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HYPOTHESIS

Excitability, synaptic balance, and addiction: 
The homeostatic dynamics of ionotropic 
glutamatergic receptors in VTA after cocaine 
exposure
Thiago C. Moulin1*   and Helgi B. Schiöth1,2

Abstract 

Glutamatergic AMPA and NMDA receptors in the ventral tegmental area (VTA) are central for cocaine first exposure 
and posterior craving maintenance. However, the exact rules that coordinate the synaptic dynamics of these recep-
tors in dopaminergic VTA neurons and behavioral outcomes are poorly understood. Additionally, synaptic homeo-
static plasticity is present in response to chronic excitability changes in neuronal circuits, adjusting the strength of 
synapses to stabilize the firing rate. Despite having correspondent mechanisms, little is known about the relationship 
between continuous cocaine exposure and homeostatic synaptic changes in the VTA neurons. Here, we assess the 
role of homeostatic mechanisms in the neurobiology of cocaine addiction by providing a brief overview of the paral-
lels between cocaine-induced synaptic potentiation and long-term synaptic adaptations, focusing on the regulation 
of GluA1- and GluN1- containing receptors.
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Introduction
Dopaminergic projections originated in the ventral teg-
mental area (VTA) are critical for reward learning and, 
consequently, drug abuse behaviors [5, 19, 23]. Animal 
models of cocaine addiction are characterized by compul-
sive drug-seeking and drug-taking even after prolonged 
periods of withdrawal [4, 11]. A central hypothesis is that 
these craving phenotypes reflect greater incentive moti-
vation for the drug and associated stimuli [21] mediated 
by the potentiation of glutamatergic synapses on VTA 
dopamine neurons [13]. For example, VTA dopamine 
neurons exhibit transient NMDA receptor (NMDAR)-
dependent increases in AMPA receptor (AMPAR)-medi-
ated currents following either single or repeated cocaine 

injections [2, 26]. Similarly, cocaine has been shown to 
facilitate the experimental induction of long-term poten-
tiation (LTP) and enhance the responsiveness of dopa-
mine neurons to AMPA administration [29]. Despite the 
broad knowledge on these mechanisms, the scientific 
literature does not provide details on how this synaptic 
reinforcement can lead to excitatory over-potentiation of 
the reward circuitry, which in turn may trigger synaptic 
homeostatic mechanisms [24].

The homeostatic regulation of synapses is a exten-
sively studied process [17], believed as necessary for the 
adequate development and function of neuronal net-
works [25]. It is defined as a negative feedback response 
mechanism to chronically elevated or reduced activity in 
a neural circuit, where individual neurons adapt to these 
changes by modifying their synaptic excitability thresh-
old. It can be achieved through adjustments in ionotropic 
glutamatergic receptors synaptic modulation [7, 18]. 
During homeostatic regulation, AMPAR and NMDAR 
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numbers at the postsynaptic surface are scaled down- or 
upwardly in response to activity overexcitation or inhi-
bition, respectively, presumably via changing trafficking 
processes, including insertion and internalization of the 
receptors [27].

Homeostatic mechanisms have been shown to regu-
late many aspects of brain function by the interaction 
with other types of plasticity [1, 16], and to influence the 
pathophysiology of neuropsychiatric and neurologic dis-
orders [9]. However, the role of synaptic homeostasis in 
substance abuse and addiction was not yet investigated. 
This article considers recent evidence on the influence of 
synaptic potentiation and subsequent homeostatic regu-
lation in the VTA into behavioral outcomes of cocaine 
craving after chronic drug exposure. We use the regu-
lation of GluA1- and GluN1-containing glutamatergic 
channels as a framework to examine the interactions of 
these two types of synaptic plasticity and their influence 
on craving behavior.

GluA1/GluN1 dynamics during cocaine exposure, 
re‑exposure, and withdrawal
NMDARs and AMPARs are necessary for the acute 
cocaine-induced synaptic potentiation in VTA DA cells. 
By preventing the synthesis of the AMPAR subunits 
GluA1 or GluA2 [8], or the NMDAR subunit GluN1 [30] 
in cells expressing the DA transporter, cocaine-induced 
reinforcement can be prevented in glutamatergic syn-
apses of the VTA DA cells. Interestingly, however, at the 
behavioral level these mutations are unable to change the 
locomotor sensitization following repeated cocaine expo-
sure in mice.

Additionally, GluA1-containing AMPARs were shown 
to have a singular pattern of expression after cocaine 
exposure: they are up-regulated after acute, but not 
chronic, cocaine self-administration; however, the with-
drawal period is able to induce GluA1-AMPARs up-
regulation again [3, 14, 15]. Moreover, the expression of 
this subunit is related to cocaine intake motivation, as 
rats transiently over-expressing GluA1-AMPARs were 
shown to have increased craving in the progressive ratio 
habituation. In this paradigm, animals are trained to self-
administer cocaine, but the number of necessary lever 
presses exponentially increases with each cocaine release. 
When analyzing the breaking point parameter, defined 
by the highest ratio of responses per injection achieved 
before a 1  h-period when no further injections were 
earned, rats overexpressing GluA1-AMPARs much took 
longer to reach this point when compared to controls [3].

