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neuroinflammation and neuropsychiatric 
manifestations in pristane induced lupus mice
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Abstract 

Background Neuroinflammation has been identified as one of the primary pathogenic factors of neuropsychiatric 
systemic lupus erythematosus (NPSLE). However, there are no dedicated treatments available in clinics to alleviate 
neuroinflammation in NPSLE. It has been proposed that stimulating basal forebrain (BF) cholinergic neurons may 
provide potent anti-inflammatory effects in several inflammatory diseases, but its potential role in NPSLE remains 
unexplored. This study aims to investigate whether and how stimulating BF cholinergic neurons has a protective 
effect on NPSLE.

Results Optogenetic stimulation of BF cholinergic neurons significantly ameliorated olfactory dysfunction and anxi-
ety- and depression-like phenotype in pristane induced lupus (PIL) mice. The increased expression of adhesion mol-
ecules (P-selectin and vascular cell adhesion molecule-1 (VCAM-1)), leukocyte recruitment, blood-brain barrier (BBB) 
leakage were significantly decreased. Notably, the brain histopathological changes, including the elevated levels of 
pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), IgG deposition in the choroid plexus and lateral ventricle wall and 
lipofuscin accumulation in the cortical and hippocampal neurons, were also significantly attenuated. Furthermore, we 
confirmed the colocalization between the BF cholinergic projections and the cerebral vessels, and the expression of 
α7-nicotinic acetylcholine receptor (α7nAChR) on the cerebral vessels.

Conclusion Our data indicate that stimulation of BF cholinergic neurons could play a neuroprotective role in the 
brain through its cholinergic anti-inflammatory effects on cerebral vessels. Therefore, this may be a promising preven-
tive target for NPSLE.

Keywords Basal forebrain, Cholinergic anti-inflammatory effect, Neuroinflammation, Neuropsychiatric lupus, 
Behavioral deficits, Optogenetics, α7nAChR

Background
Systemic lupus erythematosus (SLE) is a chronic auto-
immune disease characterized by the loss of immune 
tolerance to self-antigens, resulting in inflammation 
and severe end-organ damage. As one of the most 
potentially fatal manifestations of SLE, neuropsychiat-
ric SLE (NPSLE) is a series of neuropsychiatric symp-
toms, manifesting as anxiety, depression, sociability 
deficits, cognitive impairment and seizures. As for the 
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pathogenesis of NPSLE, it is generally believed that 
numerous inflammatory mediators from the periph-
eral circulation can disrupt the blood-brain barrier 
(BBB) and promote an inflammatory process in the 
central nervous system (CNS) causing glial activation, 
neuronal dysfunction and behavioral deficits [1, 2]. 
Therefore, targeting neuroinflammation may be a viable 
approach for improving the outcomes of NPSLE.

To date, the existing clinical drugs, such as corticos-
teroids and biologics, have not been demonstrated to 
have specific therapeutic effects for NPSLE patients. 
Glucocorticoid therapy provides immunosuppression, 
but comes with several adverse side effects like hyper-
lipidemia, hypertension, accelerated circulatory system 
diseases, diabetes, heightened susceptibility to infec-
tion and osteoporosis [3]. Additionally, psychiatric 
disorders can also be a consequence of corticosteroid 
administration in SLE patients [4]. The biologics, which 
typically target a single cytokine, have not been shown 
effectively in clinical trials, possibly due to the involve-
ment of multiple immune cells and cytokines in the 
pathogenesis of NPSLE [5]. Thus, exploring new inter-
vention strategies is essential.

The cholinergic system mainly originates from groups 
of cholinergic neurons within the basal forebrain (BF), 
that constitutes a major neuromodulatory system [6, 7]. 
Studies have demonstrated the significance of cholin-
ergic anti-inflammatory mechanism in the regulation 
of pro-inflammatory mediators in sepsis, rheumatoid 
arthritis, multiple sclerosis and SLE[6, 8–10]. It has 
been noted that the dysfunction of the cholinergic anti-
inflammatory system exists in SLE [11] and stimulation 
of cholinergic signals ultimately results in a decreased 
release of pro-inflammatory cytokines, consequently 
controlling inflammation and protecting against tissue 
injury [10, 12]. Thus, promptly and precisely regulating 
BF cholinergic neurons may be pivotal to strategies for 
combating NPSLE.

