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Neuronal mechanisms and circuits 
underlying repetitive behaviors in mouse 
models of autism spectrum disorder
Hyopil Kim, Chae‑Seok Lim* and Bong‑Kiun Kaang*

Abstract 

Autism spectrum disorder (ASD) refers to a broad spectrum of neurodevelopmental disorders characterized by three 
central behavioral symptoms: impaired social interaction, impaired social communication, and restricted and repeti‑
tive behaviors. However, the symptoms are heterogeneous among patients and a number of ASD mouse models 
have been generated containing mutations that mimic the mutations found in human patients with ASD. Each 
mouse model was found to display a unique set of repetitive behaviors. In this review, we summarize the repeti‑
tive behaviors of the ASD mouse models and variations found in their neural mechanisms including molecular and 
electrophysiological features. We also propose potential neuronal mechanisms underlying these repetitive behaviors, 
focusing on the role of the cortico-basal ganglia-thalamic circuits and brain regions associated with both social and 
repetitive behaviors. Further understanding of molecular and circuitry mechanisms of the repetitive behaviors associ‑
ated with ASD is necessary to aid the development of effective treatments for these disorders.
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Background
Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder, and according to the 5th edition of the 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5), it is characterized by “an impairment in social 
communication and interaction, and restricted and 
repetitive patterns of behaviors, interests or activities.” A 
subset of patients with ASD tend to also display hyperac-
tivity, anxiety, hypotonia, epilepsy, sensory abnormalities, 
sleep disorders, intellectual disabilities, gastrointestinal 
disorders, microencephaly or megalencephaly [1–4]. The 
symptom severity is also heterogeneous, which is why the 
term ASD is used to encompass all the different severities 
and variations of symptoms in these disorders.

ASD patients show a range of repetitive behaviors, 
including stereotypies, rituals, compulsions, obsessions 
and self-injurious. The repetitive behaviors of each 

patient are not always convergent. Moreover, repeti-
tive behaviors appear in many other neurodevelopmen-
tal and neuropsychiatric disorders [5]. Therefore, it is 
hard to distinguish repetitive behaviors of ASD patients 
from those of other neuropsychiatric disorders, like 
obsessive–compulsive disorder (OCD) [6]. However, as 
the diagnostic criteria implying, the repetitive behav-
iors of ASD patients may be related with social deficits. 
Supporting this, some treatments that rescued social 
deficits could restore repetitive behaviors, too. For 
example, oxytocin, a neuropeptide, promoted social 
interaction while reducing repetitive behaviors of ASD 
patients [7, 8].

Today, ASD draws global attention as the number 
of people diagnosed has rapidly increased. According 
to epidemiological studies, the current prevalence of 
autism is estimated to be 10–30 per 10,000 people, with 
ASD occurring in an estimated 69.5 per 10,000 people 
[9]. Specifically, a study reported that the prevalence of 
ASD in Asia was as high as 264 per 10,000 people (about 
one out of 38 people) [10]. Among psychiatric diseases, 
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this is relatively high incidence rate, which is why many 
researchers and clinicians are trying to understand the 
pathophysiology of ASD.

Since the direct analysis of human patients is difficult 
for in vivo and biochemical experiments, ASDs are cur-
rently studied using animal models. Among the available 
model organisms, mouse models are most commonly 
used in ASD researches, because of the ease of genetic 
manipulation, high accessibility, and relatively high simi-
larity to humans. A number of transgenic ASD mouse 
models have been generated based on genomic studies 
of patients with ASD, the findings from which indicate 
that genomic components underlie the various ASD phe-
notypes [11–15]. They display various types of repetitive 
behaviors [11–13, 16, 17], and mice with a higher level 
of stereotyped behaviors also display more restricted 
behavioral patterns and diminished flexibility in learning, 
reversal learning, and extinction tasks [18, 19].

Although many scientists have explored the mecha-
nisms of repetitive behaviors, the specific genetic and 
molecular factors underlying these repetitive behaviors 
and how they interact with each other in distinct brain 
regions are yet to be elucidated. Each characteristic 
repetitive behavior seems to stem from different molecu-
lar mechanisms and distinct neuronal pathways. In this 
review, we summarize the types of repetitive behaviors 
and neurophysiological properties of them associated 
with different ASD mouse models and compare the func-
tions of affected genes for repetitive behaviors within 
each brain region. This review should aid in the under-
standing of the molecular and circuitry mechanisms 
underlying repetitive behaviors in ASD and contribute 
to the development of effective and targeted therapies for 
the repetitive behaviors associated with ASD.

