only once and with each shape having been assigned to
one of the TT conditions. A counterbalance was added
that assured that each of the four treatments would be
seen an equal number of times; across each successive
four subjects that were tested, a given shape was ran-
domly assigned to one of the four treatment conditions,
without replacement.

For each of the timing conditions except TT =0, dots
were shown in a random order for each shape and this
order differed for each subject. The assistant who was
testing the subject had no information about what treat-
ment was used for a given shape nor did this individual
know the treatment conditions being tested.

Subjects responded by naming the shape that was
shown, generally offering the name within one or two
seconds. The experimenter then entered a keystroke to
record whether or not the name was correct, scoring it
as correct only if the name had been deemed acceptable
during development of the shape inventory, as described
above. Subjects were not told whether or not their
responses were accurate. A test session generally lasted
about 45-55 minutes, including a five-minute break
after half the shapes had been displayed.

Results

Regression for individual shapes

As described in Methods, each subject saw a given shape
only once, and provided a response that was classified as
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Figure 3 A. Each dot was addressed using a Cartesian (x,y) coordinate system. For each dot serving as a boundary marker, its position was
made known by flashing it just once for 50 microseconds. B. At TT =0, dots that marked the boundary were flashed simultaneously . However, at

successive dots, i.e, the SOA, was the total time provided for display of all dots divided by the number of dots for that shape. C. Successive

been flashed. The final dot at the right of the sequence meant to represent random choices of dots until all were flashed.

T1 (pulse width) = 50 psec

-= successive

.

S

’

~
.

.
g g

and flashed one at a time. For a given shape, the interval between
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recognition (1) or no recognition (0). There were four
TT conditions and 80 subjects, so for a given condition
20 subjects judged each shape. This allows the binary
responses to be expressed as a hit rate for each of the
TT conditions, i.e., the total number of times the shape
was recognized across the 20 times it was judged.

For binary response data the customary approach to
testing for treatment effects involves fitting a logistic re-
gression model. We fit a mixed effects logistic regression
model to all the data with TT as a fixed effect and shape
and subject as random effects. Application to the present
data indicated that TT has a very highly significant effect
on hit rate (p < 10™°), as shown in Table 1.

Although it is good to provide statistical confirmation
of effects, there was never a question of whether the suc-
cessive display would produce a decline in hit rate, for it
had been reported by this lab in a number of prior stud-
ies (11-16). The reason for running so many subjects
with the present treatment conditions was to provide
enough data to calculate a regression function for each
individual shape, thus providing indices that could be

Table 1 Estimated parameters, standard errors, and
significance tests for the fixed effects in the generalized
linear mixed model fit with subject and shape as random
effects

Estimate Std. error z value p-value
(Intercept) 22516 0.1049 2147 <2x107'°
TT -4.8662 01577 -30.86 <2x107°

used as covariables or as predictors of effect with respect
to shape attributes.

Prior research from this laboratory (11,14,16) has
shown that successive display of the shape dots produces
remarkably linear declines in recognition as a function
of time differentials and ambient light levels. So for the
purposes of deriving shape-specific indices of TT effect
we calculated a linear model for hit rate as a function of
TT and fit the data for each shape separately. A binomial
response variable may be obtained for each shape and
for each TT value by aggregating over subjects. Standard
regression analysis with binomial responses will yield
unbiased estimates of slope and intercept for each shape.
But since binomial random variables do not have the
same variance as required by usual regression analysis,
estimation of slope and intercept may be improved by
weighting each response by its estimated variance. We
performed regression analysis for each shape using both
weighted and unweighted procedures. The conclusions
given in this section are based on the unweighted esti-
mates, but we performed the same analyses using the
weighted estimates and drew the same conclusions.

Figure 4 shows the regression models that were calcu-
lated for each of the 376 shapes, and the intercept and
slope for each of the shapes are listed in Additional file
1: Table SA. Very few of the fitted regression models
extended above 100% or below 0%. All but a few mani-
fested a decline in recognition as a function of TT.

On the possibility that the density of the overlapping
plots in Figure 4 fails to communicate the range
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Figure 4 A regression line was fit to the mean hit rate for each
of the 376 shapes, and these lines have been plotted. One can
see a sizeable range of intercept values at TT =0, and a large range
of slopes.

differential of the slopes, Figure 5 shows regression lines
from a random sampling of 50 shapes from the
inventory.

