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Abstract 

Background:  Post-traumatic stress disorder (PTSD) is a debilitating disorder defined by the onset of intrusive, avoid‑
ant, negative cognitive or affective, and/or hyperarousal symptoms after witnessing or experiencing a traumatic 
event. Previous voxel-based morphometry studies have provided insight into structural brain alterations associated 
with PTSD with notable heterogeneity across these studies. Furthermore, how structural alterations may be associated 
with brain function, as measured by task-free and task-based functional connectivity, remains to be elucidated.

Methods:  Using emergent meta-analytic techniques, we sought to first identify a consensus of structural alterations 
in PTSD using the anatomical likelihood estimation (ALE) approach. Next, we generated functional profiles of identi‑
fied convergent structural regions utilizing resting-state functional connectivity (rsFC) and meta-analytic co-activation 
modeling (MACM) methods. Finally, we performed functional decoding to examine mental functions associated with 
our ALE, rsFC, and MACM brain characterizations.

Results:  We observed convergent structural alterations in a single region located in the medial prefrontal cortex. 
The resultant rsFC and MACM maps identified functional connectivity across a widespread, whole-brain network that 
included frontoparietal and limbic regions. Functional decoding revealed overlapping associations with attention, 
memory, and emotion processes.

Conclusions:  Consensus-based functional connectivity was observed in regions of the default mode, salience, and 
central executive networks, which play a role in the tripartite model of psychopathology. Taken together, these find‑
ings have important implications for understanding the neurobiological mechanisms associated with PTSD.
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Background
Post-traumatic stress disorder (PTSD) is a psychiatric 
disorder in which the onset of symptoms develops after 
experiencing or witnessing a traumatic event, such as 

violence, accidents, or combat [99]. Symptoms associ-
ated with PTSD are categorized into clusters accord-
ing to the DSM 5: (1) intrusion/re-experiencing trauma, 
(2) avoidance, (3) negative cognition and mood, and (4) 
hyperarousal [39, 62]. Approximately 70% of adults expe-
rience at least one traumatic event in their lifetime and 
up to 20% of these people develop PTSD [65]. Individuals 
with PTSD may experience long-term debilitating effects, 
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mentally, physically, and cognitively. In the United States, 
roughly 8 million adults suffer from PTSD every year. 
Approximately 60% of men experience at least one trau-
matic event in their lives, often associated with combat 
and war, while 50% of women will experience at least one 
traumatic event, typically associated with sexual assault 
and abuse [59].

Current theories aim to understand the etiology of 
PTSD, including behavioral, cognitive, and social mod-
els. Research suggests that reappraisal of traumatic 
events may lead to an overgeneralized threat response 
[20]. Despite progress in understanding the vulnerabil-
ity, symptomatology, and trajectory of PTSD [1, 39, 64], 
the underlying neurobiological determinants of PTSD are 
less clear. Substantial prior work has attempted to iden-
tify structural brain alterations observed among indi-
viduals with PTSD. Voxel-based morphometry (VBM) 
is a commonly used methodological approach for ana-
lyzing structural magnetic resonance imaging (MRI) 
data, allowing for quantitative statistical comparisons 
between groups (e.g., differences in gray matter volume; 
GMV) to more clearly understand the structural altera-
tions associated with neuropsychiatric disorders, such 
as PTSD. Multiple prior meta-analyses have been con-
ducted to identify convergent gray matter reductions in 
PTSD patients, although consensus across meta-analyses 
has not been reached. Each of these meta-analyses was 
conducted with a different scope, with varied study inclu-
sion/exclusion criteria, and subsequently included a wide 
range of 8 to 20 studies. Varying convergence has been 
observed across these meta-analyses, which have identi-
fied one to five significant clusters in regions that include 
medial prefrontal cortex [7, 40, 44, 50, 55], hippocam-
pus [7, 44], fusiform gyrus [50, 79], and lingual gyrus 
[44, 79]. Similarly, from a functional perspective, PTSD 
dysfunction has been reported as amygdala and frontal 
disruptions (e.g., [18] or across alterations of large-scale 
functional brain networks (e.g., [41] that are implicated 
in the tripartite model of psychopathology [56]. While 
some studies have addressed consensus across functional 
neuroimaging studies, it is challenging to assess conver-
gence across different psychological states and/or experi-
mental paradigms, which has potentially contributed to 
inconsistent findings in PTSD meta-analyses of resting 
state [3, 92] or task-based [24, 63,  33] studies. Over-
all, this variability across meta-analytic approaches and 
results suggests that a consensus neurobiological model 
of PTSD has not yet been achieved.

The objective of the current study was to apply current 
best practices in coordinate-based neuroimaging meth-
ods to investigate the topography of consistently reported 
structural alterations in PTSD. As PTSD is linked to a 
broad spectrum of neuropsychiatric symptoms, which 

likely reflects the disturbance of distributed, brain-wide 
neural circuitry, we also sought to functionally and 
behaviorally characterize any neuroanatomical altera-
tions in a task-independent manner. To this end, we first 
identified convergent regions of gray matter (GM) reduc-
tions in PTSD vs. non-PTSD groups using anatomical 
likelihood estimation (ALE) [21, 22]. Second, we identi-
fied the task-free resting state functional connectivity 
(rsFC) patterns, as well as the task-based meta-analytic 
co-activation modeling (MACM) patterns of conver-
gent regions, thus providing multimodal functional con-
nectivity profiles for each. Together, the VBM, rsFC, 
and MACM meta-analytic approaches have been used 
in previous clinically related meta-analyses [16, 37, 71], 
they provide complementary information, yielding a 
multimodal functional connectivity profile for a given 
region of interest. Lastly, we applied meta-analytic func-
tional decoding methods to identify the mental processes 
linked to this functional connectivity profile. Collectively, 
this work utilizes an innovative (meta-) analytic frame-
work to quantitatively assess structural alterations associ-
ated with PTSD and the extended functional profiles of 
regions implicated in this disorder. A more comprehen-
sive understanding of the neurobiological bases of PTSD 
is needed to delineate future pathways toward improved 
prevention, diagnosis, and treatment.