Repetitive behaviors of ASD mouse models
A detailed understanding of the neural mechanisms 
underlying ASD is hampered by its complexity and het-
erogeneity. ASD is associated with abnormalities in vari-
ous brain regions such as the neocortex, hippocampus, 
amygdala, and basal ganglia, which mediate social inter-
action, communication and repetitive behaviors.

Focusing on repetitive behaviors [20], despite the lack 
of specific criterion to define each repetitive behavioral 
category, according to Turner, repetitive behavior should 
be repeated at a relatively high rate, pursued in an invari-
ant way, and considered inappropriate and abnormal in 
its manifestation and display. For example, just open-
ing and closing a door to enter a room is not regarded 
as a repetitive behavior, even though the behavior is nor-
mally repeated every day. However, if someone open and 
close a door continuously without a specific purpose, 
then it could be classified as a repetitive behavior. Thus, 

a repetitive behavior can be heterogeneous depending 
on its characteristics and circumstances. Similarly, ASD 
mouse models also show several types of stereotyped 
repetitive behaviors including self-grooming, jump-
ing, circling and marble burying. Example movies of 
each behavior are available in the previously published 
papers [12, 21–23]. A specific repetitive behavior of an 
ASD mouse model would depend on the characteristic 
abnormal physiological features resulting from an altered 
gene expression or a modification of a gene product. The 
detailed characteristics of ASD mouse models are sum-
marized in (Table 1).

Although the ASD mouse models show a variety of 
alterations in molecular level, including metabotropic 
glutamate receptor 5 (mGluR5), N-methyl-D-aspartate 
glutamate receptor (NMDA-R) and γ-Aminobutyric acid 
receptor (GABA-R), a specific molecular pathway seems 
to be related with a specific repetitive behavior. Dopa-
mine also could affect a repetitive behavior by modulat-
ing dopamine receptors in the striatum (Table 1).

Self‑grooming
Mice normally scratch and brush their hair with their 
forelimbs for a few seconds to minutes. However, when 
the self-grooming behavior is repeated at a higher rate 
and a longer duration, it can be considered as a repeti-
tive behavior. For example, BTBR T + tf/J (BTBR) mice, 
an inbred strain without corpus callosum, are used as 
a model of idiopathic autism with an increased rate of 
repetitive self-grooming [24]. This excessive self-groom-
ing was rescued by inhibiting mGluR5 activity [25, 26]. 
Many transgenic mouse models of ASD also display 
repetitive and excessive self-grooming and the functions 
of many neurotransmitters are implicated in this behav-
ior (Table  1). For example, GABA-R agonists reduce 
repetitive self-grooming in BTBR mice without sedation 
[13, 27]. Abnormal self-grooming also occurs in mice 
with contactin-associated protein-like 2 (Cntnap2)−/− 
mice, which was also rescued by treatment with risperi-
done, an antagonist to the dopamine D2 receptor (D2R) 
[28]. While we do not yet know the exact mechanisms 
underlying repetitive self-grooming, we do know that it is 
associated with multiple brain regions including the cor-
tex, hypothalamus, striatum, cerebellum and amygdala 
[29–31].

Jumping
Another repetitive behavior observed in rodent ASD 
models is jumping. Most mice including C57BL/6 mice, 
a normal control mouse frequently used in behavio-
ral researches sometimes jump using their hind limbs. 
In contrast with C57BL/6 mice, the C58/J mice are 
characterized by excessive jumping [32]. Interestingly, 
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while SH3 and multiple ankyrin repeat domains 3b 
(Shank3b)−/− mice display repetitive grooming, the 
Shank2−/− mice exhibit repetitive jumping and scrab-
bling behaviors (Table 1), despite the functional similari-
ties between Shank3 and Shank2 proteins. Both proteins 
are enriched in excitatory synapses as scaffolding pro-
teins, and their deficiency reduces NMDA-R activity 
[12, 33]. However, only Shank3, but not Shank2, is highly 
expressed in the cerebellum and striatum, implicating 
different functions of the two proteins in distinct brain 
regions [34]. Interestingly, inhibition of mGluR5 signal-
ing through GRN-529, a negative allosteric modulator 
of mGluR5, reduces the jumping behavior of C58/J mice 
[24]. NMDA-R hyperfunction may be responsible for 
triggering the jumping observed in C58/J mice, because 
inhibition of mGluR5 signaling can alter NMDA-R activ-
ity and both receptors are tightly connected in the post-
synaptic density (PSD).