In Figures 4 and 5 one can see that the great majority
of shapes had regression intercepts, i.e., predicted recog-
nition at TT =0, of 80% or higher. This can also be seen
in the left panel of Figure 6. In the right panel one can
see the relative frequency of slopes, which comes much
closer to being normally distributed.

Figure 7 shows a plot of the size and direction of
departures from the linear model for each shape, ie,
residuals with some random jittering on the x-axis so

80
|

60
|

hit rate (%)

I I I I I I I I
0 100 200 300 400 500 600 700

TT (ms)

Figure 5 The regression lines from a random sample of 50
shapes have been plotted, the lower density making it easier
to see the range of intercepts and slopes.
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that points are more visible. In general the four clusters
appear to be well balanced with respect to the regression
models, i.e, at 0, and there does not appear to be a sys-
tematic departure from linearity.

Previous research [16] found differentials in hit rate as
a function of the number of dots being displayed. How-
ever, those results were obtained using a protocol in
which the SOA for display of dots was the same irre-
spective of how many dots were used to mark the
boundary. This meant that the total time of display for a
given shape was greater for shapes having many dots
than for those having few. This left open the possibility
that the differentials were due to total display time. Here
we adjusted the SOA according to the number of dots
to be displayed, thus making the total time (at each TT
level) the same for all shapes.

The left panel of Figure 8 shows a scatterplot for the
magnitude of the intercept for each shape as a function
of the number of dots in each shape. The intercept
reflects the difficulty level of the shape when it is dis-
played at TT =0, and there was no indication that the
number of dots determines how readily the shape can be
identified. Note, however, that here each shape was dis-
played using the full inventory of dots. As discussed
below, there is redundancy in the information provided
by the dots and the number of dots becomes relevant if
there is sparse sampling.

The right panel in Figure 8 plots the size of the slope
as a function of dot number, and it does not appear that
the number of dots contributes to the slope differentials.

Returning to the slope differentials plotted in Figure 4,
a major unexpected finding of the present experiment
was that shapes differed substantially in the rate of de-
cline in recognition as a function of total time. Shapes
that were comparable in baseline difficulty, as reflected
in similar hit rates at TT =0, differed substantially in the
rate at which recognition declined at longer TT inter-
vals. Some shapes, for example, dropped precipitously
from 90-100% recognition at TT =0, to hit-rates of 50%
or less when the total time for display was 700 ms.
Other shapes manifested a low slope, remaining in a nar-
row hit-rate range across the full time interval that was
assessed, i.e, 700 ms.

Source of slope differentials

Explaining the slope differentials requires adopting a
model of the process by which the dot information is
combined to yield recognition, or at least offering a ten-
tative hypothesis. Each dot provides a small amount of
information about the location of the shape boundary
and one must combine the information from many dots
in order to identify a given shape. When the dots are
presented briefly, as was done here, the information is
thought to persist for a short time, and the ability to
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Figure 6 The left panel shows the relative abundance of intercept values, i.e., predicted hit rate at TT=0. A great majority of the shapes
had intercepts at or above 80%. The right panel shows the frequency of regression slopes.
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identify the shape depends on being able to integrate
across information that has not yet decayed.

It seems unlikely that the duration of information per-
sistence for a given dot would vary as a function of the
shape to which the dot belongs, and the scatterplots in
Figure 8 do not suggest that the number of dots being
displayed are factors in how much information can be
integrated over a given time period. What seems more
plausible is that the net density of dots required for rec-
ognition differs across shapes, with a greater proportion
being needed for some shapes than others. This was
demonstrated in an earlier study from this lab, in which
subjects were asked to identify shapes that were displayed
with continuous illumination of the dots (not as brief
flashes), but where only a sparse sampling of the full in-
ventory of boundary dots was shown [10]. Recognition of
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Figure 7 Departures of hit rate from the values predicted by
the regressions are plotted for each of the four treatment
levels, each shape providing a plot-point for each of the
treatments. The relatively consistent balance of the clusters around
zero suggests that there are no systematic nonlinear trends in the
data.

some shapes was possible with display of only a small por-
tion of the dots, whereas other shapes required a much
larger percentage. We can describe the essential fraction
as a “critical density”.