Methods
Analytic overview
We first conducted a literature search to identify studies 
reporting structural alterations comparing the following 
groups: individuals with PTSD, individuals who experi-
enced trauma but were not diagnosed with PTSD, and 
individuals who did not report experiencing trauma. A 
coordinate-based meta-analysis was performed using 
the ALE algorithm to identify convergent brain regions 
showing structural alterations associated with PTSD. We 
then used multiple connectivity modeling approaches to 
comprehensively characterize the functional connectiv-
ity of these convergent regions. Specifically, rsFC and 
MACM assessments were applied to identify the func-
tional profiles of structurally altered regions associated 
with PTSD. Lastly, we used functional decoding tech-
niques to identify behavioral profiles of the ALE, rsFC, 
and MACM results. An overview of our methodological 
approach is provided in Figure 1.

Literature search and study criteria
We conducted a comprehensive literature search to 
build a database of peer-reviewed MRI studies reporting 
structural alterations associated with PTSD from 2002 to 
2020. In the first round of identifying studies, we exam-
ined previously published voxel-based morphometry 
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meta-analysis papers on PTSD and compiled a list of 
included studies [7, 40, 44, 50, 55]. Next, we performed 
a PubMed search to identify additional peer-reviewed, 
structural MRI studies of interest using the search terms 
“morphometry + PTSD”. The PubMed search aimed to 
identify any potential studies that were not included in 
the previously published meta-analyses. We then con-
ducted a review of each identified publication to include 
the following study criteria: peer-reviewed MRI studies, 
reporting results among adult humans, written in the 
English language, focused on gray matter structural dif-
ferences, and included original data (i.e., not a review). 
Subsequently, exclusion criteria were as follows: trauma 
or stressful life event studies not measuring PTSD, other 
non-voxel-based morphometry methods, treatment and 
longitudinal effects, papers reporting a priori regions of 
interest (ROIs), within-group effects, null effects, over-
lapping samples to previous studies, and studies that did 
not report coordinate-based results.

Anatomical likelihood estimation (ALE)
ALE is a voxel-based meta-analytic technique that iden-
tifies convergent coordinates (i.e., foci) across a set of 
neuroimaging studies. Foci are treated as 3D Gaussian 

distributions to address variability within and between 
studies. We used the coordinate-based ALE method as 
implemented in NiMARE v.0.0.3 (Neuroimaging Meta-
Analysis Research Environment; [77], a Python library for 
neuroimaging meta-analysis. Reported coordinates were 
extracted from their original publication,coordinates 
originally reported in Talairach space converted to were 
MNI coordinates [45, 46] so that all coordinates referred 
to MNI space. Once transformed, statistical probability 
maps were created for each foci and combined to model 
the likelihood that a given voxel displayed a between-
group structural difference for each study. Observed 
voxel-wise ALE scores characterized the most consist-
ently reported foci across the whole brain. Significance 
testing and correction for multiple comparisons involved 
thresholding the voxel-wise ALE map using a cluster-
forming threshold of P < 0.001. Then, a permutation 
procedure was performed in which a null distribution of 
maximum cluster sizes was generated from 10,000 itera-
tions of replacing reported foci with randomly selected 
gray matter voxels, generating ALE maps from the ran-
domized dataset, and identifying the maximum clus-
ter size after thresholding at P < 0.001. The cluster-level 
FWE correction threshold was set at P < 0.05, meaning 

Fig. 1  Analysis Pipeline Overview. A We first conducted a literature search to extract structural coordinates and entered them into the ALE 
algorithm to identify convergent structural alterations among PTSD vs. non-PTSD groups. B We next created task-free and task-based functional 
connectivity profiles for the convergent structural alterations. C Last, we performed functional decoding analyses on these functional profiles to 
make inferences about which mental functions were associated with our findings
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only those clusters from the original, thresholded ALE 
map were retained if their size was greater than the clus-
ter size corresponding to the 95th-percentile from the 
null distribution. We applied the above ALE procedure 
to identify convergent brain regions reflecting structural 
alterations between individuals with and without PTSD 
(i.e., PTSD vs. non-PTSD) separately for the contrasts of 
PTSD > non-PTSD and non-PTSD > PTSD.

Functional profiles of structurally altered regions 
associated with PTSD
Next, we sought to characterize the functional connectiv-
ity patterns associated with regions demonstrating struc-
tural alterations in PTSD. To this end, we investigated 
task-free functional connectivity utilizing a database of 
resting state fMRI data, as well as task-based functional 
connectivity using a meta-analytic database of co-activa-
tion results.

Task‑free functional connectivity: resting‑state fMRI 
(rs‑fMRI)
Resting-state connectivity analyses typically identify 
brain voxels demonstrating the highest temporal cor-
relation with the average time series of a seed ROI and 
provide context about the brain’s underlying functional 
architecture. To derive robust rsFC maps for each ROI, 
we utilized the minimally pre-processed and denoised 
(or “cleaned”) resting-state fMRI data provided by the 
Human Connectome Project’s [90] Young Adult Study 
S1200 Data Release (March 1, 2017). On November 12, 
2019, 150 randomly selected participants (28.7 ± 3.9 
years) were downloaded via the HCP’s Amazon Web 
Services (AWS) Simple Storage Solution (S3) repository. 
The randomly chosen participants included 77 females 
(30.3 ± 3.5 years) and 73 males (27.1 ± 3.7 years). A dif-
ference in age between the two biological sex groups was 
significant but is consistent with the 1200 Subjects Data 
Release. Detailed acquisition and scanning parameters 
for HCP data can be found in consortium manuscripts 
[82, 89, 91], but relevant scan parameters are briefly sum-
marized here. Each participant underwent T1-weighted 
and T2-weighted structural acquisitions and four rest-
ing-state fMRI acquisitions. Structural images were col-
lected at 0.7-mm isotropic resolution. Whole-brain EPI 
acquisitions were acquired on the 3T Siemens Connec-
tome scanner: 32-channel head coil, TR = 720 msec, 
TE = 33.1 msec, in-plane FOV = 208 × 180 mm, 72 slices, 
2.0 mm isotropic voxels, and multiband acceleration fac-
tor of 8 [25].