Circling
Some ASD mice repeatedly rotate in fixed locations, in 
a circular pattern. Dopaminergic pathways from the 
striatum to the substantia nigra (SN) are implicated 
in mediating the circling behaviors, and an imbalance 
in striatal dopamine activity is thought to be a cause of 
the abnormal circling behaviors [35–37]. The direction 
of rotation seems to be contralateral to the brain region 
with high striatal dopaminergic activity. For example, 
when the dopamine D1 receptor (D1R) agonist, A68930, 
was injected in the striatum of one hemisphere of Bronx 
Waltzer mice, which show repetitive circling behaviors, 
their contralateral rotation increased while their ipsilat-
eral rotation decreased [37].

Since alterations in GABA levels can also impair the 
homeostatic activity levels in the brain, GABA may 
also affect circling behaviors. For example, muscimol, a 
GABA-R agonist, injected into the substantia nigra pars 
reticulata (SNr) induced a repetitive circling behavior 
[36].

Marble burying
Marble burying is the behavior of burying marbles scat-
tered on the bedding into the bedding. It is a little con-
troversial to categorize marble burying as a repetitive 
behavior, since the behavior is associated with anxiety 
to a novel context and exploration. Consistent with this, 
some ASD mouse models show increased marble burying 
behavior, while others demonstrate a decrease (Table 1). 
Interestingly, some mice with increased marble burying 
also exhibit increased locomotor activity, while other 
mice with decreased marble burying exhibit decreased 
locomotor activity [38, 39]. This suggests the possibility 
of an overlap between the neuronal circuits involved with 

digging behavior and locomotor activity. In addition, 
several antidepressants/anxiolytics such as fluvoxamine, 
bupropion, and diazepam reduced both marble bury-
ing and digging [40]. Furthermore, minocycline, which 
shows an anxiolytic effect on Fragile X mental retarda-
tion 1 (Fmr1) KO mice, also reduced the elevated mar-
ble burying in these mice. Thus, the emotional states and 
brain circuitry involved with anxiety or depression may 
also affect marble burying behaviors.

Hyperactivity
Hyperactivity itself is not generally considered as a repet-
itive behavior, but the phenotype is often accompanied 
by repetitive body movements. Moreover, several ASD 
mouse models exhibit hyperactivity (Table  1). Support-
ing the relationship between repetitive behaviors and 
hyperactivity, local field potential recordings in several 
interconnected brain regions of norepinephrine-deficient 
mice, which display hyperactivity and repetitive groom-
ing, indicated an impaired coherence across the cortico-
striatal circuits [41].

Other ASD mouse models in addition to the aforemen-
tioned mouse models, show additional repetitive behav-
iors, including rearing, head poking, forelimb movements 
and hanging (Table 1).

General neural circuits of repetitive behaviors
Various brain regions and pathways govern repetitive 
behaviors; however, the most notable pathway is the cor-
tico-basal ganglia-thalamic pathway (Fig.  1a), which is 
also involved in the motor activities [42, 43]. For exam-
ple, human brain imaging studies showed the positive 
correlation between the volume of basal ganglia com-
partments such as striatum, and degree of repetitive 
behavior in ASD patients [44]. In case of animal studies, 
injecting L-DOPA, a dopamine precursor, and apomor-
phine, a non-selective dopamine agonist, into the stria-
tum of rats induced stereotypic gnawing behaviors [45]. 
In addition, a study demonstrated that Shank3b−/− mice, 
which have abnormal self-grooming behavior, exhibited a 
reduced cortico-striatal synaptic transmission in medium 
spiny neurons (MSNs) [34].

The cortico-basal ganglia-thalamic pathway pri-
marily consists of direct D1R-expressing and indirect 
D2R-expressing pathways (Fig.  1a). D1R-expressing 
GABAergic neurons in the direct pathway inhibit the 
internal globus pallidus (GPi) and substantia nigra pars 
reticulata (SNr). Sequentially, the GABAergic output from 
GPi to SNr inhibits thalamus and in turn thalamus acti-
vates the motor cortex. Thus, the final consequence of 
direct pathway is activation of movements. In contrast, 
D2R-expressing neurons inhibit the external globus pal-
lidus (GPe) and GPe inhibits subthalamic nucleus (STN). 
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The STN then activates GPi and SNr, which inhibits thala-
mus. Hence, the final consequence of indirect pathway is 
inactivation of movements and possibly affects repetitive 
behaviors of ASD mouse models. For example, mouse 
models of 16p11.2 deletion, which occupies relatively high 
incidence in ASD patients, show decreased grooming, 
accompanied with increased numbers of D2R-expressing 
striatal medium spiny neurons (MSNs) and increased 
spontaneous EPSC in the neurons [46, 47]. Interestingly, 
these mouse lines also showed increased hanging and cir-
cling, suggesting different regulatory mechanisms in indi-
rect pathway among grooming, hanging and circling [47].