This leads to the hypothesis that shape identification
that requires a low critical density will have a lower
slope than one that requires a greater critical density.
Dots that are in close proximity provide much the same
information about the location of the boundary, and are
essentially redundant. With dots being picked at random
for rapid sequential display, the critical density needed
for recognition will be available within a time interval
that is only a portion of the total display time. If the
shape requires a low critical density of dots, the number
needed for recognition will be present early in the dis-
play sequence, and also through the middle of the se-
quence, and again at the end of the display period. The
process by which the shape is summarized thus gets
multiple (or continuing) bites at the apple, so to speak.

We were able to evaluate this hypothesis making use
of some unreported data that asked for recognition
when shapes were displayed using sparse sampling of
the dots. In that study the shapes were continuously dis-
played until the subject responded. The criterion for
choosing which of the original 450 shapes to display was
different, but 340 of the shapes were the same as those
in the present study. Ten subjects had been tested with
100% of the dots being displayed, and another 20 sub-
jects had been tested with sparse dot densities. The
sparse displays provided every 3%, 5%, 8, or 12" dot
from the address table, this being 33%, 20%, 12.5%, and
8.3% of the total dot inventory, respectively. Given that
there were 20 subjects and four sparse treatment levels,
five subjects contributed decisions at each treatment level.

Regression lines were fit to the hit rates that were
observed as a function of the five levels of dot-density
(sparseness). The slope of each regression line specifies
the degree to which the dots are redundant and our hy-
pothesis is that this determines, or at least contributes
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Figure 8 In the left panel, a scatterplot was used to determine whether the number of dots being displayed for a given shape
determined the size of the intercept, i.e., the predicted hit rate at TT = 0. The shape of the plot does not suggest a relationship. Likewise,
the number of dots did not appear to influence the slopes of the regression functions (right panel).
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to, the degree to which recognition declines as a func-
tion of TT. Figure 9 plots the slopes that were observed
for the 340 shapes as a function of dot-density, against
the slopes that were observed across the range of TT
intervals.

The correlation coefficient for these data is 0.60, and the
percent of variance accounted for by a linear regression,
ie, R% is 0.36. A permutation test for the significance of
this relationship gives p < 0.001. Repeating the analysis on
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Figure 9 A large portion of the shapes that were tested with
variation of TT had also been tested with various degrees of
sparseness, i.e., display of only some of the full inventory of
boundary dots. Hit rates decline when fewer dots are displayed,
and the slope of the regression on a given shape reflects the degree
to which the dots are providing redundant information for purposes
of recognition. Here the slopes of the sparseness regressions are
plotted against the slopes of the TT regressions. There is a clear
relationship, which supports the proposition that the variation of
slope that can be seen in Figures 3 and 4 are due to differences in
the degree to which neighboring dots provide redundant
information.

slopes estimated using binomial-based weightings gives es-
sentially the same conclusions (R = 0.60; p < 0.001).

These results are consistent with the concept that the
rate of decline in hit rate for a given shape depends on the
degree to which neighboring dots are redundant. If they
have substantial redundancy, the shape can be identified
even if dots are removed. In like manner, when the dots
are successively displayed, each being briefly flashed, the
hit rate depends on integration of information that is tran-
sient and quickly becomes unavailable. The slope of the
hit-rate function therefore depends on how much infor-
mation is needed for recognition, and it does not decline
as quickly if the essential information can be provided by
only a small percentage of the dot inventory. Thus TT
slopes will be steep if a larger percentage of dots are
required for recognition, and shallow when only a small
percentage is needed.

Additional consideration of redundancy
Neighboring dots and dot residuals can be considered as
redundant if they provide essentially the same informa-
tion about the shape to be identified. One of the sim-
plest examples would be a circle that can be recognized
with display of a very small complement of equally
spaced dots. With continuous display of sparse, evenly
spaced dots, Greene [10] found that almost a fifth of the
shapes could be identified when the density of dots was
below 10%. These included shapes that were asymmet-
rical, e.g, boot, pipe, rooster, banana, hat, man's shoe, cow,
spoon, hen, and woman's shoe. A moth, rooster, woman's
shoe, and boot required only 21, 19, 13 and 11 dots, re-
spectively. This was the average across subjects, and some
of the 18 subjects of that experiment identified the shapes
with fewer dots, even though the odds of doing so on the
basis of chance guessing was only 0.89%.