The S1200 data release contained minimally pre-pro-
cessed and denoised data. The minimal pre-processing 

workflow is described by Glasser and colleagues [27], 
but consists of typical imaging pre-processing tech-
niques that leverage the high-quality data acquired 
by the HCP. First, T1- and T2-weighted images were 
aligned, bias field corrected, and registered to MNI 
space. Second, the functional fMRI pipeline removed 
spatial distortions, realigned volumes to compensate 
for subject motion, registered the fMRI data to struc-
tural volumes (in MNI space), reduced the bias field, 
normalized each functional acquisition to its corre-
sponding global mean, and masked non-brain tissue. 
Noteworthily, care was taken to minimize smooth-
ing induced by interpolation and that no overt volume 
smoothing was performed.

The fMRI signal contains many sources of variabil-
ity, including artifactual and non-neuronal signals, that 
make identifying the underlying neuronal activity dif-
ficult. Using a combination of independent compo-
nent analysis (ICA) and classification techniques, HCP 
functional data were automatically denoised using 
FMRIB’s ICA-based X-noiseifier [75]. Briefly, ICA was 
performed on each functional dataset independently 
and characteristics of each component, such as spatial 
localization and power in high frequencies, were evalu-
ated by a classifier to determine if a given component 
was related to neuronal activity or artifact. The time-
series corresponding to artifactual components were 
then regressed out of the data, providing a “cleaned”, 
denoised dataset for further investigation.

Using the minimally pre-processed, denoised rest-
ing-state datasets for each participant, the “global sig-
nal” was removed using FSL’s fsl_glm [36] interface in 
NiPype [29]. The “global signal”, although controversial 
in the domain of resting-state analyses, was removed 
under the premise that it performed better than other 
commonly used motion-correction strategies at remov-
ing motion-related artifacts in the HCP resting-state 
data [8]. The resulting data set was then smoothed with 
a FWHM kernel of 6-mm using FSL’s susaan interface 
in NyPipe. For each participant, the average time series 
for each ROI was extracted and a whole-brain correla-
tion map was calculated and averaged across runs for 
a single participant for every ROI. The average corre-
lation maps for each participant were transformed to 
Z-scores using Fisher’s r-to-z transformation. A group-
level analysis was then performed to derive a rsFC map 
for each ROI using FSL’s randomise interface [94] in 
NiPype. Images were thresholded non-parametrically 
using GRF-theory-based maximum height thresholding 
with a (voxel FWE-corrected) significance threshold of 
P < 0.001 [96], such that more spatially specific connec-
tivity maps could be derived when using such a highly 
powered study [95].



Page 5 of 16Pankey et al. Behavioral and Brain Functions            (2022) 18:9 	

Task‑based functional connectivity: meta‑analytic 
co‑activation modeling (MACM)
Leveraging reported coordinates from task-based fMRI 
studies, meta-analytic co-activation is a relatively new 
concept that identifies brain locations that are most likely 
to be co-activated with a given seed ROI across multiple 
task states. Differing from rsFC, MACM provides context 
about neural recruitment during goal-oriented behaviors. 
We therefore aimed to integrate these two complemen-
tary modalities by supplementing the rsFC maps with 
MACM maps for each ROI. To do so, we relied on the 
Neurosynth database [98], which archives published ste-
reotactic coordinates from over 14,000 fMRI studies and 
150,000 brain locations. Neurosynth relies on an auto-
mated coordinate extraction tool to “scrape” each avail-
able fMRI study for reported coordinates. Due to the 
nature of this automated process, fMRI studies reporting 
results of multiple experimental contrasts as separate sets 
of coordinates are amalgamated into a single set of coor-
dinates; in addition, “activation” and “de-activation” coor-
dinates are not distinctly characterized. However, while 
this inherent “noise” may limit interpretational abilities, 
the power over manually curated datasets outweighs the 
potential confounds of bi-directional or mixed-contrast 
effects.

To generate a MACM map for each ROI, we utilized 
NiMARE [77] to search the Neurosynth database for all 
studies reporting at least one peak within the defined 
ROI mask. Neurosynth tools implement the multilevel 
kernel density analysis (MKDA) algorithm for perform-
ing meta-analyses based on a subset of studies, such as 
that described here. However, we opted to use the ALE 
algorithm as implemented in NiMARE given its optimal 
performance in replicating image-based meta-and mega-
analyses [76]. The ALE algorithm requires sample size 
information, or the number of subjects, that contributed 
to a given experimental contrast to generate a smooth-
ing kernel. However, Neurosynth is not able to capture 
sample size (which could also vary across experimental 
contrasts within a study). Thus, we utilized a smoothing 
kernel with a FWHM of 15 mm, which has been shown 
to yield results with strong correspondence for image-
based meta- and mega-analyses [76]. The ALE algorithm 
was applied to the set of studies reporting activation 
within the boundaries of each ROI. Once ALE maps were 
generated for each ROI, as described above, voxel-FWE 
correction (P < 0.001) was performed to reflect the statis-
tical thresholding approach used for rsFC maps.

Functional decoding: generalized correspondence latent 
dirichlet allocation (GC‑LDA)
We sought to infer what mental processes were most 
likely linked with brain regions identified in our ALE, 

MACM, and rsFC analyses. To do so, we utilized gener-
alized correspondence latent Dirichlet allocation (GC-
LDA) functional decoding methods in NiMARE applied 
to the resulting unthresholded ALE, rsFC, and MACM 
maps. This type of decoding provides an approach to 
infer mental processes associated with neuroimaging 
spatial patterns. GC-LDA utilizes probabilistic Bayesian 
statistics that learns latent topics from a large database of 
papers (e.g., NeuroSynth) [74]. From the database, each 
topic found is treated as a probability distribution and 
creates a spatial distribution in MNI space across voxels 
from the maps entered into the decoding algorithm. The 
“topics” encompass terms and associated brain regions 
that co-occur in the literature from a literature database. 
We set our model to 200 topics. We report 10 terms cor-
responding to the highest weights associated with our 
ALE, rsFC, and MACM results.