The optogenetic technique, which controls neural 
activities through light stimulation, has been proven to be 
a valuable approach for investigating the mechanisms and 
therapeutic targets of neuropsychiatric diseases [13]. The 
pristane induced lupus (PIL) mouse model, despite its 
primary focus on replicating peripheral manifestations of 
SLE, has demonstrated some neurological and behavioral 
abnormalities resembling NPSLE [14]. Studies utilizing 
PIL mice have provided evidence of neuroinflammation 
in the CNS including overproduction of cytokines and 
chemokines, downregulation of hippocampal N-methyl-
D-aspartate (NMDA) receptor subunits NR2A/2B, BBB 
leakage, immunoglobulin G (IgG) deposition, activa-
tion of glial cells (such as microglia and astrocytes) and 
lipofuscin accumulation within the brain [15–17]. Thus, 
the PIL mice are considered a valuable tool for studying 
NPSLE. Here, we aim to investigate whether optogeneti-
cally stimulating BF cholinergic neurons can potentially 
contribute to preventing neuroinflammation and sub-
sequent brain pathology and behavioral deficits in PIL 
mice  (Fig.  1). Our findings highlight that stimulation of 
BF cholinergic neurons exerts anti-inflammatory and 
neuroprotective effects on NPSLE, making it a potential 
intervention strategy for NPSLE in clinical settings.

Results
Optogenetic stimulation of BF cholinergic neurons 
ameliorated olfactory dysfunction and anxiety‑ and 
depression‑like behaviors in PIL mice
To test the effect of optogenetic stimulation of BF cholin-
ergic neurons on behavioral deficits, a series of behavio-
ral tests were conducted in all tested groups. As shown 
in Fig.  2A, PIL mice spent less time sniffing male and 
female fecal odors (preferred odors) than controls in the 
olfactory sensitivity test. Following optogenetic stimula-
tion of BF cholinergic neurons, the exploration time of 
the preferred odors in PIL mice improved significantly 
(Fig. 2A). Although not statistically significant, PIL mice 
spent a longer time sniffing vinegar and alcohol (aversive 

Fig. 1 Experimental schedule

Mice received microinjection of viruses and surgical implantation of optical fibers in the BF. Pristane or PBS was administered to mice via 
intraperitoneal injection. Optogenetic stimulation of BF cholinergic neurons was applied to mice for 4 months. Following a series of behavioral tests 
and intravital microscopy, mice were sacrificed and brain tissues were collected for further assays
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odors) compared to controls, and stimulation of BF 
showed a decreasing trend in the time spent on the aver-
sive odors (Fig. 2A). The elevated zero maze test showed 
that PIL mice traversed significantly shorter total track 
distances and spent lower percentages of time in open 
arms than control mice, and stimulation of BF markedly 
reversed the anxiety-like behavior (Fig. 2B). Additionally, 
PIL mice exhibited longer immobility time than controls 
in the forced swim test, and stimulation of BF showed a 
remarkable reduction in immobility time (Fig. 2C). Col-
lectively, these results indicate that stimulation of BF 
cholinergic neurons alleviated behavioral deficits in PIL 
mice, including olfactory dysfunction and anxiety- and 
depression-like behaviors.

Optogenetic stimulation of BF cholinergic neurons 
attenuated endothelium activation, leukocyte recruitment 
and BBB leakage in PIL mice
Cerebral endothelium activation, characterized by 
increased adhesion molecule expression, is essential 
for circulating leukocyte recruitment and BBB impair-
ment during neuroinflammation. To test the effect of 
optogenetic stimulation of BF cholinergic neurons on 
endothelium activation, we assessed P-selectin and 
vascular cell adhesion molecule-1 (VCAM-1) expres-
sion by immunofluorescence staining. As illustrated in 
Fig. 3A–D, compared to control mice with little expres-
sion of P-selectin and VCAM-1 in the cerebral vessels, 

PIL mice presented a significant elevation of these mark-
ers. Optogenetic stimulation of BF cholinergic neurons 
markedly decreased the elevated expression of P-selectin 
and VCAM-1 (Fig.  3A–D). We then utilized intravital 
microscopy to directly visualize leukocyte-endothelial 
cell interaction in cerebral vessels. Few rolling and adher-
ent leukocytes were detected in control mice, while PIL 
mice had a considerable number of such cells (Fig.  3E). 
Stimulation of BF showed a significant reduction in leu-
kocyte rolling and adhesion, which was concurrent with 
the alteration in adhesion molecule expression (Fig. 3A–
E). Furthermore, significant BBB leakage was observed, 
as indicated by an increase in Evans blue content in 
brain tissues of PIL mice, but not in controls (Fig.  3F). 
After stimulation of BF, the extravasation of Evans blue 
decreased markedly (Fig. 3F).