It is unlikely that contour encoding systems of the brain,
ie, receptive fields of orientation selective neurons
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[18,19], could register the shape boundaries with these ex-
tremely sparse dot patterns as the only cues. Sceniak et al.
[20] used drifting sinusoidal gratings to stimulate simple
and complex neurons in primary visual cortex of macaque
monkeys. They found the length of the excitatory field for
30 of the 31 fields that were examined to be shorter than
2.5 degrees of visual angle. Greene [10] tested three sub-
jects displaying every fifth dot and positioning the subjects
so that the minimum visual angle between successive dots
was 2.5 degrees. These subjects had hit rates of 33, 64 and
68%, where the odds of successful identification by gues-
sing was only 0.89%. Therefore, recognition of shapes is
possible when the dot-to-dot distances exceed the size of
receptive fields of orientation-selective cells. One might
speculate about a role for long-distance connections
within the cortex, but these serve only to combine and
tailor primary responses.

Further, successive display of short arrays of dots that
should activate the receptive fields is no more effective
at eliciting recognition than is display of the same num-
ber of dots that lie at randomly selected positions [11].
For the many instances where a small number of widely
spaced dots were found to be sufficient for recognition
of the shape, it is difficult to specify a path-rule by which
the boundary would be reconstructed. For these several
reasons, Greene [11] has argued that shapes (and thus
objects) can be identified on the basis of the metric in-
formation provided by dots that are acting individually
as boundary markers.

Three of the treatment conditions presented the entire
dot inventory for each shape, randomly ordered, and
briefly displayed one-at-a-time. It is likely that a large
percentage of the dots were essentially redundant in
marking the location of the shape boundary, and recog-
nition was possible when only a fraction of the full in-
ventory was shown. This would allow for recognition
even at relatively long display times. Though many or
most of the dot residuals would have decayed and were
no longer serving as useful markers, some would remain
effective as shape cues. In other words, the slope of the
decline in recognition as a function of total time would
be less steep if most of the dots were redundant. Our
supplemental data analysis indicated that shapes having
a low total-time slope also had a low slope with respect
to the impact of removing dots from the display.

Evaluating shape attributes

Many factors affect how readily an object can be identi-
fied, including familiarity and the number of alternatives
to be distinguished. Recognition may depend on physical
characteristics such as color and texture. However, the
geometry of the major contours, and especially the outer
boundary, is considered to be especially important for
object recognition. These contours provide what we
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generally describe as the “shape” of the object, and here
we direct our attention to whether various shape attri-
butes are important for recognition.

Fred Attneave (1919-1991) was not the first to discuss
curvature and angles as critical shape attributes, but he
is generally acknowledged as being one of the first to
discuss these attributes in terms of information content.
He specified that the points at which the boundary of a
shape change more quickly provide the major informa-
tion that defines the shape [6]. To demonstrate this
point, he showed subjects silhouettes of amorphous
shapes, and then instructed them to mark 10 dots on
blank pages to “reproduce” each shape. He found that
dots were far more likely to be placed at the boundary
locations that had the greatest change in curvature.

Subsequent experiments [7] supported this point and
provided quantitative measures of shape complexity.
Here he constructed shapes, starting with random points
and then adding connecting lines and curves to provide
an outer boundary. He specified a size invariant measure
of “complexity” of the shapes, this being the ratio of the
square of the perimeter divided by the area — P*/A —
and found that this index was highly correlated with
subjective judgments of shape complexity. An index of
symmetry was not a strong predictor, which may be a
function of the kind of shapes that were created by his
protocol. The contour attribute that was most predictive
of subjective assessment of shape complexity was the
number of turns, e.g,, the apices of angles, the maxima
of convex curves, or minima of concave curves.

Norman et al. [21] essentially replicated the Attneave
[6] study, confirming that dots that are placed near max-
ima or minima provide an “optimal” copy of the figure.
Feldman & Singh [22] submit that the negative extrema
(which we are calling minima) provide more information
than do the positive extrema (maxima), based on the ar-
gument that natural objects are generally more convex
than concave. De Winter & Wagemans [23] examined
the question of what locations on silhouettes of everyday
objects are considered by subjects to be the most salient.
They found that 85% of the points chosen were closer to
the convex maxima or concave minima than at the tran-
sition from one to the other. This was taken as general
confirmation of the importance of these points in defin-
ing the shapes, as originally specified by Attneave [6,7].