Results
Literature search and study criteria
The literature search yielded a total of 85 articles using 
the above-described search terms. Figure  2 provides a 
PRISMA diagram, which details the review and filtering 
of those 85 studies. In the first round of review, records 
(i.e., titles and abstracts) were screened to exclude 18 
studies that corresponded to non-human or non-English 
studies, reviews, or studies reporting white matter dif-
ferences or differences among children or adolescents. 
Then, we examined the full-text articles to assess addi-
tional study criteria; 44 additional studies were excluded 
as being not eligible for the current meta-analysis.

The final set of included studies consisted of 23 
publications. Within these publications, gray mat-
ter structural alterations were assessed by compar-
ing whole-brain VBM results among individuals with 
and without PTSD, reported as 3D coordinates in 
MNI or Talairach space. Control comparison groups 
included individuals who had experienced trauma but 
did not develop PTSD and individuals who had not 
experienced trauma. Nineteen publications included 
trauma-exposed controls (TC), while ten publications 
included healthy, non-trauma-exposed controls (HC). 
Altogether, this set of 23 studies collectively examined 
476 individuals with PTSD and 892 individuals with-
out PTSD, which included 288 TC and 633 HC. With 
respect to the type of structural alterations observed, 
studies reported multiple different VBM metrics. Sev-
enteen publications reported group differences in gray 
matter volume (GMV), seven publications reported 
differences in gray matter density (GMD), and one 
reported gray matter concentration (GMC). Collec-
tively, we refer to all of these metrics as gray matter 
(GM) differences among individuals with and without 
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PTSD. Additional details on the demography of par-
ticipant groups and study design are provided in Addi-
tional file  1: Table  S1 located in this project’s GitHub 
repository (https://​github.​com/​NBCLab/​meta-​analy​
sis_​ptsd).

Within this final set of 23 publications, multiple con-
trasts of interest were reported. 25 contrasts reported 
GM decreases in PTSD vs non-PTSD for a total of 159 
foci; this included 16 contrasts for PTSD vs. TC (82 
foci) and 9 contrasts for PTSD vs. HC (77 foci). Con-
versely, 6 contrasts reported GM increases in PTSD vs. 

non-PTSD for a total of 20 foci, including 3 for PTSD 
(9 foci) vs. TC and 2 contrasts for PTSD vs. HC (9 foci).

Anatomical likelihood estimation (ALE)
Using NiMARE v.0.0.3 [77], ALE meta-analysis was 
performed to assess convergence for the 25 contrasts 
from 22 publications of GM decreases among individu-
als with and without PTSD (i.e., non-PTSD > PTSD); a 
complete listing is provided in Table  1. Neuroimaging 
simulations indicate that a minimum of 20 contrasts 
are necessary for a well-powered coordinate-based 

Fig. 2  PRISMA Diagram. PRISMA flow chart detailing the literature search and selection criteria of studies included in the meta-analysis

https://github.com/NBCLab/meta-analysis_ptsd
https://github.com/NBCLab/meta-analysis_ptsd
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meta-analysis [23]. Thus, we were unable to assess the 
6 contrasts of GM increases (i.e., PTSD > non-PTSD) 
given insufficient power. With respect to GM decreases, 
we observed a single cluster of convergence located 
in the mPFC (x=0, y=46, z=10; BA 32) (Figure 3; P < 
0.001, FWE-corrected P < 0.05). Given these results, we 
performed additional ALE meta-analyses for the PTSD 

vs. TC and PTSD vs. HC contrasts (i.e., GM increases 
and decreases) to determine if the use of different 
comparison groups potentially contributed additional 
heterogeneity, limiting assessment of convergence. 
However, we observed null results for these additional 
contrasts as well, likely in part due to the underpow-
ered samples [23].

Table 1  Studies Included in ALE Meta-Analysis

25 contrasts from 22 publications reported GM decreases among individuals with and without PTSD (i.e., non-PTSD > PTSD). Sample sizes are provided for the total 
number of participants (N) (i.e., PTSD and non-PTSD), as well as the sample sizes for the PTSD groups (n)