Optogenetic stimulation of BF cholinergic neurons 
decreased cytokine expression, IgG deposition 
and lipofuscin accumulation in the brain of PIL mice
To evaluate the effect of optogenetic stimulation of 
BF cholinergic neurons on brain pathophysiological 
changes, we examined cytokine expression, IgG deposi-
tion and lipofuscin accumulation in the brain by ELISA 
and immunofluorescence staining. Consistent with our 
previous results [15], PIL mice presented significantly 
increased expression of brain cytokines, including 
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 

Fig. 2 Effects of optogenetic stimulation of BF cholinergic neurons on behavioral deficits in PIL mice A Olfactory sensitivity test. Quantitative 
analysis of total time spent sniffing male feces, female feces, vinegar or alcohol. B Elevated zero maze test. Left panel showing representative track 
plots of the path. Right panel showing quantitative analysis of total track distance and percentage of time spent in the open arms (%). C Forced 
swim test. Quantitative analysis of immobility time. The data are expressed as the mean ± SEM (n = 12 in each group). One-way ANOVA followed by 
Tukey’s post hoc test: ## p < 0.01 compared to the control group, * p < 0.05 or ** p < 0.01 compared to the PIL group
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IL-1β and IL-10 (Fig.  4A). Optogenetic stimulation 
of BF cholinergic neurons markedly suppressed the 
elevated expression of TNF-α, IL-6 and IL-1β, but not 
IL-10 (Fig.  4A). Through immunofluorescence stain-
ing, we observed a pronounced increase in IgG deposi-
tion in the choroid plexus and lateral ventricular wall 
of PIL mice compared to controls, and stimulation of 
BF dramatically rescued the heightened IgG deposition 
(Fig.  4B–E). Additionally, there was a notable rise in 
lipofuscin accumulation in the cortex and hippocampus 
of PIL mice compared to controls (Fig. 4F–I). Following 
stimulation of BF, lipofuscin accumulation decreased 
drastically (Fig. 4F–I). Thus, these results indicate that 
optogenetic stimulation of BF cholinergic neurons sig-
nificantly alleviated inflammatory responses and tissue 
injuries in the brain of PIL mice.

BF cholinergic projections colocalized with cerebral vessels 
and cerebral vessels expressed α7‑nicotinic acetylcholine 
receptor (α7nAChR)
To clarify the functional connection between BF cho-
linergic neurons and central inflammatory responses, 
central cholinergic circuits were investigated by immu-
nofluorescence staining. Consistent with precious 
reports [18], we confirmed that some cholinergic projec-
tions colocalized with cerebral vessels, indicating that BF 
cholinergic neurons could modulate the function of cer-
ebral vessels via cholinergic projections (Fig.  5A). Since 
α7nAChR has been reported to mediate the anti-inflam-
matory effects of cholinergic stimulation both in  vitro 
and vivo [19], we evaluated whether α7nAChR was 
expressed on the cerebral vessels. Using immunofluores-
cence staining, we verified the expression of α7nAChR on 
the vessels in the cerebral cortex (Fig. 5B). No statistically 

Fig. 3 Effects of optogenetic stimulation of BF cholinergic neurons on endothelium activation, leukocyte recruitment and BBB leakage in PIL mice 
(A) and (C) Representative images of P-selectin and VCAM-1 expression. (B) and (D) Quantitative analysis of P-selectin and VCAM-1 expression by 
MFI and normalized to the control group. (E) Representative images and quantitative analysis of leukocyte rolling and adhesion. (F) Quantitative 
analysis of Evans blue dye extravasation. The data are expressed as the mean ± SEM (n = 12 in each group). One-way ANOVA followed by Tukey’s post 
hoc test: ## p < 0.01 compared to the control group, * p < 0.05 or ** p < 0.01 compared to the PIL group
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significant differences were found in the expression of 
α7nAChR among all sampled groups (Fig.  5B). These 
results indicate that BF cholinergic neurons project to the 
cerebral vessels, which could provide a neuroanatomical 
basis for the anti-inflammatory effect of cholinergic sig-
nals on the cerebral vessels via α7nAChR.