We have been able to derive measures of shape attri-
butes that correspond to most of the Attneave [7] indi-
ces. Attneave’s complexity index — P?/A — is defined as
the square of the number of dots in the perimeter of the
shape divided by the total dots contained within the
resulting shape (including the perimeter). We derived a
measure of curvature as the mean of local curvature
scores for incoming and outgoing tangents across suc-
cessive 5-dot subsamples. We also counted the number
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of local maximum curvature scores to reflect the num-
ber of major inflections that were present in each shape.
Finally, symmetry was quantified by comparing mean
dot distance on each side of an axis crossing the cen-
troid, across rows or columns, depending on whether
the shape displayed vertical or horizontal symmetry.

These four measures of shape attribute - - complexity,
mean curvature, inflection count, and symmetry - - were
assessed in 338 shapes, these being the ones that did not
have internal contours substantial enough to comprom-
ise the calculation of the respective attribute indices.
These measures for each of the shapes are given in
Additional file 1: Table SA.

We examined the degree that each of these shape attri-
butes determines the TT regression lines for recognition.
Figure 10 plots the value of each attribute for each shape
against intercept (first column) and against slope (second
column). None of these plots displayed a clear pattern of
influence, suggesting that none of these attributes have a
strong relationship with slope or intercept.

The data represented in Figure 10 were evaluated using
regression techniques, with results summarized in Table 2.
For intercept, none of the shape attributes “explained”
more than 2.1% of the total variance individually, and a re-
gression with all four attributes as predictors gave a mul-
tiple R®> value of 4.1%. Considered individually, all
attributes except symmetry “explained” roughly 10% of the
variability in slope; taken together in one regression
model, the total variability explained is 20.0%. The usual
5% standard of statistical significance was met for all rela-
tionships except two: between intercept and complexity;
and between slope and symmetry. As evident in the plots
and supported by the relatively low R values, these rela-
tionships are rather weak, so we conclude that their sig-
nificance is primarily a consequence of the large number
of shapes. Evaluation of this many shapes allows a fairly
weak relationship to register as significant.

Table 2 Although there is a significant correlation
between most of the shape attributes and the two
measures of the regression line, the percent variability
“explained” by these relationships is generally fairly low,
with all four attributes together accounting for only 4.1%
and 20.2% of the variability in intercepts and slopes
respectively

Intercept Slope
Attribute R R? R R?
complexity 0.041 0.2% -0.368 136
mean curvature -0.132 1.7% -0.334 11.1%
inflection count -0.123 1.5% -0.310 9.6%
symmetry -0.143 2.1% 0.007 0.0%
Multiple R? 41% 20.0%
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Discussion

As outlined above, Attneave [6] proposed that corners
and sharp curves provide critical shape information, and
that we identify shapes on the basis of this information.
To illustrate this point, he marked the major inflection
points on an outline drawing of his cat and then used
straight segments to connect these points, as illustrated
in Figure 11. The fact that one can recognize this repre-
sentation as a sleeping cat was offered, and is generally
accepted, as evidence in support of his proposition.

The problem with this demonstration is that it does not
unambiguously support the point that Attneave was ad-
vancing. One could just as well conclude that the location,
orientation, and length of the straight segments them-
selves provide the essential cues for identifying the shape.
This would certainly be consistent with an extensive body
of neurophysiological evidence that cortical neurons func-
tion as selective filters for oriented lines and edges [18,19],
and see [24] for a review of related findings. It also aligns
with machine vision concepts, such as those advanced by
Marr & Nishihara [25] who argued that “edge assertions”
provide essential shape cues (see Figure 12).

In fact neither Attneave, nor many that followed his
lead, actually tested whether the straight segments or
the curved ones contributed most to recognition of
shapes. He did provide evidence that more highly curved
and angular shapes were judged to be more complex [7].
It was simply assumed that it would be more difficult to
identify a complex shape. The results reported above
show that complex and simple shapes alike can be iden-
tified readily as long as the contour markers are pre-
sented simultaneously.