Citation Sample size Contrasts

1 [5] Total N = 38; PTSD n = 19 Healthy controls > PTSD

2 [10] Total N = 41; PTSD n = 21 Non-PTSD > PTSD

3 [11] Total N = 24; PTSD n = 12 Controls > PTSD

4 [12] Total N = 20; PTSD n = 10 Controls > recent onset PTSD

5 [13] Total N = 60; PTSD n = 30 Healthy controls > PTSD

6 [14] Total N = 28; PTSD n = 14 Healthy controls > PTSD

7 [19] Total N = 33; PTSD n = 20 Non-Trauma controls > PTSD

8 [26] Total N = 38; PTSD n = 21 Controls > PTSD

9 [31] Total N = 184; PTSD n = 14 Non-PTSD > PTSD; trauma exposed > PTSD

10 [34] Total N = 28; PTSD n = 13 Trauma exposed > PTSD

11 [38] Total N = 41; PTSD n = 18 Combat-exposed Non-PTSD > PTSD

12 [43] Total N = 53; PTSD n = 24 Controls > PTSD

13 [49] Total N = 24; PTSD n = 12 Controls > PTSD

14 [58] Total N = 43; PTSD n = 21 Non-PTSD > PTSD

15 [61] Total N = 75; PTSD n = 25 Healthy controls > PTSD; trauma exposed > PTSD

16 [66] Total N = 220; PTSD n = 57 Trauma exposed > PTSD

17 [72] Total N = 32; PTSD n = 16 Trauma exposed controls > PTSD

18 [84] Total N = 31; PTSD n = 11 Healthy controls > PTSD; trauma exposed > PTSD

19 [85] Total N = 50; PTSD n = 25 Healthy controls > PTSD

20 [97] Total N = 25; PTSD n = 9 Non-PTSD > PTSD

21 [101] Total N = 20; PTSD n = 10 Trauma-exposed > PTSD

22 [100] Total N = 39; PTSD n = 14 Non-PTSD > PTSD

Fig. 3  ALE Results for non-PTSD > PTSD. Sagittal brain slices illustrating convergent structural alterations associated with PTSD as determined by an 
ALE meta-analysis of GM reductions (P < 0.001, FWE-corrected P < 0.05)
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Functional profiles of structurally altered regions 
associated with PTSD
We next investigated the functional connectivity of 
the mPFC cluster identified above showing convergent 
gray matter reductions among individuals with PTSD. 
To this end, we analyzed task-free rsFC and task-based 
MACM. First, we generated a rsFC map using the ALE-
derived mPFC cluster as a seed region. The resultant 
rsFC map revealed rsFC with the superior frontal gyrus, 
medial frontal gyrus, inferior frontal gyrus, ACC, thal-
amus, posterior cingulate (PCC), superior temporal 
gyrus, medial temporal gyrus, precuneus, cuneus, and 

parahippocampus. Next, to further examine function-
ally coupled regions with the mPFC seed, we generated 
a MACM map using the Neurosynth database which 
demonstrated task-based coactivations with a simi-
lar pattern as the rsFC map. The locations of rsFC and 
MACM results are provided in Table 2. Figure 4 illus-
trates the rsFC (blue) and MACM (red) results, with 
overlapping regions, indicating a consensus between 
rsFC and MACM (pink), revealed in the ACC, medial 
prefrontal gyrus, middle temporal gyrus, insula, infe-
rior parietal lobe, thalamus, precuneus, parahippocam-
pus, insula, and PCC regions (Table3).

Table 2  rsFC and MACM Results

Coordinate locations of the rsFC and MACM results, including the anatomical label and MNI coordinates of local maxima. Negative x values indicate the left (L) 
hemisphere and positive x values indicate the right (R) hemisphere

rsFC results MACM results

Anatomical label x y z Anatomical label x y z

Anterior cingulate, BA 32 4 44 10 Medial frontal gyrus, BA 10 − 2 50 6

L Inferior frontal gyrus, BA 47 − 30 14 − 16 Superior frontal gyrus, BA 6 0 14 48

Cingulate gyrus, BA 24 2 − 18 36 Medial frontal gyrus, BA 8 2 26 38

Anterior cingulate, BA 32 0 36 − 6 Posterior cingulate, BA 31 − 4 − 54 26

Posterior cingulate, BA 31 8 − 52 24 L extra-nuclear, BA 47 − 34 20 − 2

Cingulate gyrus, BA 31 − 8 − 54 26 R extra-nuclear, BA 47 36 22 − 2

Midbrain 0 − 20 − 20 L angular gyrus, BA 39 − 46 − 68 30

Anterior cingulate, BA 24 4 28 16 L superior parietal lobule, BA 7 − 30 − 62 46

R Inferior frontal gyrus, BA 47 30 16 − 16 L inferior frontal gyrus, BA 9 − 46 10 28

Precuneus, BA 7 0 − 70 34 R superior temporal gyrus, BA 39 52 − 60 26

L caudate − 4 12 − 2 R inferior parietal lobule, BA 40 40 − 52 44

R angular gyrus, BA 39 52 − 64 36 L amygdala − 22 − 8 − 16

L inferior parietal lobule, BA 39 − 50 − 64 40 R amygdala 24 − 6 − 16

Posterior cingulate, BA 30 − 6 − 54 10 R inferior frontal gyrus, BA 9 46 10 28

L parahippocampal gyrus, BA 35 − 22 − 22 − 14 R caudate 12 10 2

L superior frontal gyrus, BA 8 − 22 34 46 L lentiform nucleus − 12 8 − 2

Cingulate gyrus, BA 31 − 4 − 32 38 L thalamus, medial dorsal nucleus − 6 − 14 6

R caudate 10 18 − 4 R thalamus, medial dorsal nucleus 6 − 14 6

L superior frontal gyrus, BA 9 − 20 48 34 L inferior parietal lobule, BA 40 − 42 − 44 44

Cerebellar tonsil 6 − 50 − 36 L inferior temporal gyrus, BA 21 − 56 − 10 − 16

Fig. 4  rsFC and MACM Results. rsFC (blue) and MACM (red) results; common areas (pink) indicate consensus between connectivity approaches. 
Images are thresholded at voxel-wise FWE P < 0.001
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Functional decoding: generalized correspondence latent 
dirichlet allocation (GC‑LDA)
Lastly, we performed functional decoding of the struc-
tural ALE, rsFC, and MACM maps to provide insight 
into the behavioral functions putatively associated with 
the observed functional connectivity patterns. Func-
tional decoding was conducted using a GC-LDA analysis 
[74]. Because GC-LDA does not provide correlational or 
statistical rankings, the top 10 unique terms computed 
from the GC-LDA analysis were taken into consideration 

separately for the structural ALE, rsFC, and MACM 
maps. The decoding terms with the top 10 weights from 
the GC-LDA analysis for the structural ALE map were: 
visual, emotional, memory, novel, reward, motor, self, 
faces, learning, and face (Table 4a). The decoding terms 
with the top 10 weights from the GC-LDA analysis for the 
rsFC map were: default, default mode network, intrinsic, 
scale, self, person, reward, bias, judgements, and contexts 
(Table  4b). Topographically speaking, the rsFC results 
resembled regions of combined default mode [30, 69] and 
salience networks [57, 78], and the functional decoding 
outcomes suggested that the rsFC results were associ-
ated with self-referential, intrinsic, and reward processes. 
Next, we examined MACM-based decoding results. The 
decoding terms with the top 10 weights from the GC-
LDA analysis for the MACM map were: visual, motor, 
emotional, memory, attention, auditory, reward, spatial, 
schizophrenia, and language (Table 4c). Topographically 
speaking, the MACM results also resembled regions of 
the default mode [30, 69] as well as the frontoparietal 
central executive network [17, 78], and the functional 
decoding outcomes suggested association with execu-
tive emotional and memory processes. A summary of the 
decoding analyses for all three sets of images is shown as 
a radar plot in Figure 5.