It is thought that sub-pathways of the cortico-basal 
ganglia-thalamic circuit and the dynamic molecular 
regulation in the sub-pathways are responsible for each 
class of repetitive behaviors [48–50]. For example, intras-
triatal injection of a D1R antagonist, SCH23390, or an 
NMDA-R antagonist, MK-801, in deer mouse, a well-
known jumping mouse, reduced repetitive jumping [51], 
while injecting apomorphine induced stereotypic groom-
ing and hyperactivity without affecting the jumping [52]. 
Similarly, chronic administration of the selective seroton-
ergic reuptake inhibitor (SSRI), escitalopram, attenuated 
the horizontal repetitive movements characteristic of 
deer mice, without affecting the vertical repetitive move-
ments including jumping, implicating a differential regu-
lation of jumping and other repetitive behaviors [53].

Furthermore, previously uncovered connections 
related to the cortico-basal ganglia-thalamic circuits are 
discovered recently. For example, the inhibitory projec-
tions, with or without acetylcholine, from external globus 
pallidus (GPe) to frontal cortex were found [54]. In addi-
tion, the same research group demonstrated that a non-
canonical function of D2R-expressing neurons in indirect 
pathway, which activates the motor cortex temporally, 
suggesting more heterogeneity in the circuits than we 
expected [55].

An interesting feature of ASD mouse models is that 
observed abnormal synaptic functions have mostly been 
found in the hippocampus. In spite of the lack of evidence 
showing the causal relationship between hippocampus and 
repetitive behaviors, stimulation of ventral hippocampus 
with NMDA increased locomotor activity, while its inhibi-
tion decreased the locomotor activity [56, 57]. In addition, 
the hippocampus has connections to several brain regions 
in cortico-basal ganglia-thalamic circuits, including stria-
tum and amygdala, suggesting the possibility that the 
hippocampus affects the cortico-basal ganglia-thalamic 
circuits and possibly repetitive behaviors [58–64].

Pharmacological rescues of repetitive behaviors
In spite of the limited understanding of the causes of 
repetitive behaviors, some repetitive behaviors of ASD 

mouse models were rescued by administering specific 
treatments. In particular, pharmacological treatments 
that manipulate the neuronal activity involved in repeti-
tive behaviors are the most salient treatment methods 
because of their potential to be applied in therapies for 
human ASD patients.

For this reason, a series of drugs have been tested 
for ASD mouse models, some of which successively 
reduced the repetitive behaviors of the mice. Among the 
many ASD mouse models, the BTBR mice is one of the 
most frequently studied models and several drugs have 
reduced their repetitive self-grooming without seda-
tion effects, as we mentioned earlier (Table  1). Their 
self-grooming was reduced by mGluR5 antagonists or 
GABA-R agonists [25–27, 65]. Although the involve-
ment of its mechanisms in repetitive behaviors remains 
unclear, inhibition of mGluR5 expression could activate 
D1R signaling by stimulating the PKA activity. Accord-
ingly, mGluR5 antagonism possibly inhibits the direct 
pathway of the cortico-basal ganglia-thalamic circuit [66] 
(Fig. 1b). In addition, the knockdown of mGluR5 in D1R-
expressing cells reduced locomotion activity, supporting 
the idea [67]. Meanwhile, GABA-R agonists may reduce 
elevated excitatory/inhibitory (E/I) balance, rescuing 
overactivation of the motor cortical area, where the final 
signal of the cortico-basal ganglia-thalamic circuit arrives 
(Fig.  1b) For example, repetitive behaviors induced by 
amphetamine was attenuated by GABA-R agonists [68]. 
In addition, Fmr1−/− mice showed hyperexcitability 
caused by decreased activities of fast-spiking (FS) inhibi-
tory neurons in the somatosensory and barrel cortex, 
and a GABA-R agonist that reduced the self-grooming 
of BTBR mice also reduced the locomotor activity and 
repetitive marble burying of Fmr1−/− mice. Moreover, 
a human fMRI study also reported that the GABA con-
centration in the supplementary motor area (SMA) was 
inversely correlated with the excitability of the motor 
cortex, supporting the relationship between GABAergic 
function in cortical areas and repetitive behaviors [69].