Discussion
The optogenetic technique utilizes light to control the 
activity of neurons which have been modified to express 
light-sensitive proteins, thus avoiding the nonspe-
cific effects of electrical stimulation or pharmacologic 

manipulation [20]. Even without direct clinical use of 
optogenetics, optical control of neurons in animal models 
of human diseases enables a far more precise exploration 
of the pathogenesis and helps to address some clini-
cally relevant problems. For example, first, via optoge-
netic intervention in mouse models of epilepsy, granule 
cells in the brain’s dentate gyrus were found to be impli-
cated in the induction of seizures [21], and manipulation 
of neurons in regions distal to the seizure focus could 
serve as seizure-propagation “chokepoints” [22]. Second, 
optogenetic stimulation of cortical interneurons induced 
gamma oscillations, which are critical in attention and 

Fig. 4 Effects of optogenetic stimulation of BF cholinergic neurons on cytokine expression, IgG deposition and lipofuscin accumulation in the brain 
of PIL mice A Quantitative analysis of the levels of brain cytokines (TNF-α, IL-6, IL-1β and IL-10). B and C Representative images of IgG deposition in 
the choroid plexus and lateral ventricular wall (green). DAPI staining for nuclei (blue). D and E Quantitative analysis of IgG deposition in the choroid 
plexus and lateral ventricular wall by MFI and normalized to the control group. F and G Representative images of autofluorescent lipofuscin at 
480 nm exciting light (green) in the cortex and hippocampus. DAPI staining for nuclei (blue). H and I Quantification analysis of lipofuscin foci in the 
cortex and hippocampus and normalized to the control group. The data are expressed as the mean ± SEM (n = 12 in each group). One-way ANOVA 
followed by Tukey’s post hoc test: ## p < 0.01 compared to the control group, * p < 0.05 or ** p < 0.01 compared to the PIL group
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focusing, may provide the foundation for treatments 
of attention deficit hyperactivity disorder [23]. Third, 
optogenetic manipulation of phasic, but not tonic, fir-
ing in ventral tegmental area dopamine neurons of mice 
rapidly induced a depressive phenotype as measured by 
social avoidance and decreased sucrose preferenc [24]. 
Thus, optogenetic stimulation of BF cholinergic neurons 
in this study has potential clinical implications through 
revealing the pathogenesis of NPSLE and providing a 
new preventive target for NPSLE.

Interactions between the nervous and immune sys-
tems are central to the field of neuroimmunology. A 
major catalyst for growth in this field was the discovery 
that cholinergic signaling regulates immune functions 
and inflammatory responses [25]. The cholinergic sys-
tem, through releasing acetylcholine (ACh), dominates 
systemic inflammation and inhibits pro-inflammatory 
cytokines production, depending on the α7nAChR [6]. 
The cholinergic anti-inflammatory mechanism is also 
under intensive investigations for autoimmune arthritis 
and SLE. Administration of α7nAChR agonists reduced 
clinical and pathologic signs of collagen-induced arthri-
tis, and lowered serum levels of pro-inflammatory 
cytokines (i.e., TNF-α and IL-6) [26]. The severity of 
arthritis was exacerbated by deletion of α7nAChR [27]. 
Activation of the cholinergic anti-inflammatory sys-
tem, either pharmacologically at the level of cholinergic 
receptors or upstream at the level of the vagus nerve, 
can protect the kidney by dampening inflammation and 
prevent the progression of hypertension in the setting of 
SLE [10–12, 28]. Additionally, recent findings have also 
characterized a role for central cholinergic signaling in 
controlling the immune responses and inflammation in 