Discussion
The overall objective of this study was to investigate 
convergent alterations in brain structure among indi-
viduals with PTSD using emergent meta-analytic tech-
niques. Further, we sought to extend the literature and 
assess potential functional consequences associated 
with observed structural alterations in PTSD by applying 
complementary rsFC and MACM analytic techniques. 
The current meta-analysis of 23 VBM studies evaluating 

Table 3  Consensus between rsFC and MACM Results

Coordinate locations of the consensus between rsFC and MACM results, 
including the anatomical label and MNI coordinates of local maxima. Negative 
x values indicate the left (L) hemisphere and positive x values indicate the right 
(R) hemisphere

rsFC + MACM consensus

Anatomical label x y z

Medial frontal gyrus, BA 10 − 2 50 6

Medial frontal gyrus, BA 8 2 26 38

Posterior cingulate, BA 31 − 4 − 54 26

L angular gyrus, BA 39 − 46 − 68 30

R superior temporal gyrus, BA 39 52 − 60 26

L inferior frontal gyrus, BA 47 − 32 18 − 6

R inferior frontal gyrus, BA 47 38 20 − 8

L parahippocampal gyrus, BA 28 − 24 − 16 − 18

L lentiform nucleus, putamen − 12 10 − 4

R caudate 10 10 − 2

L thalamus, medial dorsal nucleus − 4 − 14 6

R thalamus, medial dorsal nucleus 6 − 14 8

L parahippocampal gyrus, BA 34 − 20 2 − 12

R hippocampus 26 − 14 − 20

L inferior temporal gyrus, BA 21 − 56 − 10 − 16

L parahippocampal gyrus, BA 28 − 16 − 4 − 14

Table 4  Functional Decoding Results. Functional decoding results for (a) ALE structural meta-analysis, (b) rsFC, and (c) MACM results 
as described by Neurosynth terms

Rankings display weighted terms listed from highest (1) to lowest (10)

(a) ALE (b) rsFC (c) MACM

Rank Term Weight Rank Term Weight Rank Term Weight

1 Visual 1.886 1 Default 11.234 1 Visual 5900.643

2 Emotional 0.919 2 Default mode network 9.225 2 Motor 3839.578

3 Memory 0.845 3 Intrinsic 7.494 3 Emotional 3665.765

4 Novel 0.616 4 Scale 6.236 4 Memory 3476.688

5 Reward 0.576 5 Self 5.081 5 Attention 2931.357

6 Motor 0.521 6 Person 4.977 6 Auditory 2267.840

7 Self 0.509 7 Reward 4.780 7 Reward 2107.441

8 Faces 0.472 8 Bias 4.568 8 Spatial 2072.742

9 Learning 0.467 9 Judgements 4.279 9 Schizophrenia 2070.157

10 Face 0.450 10 Contexts 4.271 10 Language 2057.731
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GM volume alterations among PTSD versus non-PTSD 
groups identified a single node of convergent gray mat-
ter loss in the mPFC. GC-LDA-based functional decod-
ing of this cluster was linked to Neurosynth terms of 
visual, emotional, memory, novel, reward, motor, self, 
faces, learning, and face. Follow-up ALE analyses explor-
ing GM reductions in PTSD vs. HC (non-traumatized 
controls) and PTSD vs. TC (trauma-exposed controls not 
diagnosed with PTSD) yielded null findings likely due to 
insufficient power [23]. Subsequent analyses of the ALE-
derived mPFC cluster were conducted to assess task-free 
(rsFC) and task-dependent (MACM) functional connec-
tivity, identifying a consistent and widespread functional 
network implicated in PTSD. These results indicate that 
structural alterations in the mPFC among individu-
als with PTSD are possibly linked to disruptions across 
a larger frontoparietal network that includes the medial, 
superior, and inferior frontal gyri, PCC, parahippocam-
pal gyri, angular gyri, superior temporal gyrus, thalamus, 
caudate, and lentiform nucleus. Functional decoding of 
rsFC and MACM results indicates substantive term over-
lap with the mPFC ALE results, with additional network-
related terms (e.g., default, default mode network, and 
intrinsic).

Structural alterations and dysfunction in PTSD
Our current findings suggest the mPFC appears as the 
most consistently reported brain region across VBM 
neuroimaging studies exploring the impact of PTSD on 

brain structure. Previous meta-analyses have identified 
GM reductions in the mPFC, hippocampus, fusiform 
gyrus, and lingual gyrus; however, not all of these regions 
were consistently observed across all meta-analyses [7, 
40, 44, 50, 55, 79]. Beyond the mPFC, we did not observe 
additional convergent GM reductions, indicating that 
prior findings in these other regions were not replicated. 
Across the PTSD literature, there is a high degree of 
variability associated with participant trauma exposure, 
length of diagnosis of PTSD, medication use, and comor-
bidity. Inconsistencies between our findings and previ-
ous meta-analytic results could be due to conceptual and 
methodological differences across the earlier studies, 
such as the scope of the research question exploring the 
neurobiology of PTSD, and the subsequent differences in 
inclusion/exclusion criteria that resulted in different sets 
of included studies. Comparison of the included studies 
in this and prior VBM meta-analyses of PTSD indicated 
varying degrees of overlap, including (from earliest to 
most recent meta-analyses): 7 of 9 included studies [44], 
14 of 17 included studies [50], 15 of 20 included studies 
[55], 7 of 13 included studies [7], 7 of 8 included studies 
[40], and 10 out of 12 included studies [79].