Another type of drug that reduces repetitive self-
grooming is risperidone, which modulates vari-
ous molecular targets but primarily blocks the D2R, 
resulting in reduced activity of the indirect pathway. 
However, reduced activity of the indirect pathway is 
generally thought to increase repetitive behaviors. Thus, 
the effect of risperidone, which reduces the repetitive 
self-grooming of Cntnap2−/− mice is somewhat para-
doxical. However, it is interesting that systemic injection 
of haloperidol, a D2R antagonist, also reduced move-
ments and activities of the motor cortex of rats [70]. In 
addition, D2R overexpression in the striatum enhanced 
the GABAergic function of the prefrontal cortex (PFC), 
reducing the excitability of PFC [71]. These results 
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suggest that reduced self-grooming by risperidone may 
be attributed to the enhancement of GABAergic inhibi-
tion of the cortex (Fig. 1b).

Hub brain regions implicated in both social 
and repetitive behaviors
Since the main symptoms of ASD are impairments in 
social interactions and repetitive behaviors, it may be 
reasonable to postulate a hub brain region that links the 
social behaviors and repetitive behaviors. Supporting 
this view, amygdala may be the most notable candidate 

region specifically involved in self-grooming. Activa-
tion of a population of vesicular glutamate transporter 2 
(vGLUT2)-positive glutamatergic neurons in the medial 
amygdala (MeA) of mice promoted self-grooming while 
suppressing social interaction. On the other hand, the 
activation of vesicular GABA transporter (vGAT)-pos-
itive GABAergic neurons in the MeA triggered social 
interaction while suppressing self-grooming [31]. In 
addition, when the glutamatergic projection from baso-
lateral amygdala (BLA) to the ventral hippocampus of 
mice was activated, social interaction was reduced while 

Fig. 1  Neural pathways implicated in repetitive behaviors. a Schematic drawings of the cortico-basal ganglia-thalamic pathways including the 
direct and indirect pathways. The direct pathway is represented by brown color, while the indirect pathway is represented by blue color. The regions 
that are common in both pathways are represented with mixed brown and blue colors. Dopaminergic sources from substantia nigra pars compacta 
(SNc), which activate and inactivate direct and indirect pathways, respectively, are represented by green color. The projections from cortex activate 
both D1R and D2R-expressing GABAergic neurons in the striatum. Then, the D1R-expressing GABAergic neurons in the direct pathway inhibit the 
internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr). Sequentially, the GABAergic output from GPi and SNr inhibits thalamus and 
in turn thalamus activates the motor cortex. Thus, the final consequence of the direct pathway is activation of movements. In contrast, D2R-express‑
ing neurons in the indirect pathway inhibit the external globus pallidus (GPe) and GPe inhibits subthalamic nucleus (STN). The STN then activates 
GPi and SNr, which inhibits thalamus. Hence, the final consequence of indirect pathway is inactivation of movements. b Possible neuronal mecha‑
nisms of pharmacological rescue of repetitive behaviors. mGluR5 antagonism can inhibit the direct pathway by inhibiting the D1R signaling. GABA 
agonists can ameliorate elevated E/I balance in the motor cortex of some ASD mouse models, and D2R antagonism may potentiate the GABAergic 
function in cortical areas
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the self-grooming increased [61] (Fig. 2). Thus, it is pos-
sible that amygdalo-hippocampal pathway may be highly 
activated in ASD mouse models.

PFC also can modulate both social and repetitive 
behaviors. PFC has a projection to the substantia nigra 
pars compacta (SNc), a dopaminergic source of the 
striatum. When the projection was activated, it induced 
hyperactivity and repetitive movement behaviors of 
mice due to hyperdopaminergia in the striatum [72] 
(Fig. 2). Moreover, the proper level of dopamine in PFC 
seems to be required for preventing repetitive behav-
iors. For example, when an antagonist of dopamine D2 
and D3 receptors, sulpiride was injected unilaterally into 
the PFC of rats pretreated with amphetamine, it induced 
ipsiversive circling [73]. In another study, after sensi-
tization to cocaine, cocaine injection in rats induced 
stereotypy with increased PFC dopamine release and 
decreased the activity of both inhibitory and excitatory 
projection from medial PFC (mPFC) to SNr [74].