the CNS [7]. The central cholinergic signaling mainly 
originates from the cholinergic neurons within the BF 
and that densely innervate the majority of cerebral ves-
sels [29]. By immunofluorescence staining, we confirmed 
that the cholinergic projections from BF cholinergic neu-
rons co-localized with the cerebral vessels (immunoreac-
tive for lectin), providing the neuroanatomical basis for 
the regulatory role of cholinergic signals on the cerebral 
vessels (Fig. 5A). This result is consent with previous evi-
dence showing the expression of α7nAChR by vascular 
endothelial cells [30–33]. Several in vitro studies reported 
that ACh and cholinergic agonists exert direct inhibi-
tory effects on TNF-α-induced endothelial cell activa-
tion by blocking extracellular signal regulated kinase 1/2 
(ERK1/2) and c-Jun N-terminal kinase (JNK) or nuclear 
factor-κB (NF-κB) signaling pathways via α7nAChR [19, 
34]. In this report, we also confirmed the expression of 
α7nAChR on the cerebral vessels (Fig. 5B). Thus, optoge-
netic stimulation of BF cholinergic neurons may exert 
the anti-inflammatory effects on the cerebral vessels via 
α7nAChR.

The endothelium of cerebral vessels plays a pivotal 
role in maintaining BBB integrity and brain homeo-
stasis. Exposure of endothelial cells to inflammatory 
stimuli activates intracellular signaling pathways result-
ing in the formation of multiple adhesion molecules, 
such as P-selectin and VCAM-1, and additional pro-
inflammatory mediators [35]. These adhesion molecules 
facilitate the recruitment of circulating leukocytes and 
eventually lead to BBB leakage [30]. In this study, we 
found that optogenetic stimulation of BF cholinergic 
neurons decreased P-selectin and VCAM-1 elevation, 
leukocyte rolling and adhesion, and BBB leakage in PIL 

Fig. 5 Examination for the relationship between BF cholinergic projection and cerebral vessels, and α7nAChR expression on cerebral vessels 
A Representative images of BF cholinergic projection (red) and lectin immunoreactive cerebral vessels (green). White arrow showing the 
co-localization between cholinergic projection (red) and cerebral vessels (green). B Representative images and quantitative analysis of α7nAChR 
expression in the cerebral cortex and normalized to the control group. The data are expressed as the mean ± SEM (n= 12 in each group). One-way 
ANOVA followed by Tukey’s post hoc test
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mice (Fig. 3). These ameliorations may be attributable to 
the anti-inflammatory effect of the cholinergic signals 
which inhibits the activation of endothelial cells, and 
subsequently decreases leukocyte recruitment and BBB 
impairment.

Another important finding of our study was the 
downregulated expression of elevated brain cytokines, 
decreased IgG deposition in the choroid plexus and 
lateral ventricle wall, and reduced lipofuscin deposits 
within neurons in the cortex and hippocampus in PIL 
mice (Fig. 4). The reduction of cytokines may be related 
to the lessened cytokine entries from peripheral circula-
tion due to the improved BBB leakage, and the reduced 
local cytokine production following a decreased invasion 
of inflammatory stimulators. IgG deposition has been 
observed in the hippocampus of PIL mice [17], which 
may result from the impairments of BBB, blood-ventricu-
lar barrier and choroid plexus-vascular barrier [15]. Thus, 
the reduction of IgG deposition in the choroid plexus and 
lateral ventricular wall may be attributed to the improved 
vascular barrier function by BF stimulation. Lipofuscin, a 
product of metabolic imbalance of lipids and metals gen-
erally caused by neural oxidative stress, increases with 
age and pathological processes in CNS [36]. It has been 
suggested that lipofuscin participates in the pathogen-
esis of NPSLE in lupus-prone mice with depression [15, 
37]. The decrease of lipofuscin deposits may be related to 
the downregulated expression of brain cytokines, which 
can induce a reduction in the synthesis of oxidative stress 
products within neurons. Stimulation of BF may decrease 
the cytokine-induced synthesis of oxidative stress prod-
ucts, consequently attenuating the generation and accu-
mulation of lipofuscin.