Beyond selection of included studies, the meta-ana-
lytic approach may contribute to the source of variabil-
ity across results. Previous meta-analyses used either the 
ALE approach [44, 50] or signed differential mapping 
[7, 40, 55, 79]. Consistent with the present results, the 
meta-analyses by Meng et al. [55] and Klaming et al. [40] 
also yielded a single cluster in mPFC, which used the 
SDM method while our current results used the ALE 
approach. However, of all prior meta-analyses, only the 
study by Meng et al. [55] meets the current threshold of a 
minimum of 20 contrasts for a well-powered coordinate-
based meta-analysis [23]. After reviewing the above prior 
meta-analytic work in comparison to our current results, 
we conclude that extensive heterogeneity in the PTSD 
literature, combined with varying meta-analytic inclu-
sive/exclusion criteria, likely contributed to differences 
between our results and prior meta-analytic findings. To 
our knowledge, the current meta-analysis of 25 contrasts 
represents the largest PTSD meta-analysis of structural 
findings to date, with prior meta-analytic work examin-
ing 8-20 included studies. We observed that the mPFC is 
robustly associated with structural alterations in PTSD; 
however, it is important to consider how the mPFC is 
integrated within existing neurocircuitry models associ-
ated with PTSD symptomology.

Traditional neurocircuitry models of PTSD utilize a 
fear-conditioning framework, emphasizing hyperreactiv-
ity of the amygdala in response to fear-related stimuli and 
dysfunction between the mPFC and orbitofrontal cortex, 
as well as the hippocampus, in attention and top-down 

Fig. 5  Functional Decoding Results. Functional decoding results for 
the ALE structural meta-analysis (pink), rsFC (blue), and MACM (red) 
results as described by Neurosynth terms. Radar plots display the top 
five terms across all three decoding analyses. The scale of the weights 
depends on both the GC-LDA model weights and the input values 
[74], thus, the scale is arbitrary and has been normalized here to 
facilitate visualization
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control during threat exposure [70, 81]. However, limit-
ing consideration of the psychopathology of PTSD to 
focus on a single brain region (i.e., the amygdala) empha-
sizes fear-related brain activity while minimizing brain 
circuitry implicated in the complex constellation of PTSD 
symptoms associated with response to trauma exposure, 
such as re-experiencing trauma, avoidance, negative 
mood, and numbing. These additional processes remain 
largely unexplained in original PTSD models. However, 
more recent neurocircuitry models build from this per-
spective, with increased emphasis on altered function of 
the mPFC, its role in contextualization, and how context 
processing is core to the constellation of PTSD symptoms 
[51, 52]. While our results indicated convergent struc-
tural alterations in the mPFC, we did not observe similar 
convergence in the amygdala or other regions that have 
been implicated in prior neurocircuitry models of PTSD 
[32, 42, 70, 81]. However, our results are congruent with 
the expanded models of PTSD and we provide robust 
evidence in support of the mPFC as a critical node in 
PTSD neurocircuitry. Further, our functional decoding 
results provide additional support for the contextualiza-
tion models of PTSD. Taken together, reduced GM in the 
mPFC among individuals diagnosed with PTSD supports 
the premise that these structural alterations may contrib-
ute to deficits in context processing and ultimately play a 
dominant role in contributing to behaviors related to the 
constellation of symptoms in PTSD [51, 52].

Functional profiles of structural findings in PTSD: support 
for the tripartite model of psychopathology
rsFC and MACM analyses characterized mPFC func-
tional connectivity as extending across widespread, 
whole-brain networks engaging frontoparietal and limbic 
regions. These rsFC and MACM results, in conjunction 
with functional decoding outcomes, identified a func-
tional connectivity profile suggestive of spatial patterns 
associated with the default mode network (DMN) [30, 
69], salience mode network (SN) [57, 78], and central 
executive network (CEN) [17, 78]. The DMN is a system 
of connected brain areas including the mPFC, PCC, infe-
rior parietal, and temporal cortices that are often collec-
tively observed as displaying anticorrelation with regions 
actively engaged during attention-demanding tasks. 
Areas of the DMN are thought to collectively contribute 
to mental processes associated with introspection and 
self-referential thought [30, 53, 93]. The SN consists of 
the dorsolateral ACC and bilateral insula and is involved 
in saliency detection and attentional processes [57, 78]. 
Finally, the CEN consists of the dorsolateral prefrontal 
and posterior parietal cortices and is typically involved in 
attentionally driven cognitive functions, including goal-
directed behavior [87]. These three networks are central 

to a neurobiological theory of psychopathology [28, 56, 
57]. The application of the tripartite model to neurobiol-
ogy models of psychiatric disorders define dysfunction 
within and between connectivity of the DMN, SN, and 
CEN networks and relates to a broad range psychiatric 
disorders [80], including PTSD [60, 63]. Overall, the cur-
rent meta-analysis identified a functional profile of the 
mPFC associated with connectivity between the DMN, 
SN, and CEN, which broadly supports a network theory 
of PTSD [2, 41].