Attneave [6,7] also demonstrated that when subjects
were asked to place dots in an effort to reproduce
amorphous or random-generated shapes, the dots are

s N

Figure 11 Attneave [6] asserted that sharp curves and corners
provided information that was most critical for shape
recognition. He illustrated this concept with a drawing in which
those points were connected by straight-line segments.
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of contours (after Marr & Nishihara, ref. 16).

Figure 12 Computational theories for shape recognition often begin with specification of attributes such as the orientation and length

J

more frequently placed at the major points of inflection.
This was replicated by Norman et al. [21], and De Winter
& Wagemans [23] found the same result when subjects
were asked to use the dots to mark significant boundary
points on drawings of everyday objects. The decision of
where to place the dots could indicate judgments of how
elemental parts could be assembled to construct the
object or how one would draw it. Alternatively or in
addition, these decisions may just reflect intuitions that
correspond to the widely held belief that recognition is
based on segment attributes.

The present evidence provides very little support for
the proposition that the shape attributes that we quanti-
fied contribute to efficacy of recognition. The most telling
result was that measures of complexity and curvature
were at best very weak predictors for intercept values for
the inventory of shapes. For the relation of Attneave’s
complexity measure to intercept, the R* value was 0.2%,
for mean curvature it was 1.7%, and for inflection count it
was 1.5%.

Though it was most highly correlated with intercept
values, the role of symmetry itself was minimal, and
what relationship was present could well relate more to
familiarity with symmetrical exemplars than to the shape
encoding process, per se. A great many objects are
represented in drawings and photographs at an orienta-
tion that emphasizes symmetry. These are often
described as “canonical” views of the object, this being
the perspective that provides the least ambiguity with re-
spect to depth or that is least likely to hide parts that
help define the object. We expect that the symmetrical
object will be easier to identify, and what is surprising
here is how weak this factor is as a predictor of hit rate
when all the boundary markers are displayed simultan-
eously for only 50 microseconds. We believe that this
may call for a complete re-examination of assumptions
about the nature of shape encoding.

The finding that complexity and curvature indices
have some relationship to slope may be explained in
terms of redundancy of neighboring dots. As discussed
above, the brief and successive display of dots allows for
recognition to the extent that the information can be

integrated before it decays. Recognition of a relatively
simple shape is possible when only a small portion of
the dots have been displayed, but a more complex shape
requires a much larger portion. The requirement to inte-
grate information over time creates the condition where
the amount of redundancy is most critical to recogni-
tion, and this is reflected in the slope that is observed.
No matter how complex the shape, the nervous system
can register and encode the information needed for rec-
ognition as long as a simultaneous critical density of
dots is available. However, when the dots are displayed
successively, the density required for recognition become
more important, and thus complex shapes will manifest
a steeper slope.

Conclusion

Many common objects can be identified when they are
being represented by an array of dots that lie along their
outside boundary. High levels of recognition are possible
even when those dots are shown for a very brief period
of time, when only a sparse sampling of the dots is dis-
played, and when the dots are shown successively, each
for a very brief interval.

The present experiment determined the hit rate for
each of 376 shapes when all the dots were shown simul-
taneously for 50 microseconds. There was no indication
that difficulty of recognition of a given shape was a func-
tion of how many dots were needed to represent the
border.

When the dots were shown successively, recognition
declined as a function of the total time that was required
to display the dots, and the decline appeared to be ap-
proximately linear for each of the shapes. There was evi-
dence that the observed slope for a given shape is
determined by the amount of redundancy that is present
among neighboring dots.

A number of theorists have suggested that physical
attributes of the boundary provide the basis for shape
recognition. We examined a number of these attributes
— complexity of the shape, amount of curvature, number
of inflection points, and amount of symmetry — to deter-
mine whether they predicted how readily the shape
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could be identified under the simultaneous or successive
display conditions of the present experiment. None of
the attributes made more than a modest contribution to
shape recognition.

Additional file

Additional file 1: Table SA. The first four columns of the table provide
the name for each of the 376 shapes, the number of dots marking the
contours, the intercept of the regression line, and the slope of the
regression line. The last four columns provide measures of contour
attributes for the 338 shapes that were represented only by the outer
boundary. The values reflect complexity, net curvature, number of
inflections, and amount of symmetry for each of these shapes.
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