Olfactory dysfunction, characterized by a decreased 
response to an olfactory stimulus, has been found in ani-
mal models of NPSLE such as anti-ribsomal P-injected 
mice, MRL/lpr mice and PIL mice [15, 38, 39]. Human 
patients with NPSLE were also reported to have a higher 
probability of olfactory abnormalities than healthy con-
trols, associated with disease activity, age and positivity 
for anti-ribsomal P protein antibody [40]. The BF cho-
linergic system has been demonstrated to innervate the 
olfactory bulb and play a pivotal role in olfaction-medi-
ated behaviors [41]. Stimulation of cholinergic system 
can elicit a wide-ranging enhancement of neural respon-
siveness to odorants and enhance animal performance 
in odor discrimination [42]. The strong modulation of 
the central cholinergic system on olfactory function may 
explain our present results showing that optogenetic 
stimulation of BF cholinergic neurons could ameliorate 
olfactory dysfunction in PIL mice (Fig.  2A). Affective 
deficits such as depression and anxiety are among the 
most common neuropsychiatric disturbances impacting 

quality of life within the NPSLE population. Our previ-
ous research has confirmed that PIL mice display anxi-
ety- and depression-like phenotype [15]. Here, for the 
first time, we found that stimulation of BF could effec-
tively rescue anxiety- and depression-like behaviors in 
PIL mice (Fig. 2B–C). Several studies have suggested the 
involvement of the central cholinergic system in anxiety- 
and depressive-like behaviors [43]. First, lesions of BF 
cholinergic neurons resulted in anxiety- and depressive-
like behaviors [44]. Second, increasing the level of ACh in 
the brain could reduce anxiety [45]. Third, administering 
an acetylcholinesterase (the enzyme that degrades ACh) 
inhibitor into the brain could improve the anxiety-like 
behavior, as indicated by increased open arm explora-
tion in the elevated plus maze test [46]. Notably, a recent 
study revealed that stimulation of cholinergic signals by 
systemic administration of α7nAChR ligands did not 
improve behavioral deficits in mice with advanced SLE 
[5]. This difference may be related to the different routes 
of treatment (direct stimulation of the CNS versus sys-
temic drug administration).

In our study, the application of optogenetics in ani-
mal research effectively demonstrated that stimulating 
BF cholinergic neurons produces an anti-inflammatory 
effect within the CNS. However, a major obstacle to the 
application of this technology in humans is the con-
cern of biological safety, specifically associated with the 
expression of artificially manipulated photosensitive 
opsins within neurons [47]. Therefore, addressing the 
priority of developing opsins that are safe, effective and 
compatible with human neural circuits is crucial. Nev-
ertheless, a promising alternative approach is deep brain 
stimulation (DBS), which has been extensively explored 
in clinical treatments for neurodegenerative disorders 
such as Parkinson’s disease (PD) and Alzheimer’s disease 
(AD) with promising therapeutic outcomes [48, 49]. Cur-
rently, stimulating the BF region through DBS is an alter-
native approach for treating neuroinflammatory diseases 
in humans. In the future, the feasibility of optogenetic 
stimulation of BF in humans will increase with advance-
ments in the development of safe photosensitive opsins.

Conclusions
In summary, we present the first evidence showing that 
activation of BF cholinergic neurons may play a neuro-
protective role in the brain through its anti-inflammatory 
effects on cerebral vessels. Our results highlight the sig-
nificance of manipulating central cholinergic signals 
in attenuating behavioral deficits and reversing neu-
roinflammation in NPSLE, which may therefore be a 
potential preventive target for NPSLE. Further systemic 
experiments are warranted to examine whether and how 
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stimulating BF cholinergic neurons can rescue the behav-
ioral deficits and neural damage in NPSLE patients.

Methods
Animals
Specific pathogen-free BALB/c mice were purchased 
from Vital River Laboratory (Beijing, CHN). Female mice 
were used for the experiment at the age of 8 weeks. Ani-
mals were reared in standard animal cages under envi-
ronmentally controlled laboratory conditions (12/12  h 
light/dark cycle, 22 ± 2  °C, 40–80% humidity) with ad 
libitum access to food and water. All efforts were made 
to minimize animal suffering. The animals were main-
tained and treated in compliance with the policies and 
procedures detailed in the “Guide for the Care and Use of 
Laboratory Animals” of the National Institutes of Health. 
The Animal Care and Use Committee of China Medical 
University reviewed and approved the animal experi-
mental protocols and the treatment procedures (No. 
KT2018060).