According to the tripartite model of brain function, the 
SN is thought to mediate activity between the DMN and 
CEN networks in order to orient to external stimuli or 
internal salient biological stimuli [57], Sripada et al. [41]. 
Altered inter- and intra-network functional connectiv-
ity between the DMN, SN, and CEN has previously been 
implicated in PTSD [41]. Specifically, seed-based rest-
ing state studies identified decreased connectivity within 
the DMN and SN, yet increased connectivity between 
these two networks among PTSD patients (Sripada et al. 
[89]). Furthermore, other resting state studies on PTSD 
utilizing graph theory approaches [48] and independ-
ent component analysis [102] replicated weakened con-
nectivity within the DMN, SN, and CEN, yet heightened 
connectivity between the DMN and SN [35, 89]. Taken 
together, this literature suggests deficits in top-down 
control over heightened responses to threatening stim-
uli and abnormal regulation of orienting attention to 
threatening stimuli [41, 48, 84, 89, 102]. Patterns from 
task-based studies reflect previous findings of weakened 
connectivity between the SN and DMN and heightened 
connectivity between the SN and CEN [64, 87]. In a study 
among individuals with recent trauma exposure, connec-
tivity between the DMN, SN, and CEN was reported to 
be disrupted among participants who developed PTSD 
vs. those who do not [54, 68], providing evidence of dif-
ferential functional connectivity between PTSD patients 
and traumatized non-diagnosed individuals. Network 
dysfunction associated with the DMN, SN, and CEN is 
also evident in task-based studies, including cues con-
taining trauma stimuli [69], eye gaze [87], and a broad 
range of behavioral paradigms [64]. Aberrant connectiv-
ity between and within the DMN, SN, and CEN has also 
been associated with PTSD symptoms, such that height-
ened connectivity and activity of the DMN was associated 
with depersonalization/derealization, while weakened 
connectivity and activity of the CEN was associated with 
hyperarousal and hypervigilance [2]. Additionally, weak-
ened inter-network connectivity between the SN and 
DMN has been found to be positively correlated with 
Clinician Administered PTSD Scale (CAPS) scores that 
measure PTSD symptom severity [84, 89]. Moreover, 
Bluhm et al. [4] found weakened spontaneous activity in 
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regions of the DMN; in addition, posterior cingulate con-
nectivity was positively correlated with self-reported dis-
sociated experiences among participants with PTSD. In 
sum, the literature on abnormal brain function associated 
with PTSD points to a pattern of results suggesting that 
symptoms are related to aberrant connectivity within and 
between the DMN, SN, and CEN. In a recent review of 
the neuroimaging literature on PTSD, Lanius et  al. [47] 
summarized this work to reflect that dysfunction in the 
DMN is associated with an altered sense of self, dysfunc-
tion in the SN is associated with hyperarousal and hyper-
vigilance, and dysfunction in the CEN is associated with 
cognitive dysfunction, including memory and cognitive 
control deficits.

The results from the current meta-analysis provide 
a robust mPFC-centric model of PTSD that is aligned 
with the extant literature and compliments the tripartite 
model of psychopathology. The mPFC, a core region of 
the DMN [30, 69], is often disrupted in individuals with 
PTSD [15, 68]. The results of the present meta-analysis 
suggest alterations in mPFC structure, and related func-
tion, may play a crucial role in the underlying neurobi-
ology of PTSD. Dysfunction of the mPFC is thought to 
be associated with poorer regulation of contextualization 
of PTSD symptoms. Prior literature indicates weakened 
integration of the DMN and disrupted inter-network 
connectivity with the SN and CEN, representing aberrant 
dysfunction of these tripartite networks in the psychopa-
thology of PTSD [73]. Most of the prior functional and 
structural work involved varying analytic approaches, 
examined heterogeneous populations, and utilized region 
of interest approaches or a priori hypotheses. The cur-
rent application of advanced meta-analytic techniques 
allowed for a whole-brain assessment of structural altera-
tions associated with PTSD and the associated functional 
profiles of the mPFC. Future work in PTSD should con-
sider integrating network-based analytic approaches 
with an mPFC-centric tripartite model to investigate 
differences in neuropathology of PTSD subtypes (e.g., 
trauma experiences, duration of exposures), characteriz-
ing heterogeneous presentations of PTSD symptoms, and 
potential predispositional developmental effects among 
youth, adolescent, and adult populations.

Limitations
Our study is limited by several considerations. First, the 
present meta-analysis is limited by the small number 
of studies included. The studies that met the standards 
of inclusion for this study were considered to reduce 
instances of variance and consider reliability of study 
findings (inclusion and exclusion criteria are shown in 
Fig.  2). By considering the inclusion of trauma-exposed 
controls, healthy controls, and individuals with PTSD, 

the number of participants across each group was some-
what unevenly distributed due to small sample sizes in 
the original studies. However, the current meta-analysis 
met the previously recommended standard of at least 
20 experimental contrasts required to conduct a well-
powered meta-analysis [23]. Second, much heterogeneity 
exists across the studies included in our meta-analysis. 
For example, many of the studies had diagnostic criteria 
for PTSD using different clinical measures and reported 
different instances of the duration of PTSD (e.g., lifetime 
vs. first onset). Substantial variability was also present in 
the type of trauma and duration of exposure to trauma 
within the different groups for this study. Given these 
issues, we were unable to classify PTSD subtypes across 
the included studies and thus have reported results that 
relate to generalized PTSD. Many of the original stud-
ies were not able to clearly disentangle comorbidity of 
PTSD with other psychiatric disorders (e.g., depression, 
anxiety) or report instances of medication and drug 
abuse. Furthermore, studies relied on various neuro-
imaging acquisition and analysis methods, which likely 
introduced additional variability associated with meth-
odological flexibility [6, 9]. However, the goal of neuro-
imaging meta-analysis was to examine consensus despite 
such variability in the literature. With this in mind, we 
are confident that the mPFC is a significant brain region 
linked to GM reductions in PTSD, as well as a robust 
node of the DMN that plays an important role in toggling 
between the DMN, SN, and CEN. Future transdiagnostic 
and meta-analytic work is needed to identify similar and 
unique neurobiological mechanisms of PTSD in compar-
ison to other related disorders, including complementary 
disease-decoding or structural covariance analysis, which 
would further advance clinical insight.

Conclusions
The present study utilized coordinate-based meta-ana-
lytic techniques to determine that reduced mPFC GM is 
consistently found among individuals with PTSD. Com-
plementary analyses of rsFC and MACM functional 
connectivity provided novel insight into how structural 
alterations may have potential functional consequences. 
Our results indicated that decreases in mPFC GM may 
be linked to widespread functional systems that are 
implicated in behavioral deficits and cluster symptoma-
tology of PTSD. Specifically, consensus-based func-
tional profiles, across task-free and task-based domains, 
emphasized brain regions associated with the tripartite 
model of psychiatric disorders where inter- and intra-
network connectivity involving the DMN, SN, and CEN 
are core to PTSD dysfunction. Overall, these results may 
be important in providing a more comprehensive under-
standing of the neurobiological bases of PTSD, which is 



Page 13 of 16Pankey et al. Behavioral and Brain Functions            (2022) 18:9 	

needed to understand the varying diagnosis, symptoma-
tology, and treatment of PTSD, as well as enhanced tar-
geting of treatment towards heterogeneous classification 
and symptom clusters of PTSD.
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