This state-dependent expression pattern of GluA1-
AMPARs was shown to be regulated by GluN1-con-
taining NMDARs. By using a viral-mediated expression 
of a dominant-negative GluN1 subunit in VTA, it was 

demonstrated that the absence of this NMDA unit blocks 
the increase in GluA1-AMPARs after chronic cocaine 
intake [12]. Nevertheless, the behavioral effects of inhib-
iting GluN1 expression are somewhat unexpected. 
GluN1-negative animals have attenuated locomotor 
sensitization after withdrawal [30] and are unable to the 
reinstatement of cocaine-conditioned place preference 
[8]; however, transient absence of GluN1 applied to the 
VTA during chronic cocaine self-administration para-
doxically enhances cocaine-seeking behavior [12]. After 
withdrawal, these rats take longer to reach the breaking 
point and earn more cocaine injections when compared 
to controls. Extinction of this behavior was also impaired, 
and the reinstatement of the drug-paired lever response 
was facilitated.

These counterintuitive results could only be explained 
after studying the influence of homeostatic regula-
tions due to the continuous change in neuronal excit-
ability induced by the transient manipulation of 
GluN1-NMDARs in VTA. In fact, it was demonstrated 
that transient GluN1 inactivation for 3weeks enhanced 
AMPAR-mediated locomotor activity and membrane 
expression of glutamate receptor subunits, includ-
ing GluA1. The overexpression of these AMPA chan-
nels, in turn, drove an increased motivation for cocaine 
in a progressive ratio testing and kept elevated the 
cocaine-seeking behavior elicited in both extinction and 
cocaine-primed reinstatement, even after 3–5  weeks of 
withdrawal [12]. This body of evidence suggests that the 
homeostatic regulation of AMPAR is able to modulate 
cocaine craving during chronic cocaine exposure and 
withdrawal.

The role of homeostatic plasticity
These results were interpreted as a specific explanation 
for the observed cocaine-seeking after transient GluN1-
NMDARs inactivation. However, we believe these results 
also indicate that cocaine-induced plasticity may induce 
synaptic scaling processes in the VTA at more general 
conditions. For example, homeostatic plasticity mecha-
nisms have been shown to modulate the pathophysiology 
of some neurologic and neuropsychiatric disorders, such 
as intellectual disability [22], Rett syndrome [20], schizo-
phrenia [6], and Alzheimer’s disease [28].

Moreover, when investigating the role of VTA in a 
social defeat stress model of depression, it was observed 
that VTA dopaminergic neurons of depression-resilient 
mice display enhanced inhibitory currents as a homeo-
static response to this behavioral challenge [10]. The 
study also demonstrated that by artificially activat-
ing of VTA DA neurons in depression-susceptible ani-
mals, self-tuning homeostatic compensations could be 
triggered, changing the behavior. Thus, by naturally or 
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experimentally establishing homeostatic balance in VTA 
dopaminergic neurons, they become more stable in 
response to environmental perturbations.

When we look at cocaine-induced GluA1 plasticity in 
VTA neurons, after organizing by periods of drug intake 
and withdrawal (Fig.  1), we can observe a stereotypi-
cal process of AMPAR homeostatic regulation driven by 
enhanced excitation (chronic cocaine administration), 
followed by adaptation to decreased excitation (with-
drawal). The acute intake of cocaine leads to short-term 
synaptic potentiation and enhanced expression of GluA1 
proteins. However, after chronic intake of cocaine, GluA1 
expression is comparable to that of controls, indicating a 
homeostatic response to continuous self-administration 
of the drug. Furthermore, during cocaine withdrawal, 
when the overall excitability is decreased, GluA1 levels 
rise again. These compensatory dynamics of AMPAR are 
consistent with homeostatic synaptic processes [24].

Conclusions
To the best of our knowledge, this is the first report sug-
gesting a connection between synaptic scaling processes 
and the physiological mechanisms of cocaine addiction 
in the VTA. Unquestionably, homeostatic regulations of 
VTA neurons are not the only responsible for craving 
behavior, as classic potentiation mechanisms and con-
text reinforcement are also part of this process. In fact, 
most of the aforementioned cocaine-induced AMPAR/
NMDAR plasticity takes place in VTA after cocaine 
self-administration, but not with passive yoked infu-
sion, indicating a protagonist of learning and memory 
mechanisms. However, these recent results show that the 
contributions of synaptic homeostatic scaling in cocaine 
addiction must be further investigated. We believe such 
discussion would advance the understanding of homeo-
static plasticity in behaviorally relevant in vivo models of 
addiction and provide further insight into the physiologi-
cal underpinnings of compulsion and craving.
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