Besides the involvement in repetitive behaviors, PFC 
also affects social behaviors. For example, lateral prefron-
tal cortex (LPFC) is important for social information pro-
cessing and early damage of PFC resulted in impairment 
of social behaviors [75, 76]. Furthermore, optogenetic 
activation of mPFC increased E/I balance in that region 
and impaired social behaviors of the mice [77] (Fig. 2).

Indeed, ASD mouse models often show abnormali-
ties in their PFC. Scn1a+/− mouse, one of autistic mice, 
showed increased E/I balance in PFC [13]. Another 
autistic mouse, Fmr1−/− mouse, showed hyperconnec-
tivity of layer 5 pyramidal neurons in mPFC [78]. In addi-
tion, Neuroligin 2 (NL2) overexpression in PFC of mice 
increased mIPSC frequency and repetitive jumping, and 
impaired social behavior of the mice [79]. Thus, impair-
ment in PFC may also cause autistic symptoms in sub-
population of patients.

Ventral tegmental area (VTA) is also responsible for 
both social and repetitive behaviors. According to a study, 
after being sensitized to cocaine, VTA glutamate release 
was increased. This glutamate increase and cocaine-
induced stereotypy were rescued by SCH-23390, a D1R 
antagonist, infusion into VTA [80]. In addition, block-
ing non-NMDA-R-mediated glutamatergic transmission 
from PFC to VTA reduced increased self-grooming of 
rats that was induced by an NMDA-R antagonist, phen-
cyclidine (PCP) [81] (Fig. 2). Since VTA has a dopamin-
ergic projection to PFC, it is likely that the regulation of 
glutamatergic transmission in PFC by VTA dopaminergic 
neurons may be important for repetitive self-grooming 
and motor activities.

As to social behaviors, activity of the dopaminergic 
projection from VTA to Nucleus Accumbens (NAc), was 

Fig. 2  Connections of brain regions implicated in both social and repetitive behaviors. Activation of projection from the amygdala to the hip‑
pocampus increases repetitive self-grooming behavior, yet decreasing social behaviors [61]. Optogenetic disruption of E/I balance of the PFC 
impairs social behaviors [77]. Inhibition of the PFC projection to the VTA reduces repetitive behaviors and activation of the projection from the PFC 
to the SNc induces hyperactivity [72, 81]. Dopaminergic projections from the VTA to the ventral striatum, a key region implicated in motivation is 
necessary for social reward [82]. SNc substantia nigra pars compacta, PFC prefrontal cortex, VTA ventral tegmental area
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increased when a mouse confronted with a social objects. 
Furthermore, optogenetic activation or inhibition of this 
projection increased or decreased the social interaction 
time for the subject mice [82]. Thus, abnormal dopamin-
ergic activities in the NAc possibly impair social behaviors 
and generate repetitive behaviors of ASD mouse models.

Conclusion
We have discussed the general features of ASD and one 
of its main symptoms, repetitive behaviors. We then 
summarized the transgenic or inbred ASD mouse mod-
els and their phenotypes focusing on specific repetitive 
behaviors, electrophysiological properties, and neuronal 
circuit abnormalities. And then, we summarized phar-
macological interventions that used to reduce repetitive 
behaviors in ASD mouse models. Finally, we discussed 
hub brain regions possibly involved in both social and 
repetitive behaviors.

Despite the many studies using ASD mouse models, 
it is still difficult to identify the brain networks respon-
sible for each repetitive behavior. Moreover, physiologi-
cal properties of mice with repetitive behaviors are not 
convergent even in mice with the same repetitive behav-
ior. Although the causal relationships have not yet been 
proven, organizing the results of the studies provides a 
glimpse into the relationship between the different brain 
regions and the corresponding abnormal synaptic prop-
erties and repetitive behaviors associated with various 
ASD mouse models.

Further research should be conducted to investigate 
the neuronal abnormalities in specific brain regions 
associated with the repetitive behaviors in ASD mouse 
models. For that reason, it would be helpful to study the 
microcircuitry of ASD mouse models in more detail by 
manipulating specific neuronal populations using phar-
macological drugs and conditional KO or optogenetics 
that currently used in broad brain research area. By doing 
so, understanding neuronal mechanisms of the repetitive 
behaviors in ASD would be also helpful to find safer and 
more effective treatments for each patient with ASD, in a 
situation that an efficient treatment for ASD symptoms is 
limiting.
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