Experiment procedure
As shown in Fig.  1, mice were randomly divided into 
three groups (n = 12 per group): control, PIL and PIL + BF 
stimulation. At the initiation of the experiment, all mice 
were administered AAV2/9-ChAT-cre. Mice in the con-
trol and PIL groups were then given AAV2/9-EF1α-DIO-
mCherry, while those in the PIL + BF stimulation group 
received AAV2/9-EF1α-DIO-hChR2(H134R)-mCherry. 
After recovery from microinjection of viruses and surgi-
cal implantation of optical fibers in right BF, each mouse 
received a single intraperitoneal injection of 0.5 ml phos-
phate buffer saline (PBS) or pristane (Sigma-Aldrich, St. 
Louis, MO, USA), respectively. Optogenetic stimula-
tion of BF cholinergic neurons was administered to each 
mouse for 4 months following pristane or PBS injection. 
After behavioral tests and intravital microscopy record-
ing, mice were sacrificed and brain tissues were harvested 
for further examinations.

Stereotactic viral microinjection and optical fiber 
implantation to BF
Viruses (AAV2/9-ChAT-cre, AAV2/9-EF1α-DIO-
hChR2 (H134R)-mCherry and AAV2/9-EF1α-DIO-
mCherry) used in this study were obtained from Brain 
VTA (Wuhan, CHN). Cre-mediated recombination and 
channelrhodopsin2 (ChR2) expression were confined to 
choline acetyl transferase (ChAT) immunoreactive neu-
rons located within the BF cholinergic neurons. The BF 
cholinergic neurons and their projections can be visu-
alized by the fluorescence of mCherry. The activation 
of BF cholinergic neurons was selectively controlled by 
ChR2 with the presence of blue light stimulation. The 

surgical procedures of viral microinjection were as pre-
viously described [50]. Briefly, mice were anaesthetized 
and mounted onto a stereotaxic apparatus to adjust their 
skulls parallel to the reference panel. Then, AAV viruses 
were slowly injected into the right BF (anteroposterior, 
0.1 mm; mediolateral, 1.5 mm; dorsoventral, 4.5 mm). An 
optical fiber was implanted directly above the viral injec-
tion site.

Optogenetic stimulation
The optical fiber was coupled to a diode-pumped solid-
state 473 nm laser and controlled by a laser driver. Light 
pulse trains (30 ms per pulse at 20 Hz for 15 s once per 
minute for 30 min) were controlled by a Master-8 pulse 
stimulator (Newdoon Inc., Hangzhou, CHN). Optoge-
netic stimulation of BF cholinergic neurons was con-
ducted daily throughout the 4-month treatment period.

Olfactory sensitivity test
The test used to assess olfactory sensitivity was con-
ducted as previously described [51]. Each mouse was 
exposed to a piece of filter paper scented with an odor-
ant for 2 min. Then, the scented filter paper was removed 
and the mouse was allowed to rest for 1 min. This proce-
dure was repeated three times. Active investigation was 
defined as directed sniffing within 0.5  cm of the odor-
ant source and the sniffing time was recorded. The total 
sniffing time of an odorant was obtained by summing the 
sniffing time for each trail.

Elevated zero maze test
The elevated zero maze test was conducted as previously 
described [52]. Briefly, each mouse was placed at the 
open arm and allowed to conduct a 10-min free explora-
tion. Total track distance and time spent in the open arms 
were digitally recorded, and then analyzed by custom-
built programs. The percentage of time spent in the open 
arms was calculated using the following formula: [(time 
spent in the open arms)/(time spent in all arms) ×100].

Forced swim test
Each mouse was placed into a glass beaker containing 
3,000 ml of water (24 ± 1 °C) and allowed to habituate to 
swimming in it for 2 min. A 4-min test session was digi-
tally recorded afterwards. With no way to escape, the 
mice began to struggle and swim, eventually displaying 
signs of behavioral despair, assessed as immobility[53]. 
Depression-like behavior was measured according to 
time spent immobile.

Intravital microscopy in mouse brain
Intravital microscopy of the mouse cerebral vessels was 
performed as previously described [54]. Mice were 
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mounted onto the stereotaxic apparatus and the opti-
cal fiber was carefully removed from the right skull. To 
create an optical clearing skull window for in vivo imag-
ing, the left skull was thinned and treated with 10% 
Ethylene Diamine Tetraacetic Acid (EDTA) disodium 
(Sigma-Aldrich) for 5–10  min. Leukocytes were fluo-
rescently labeled with rhodamine 6G (0.5  mg/kg body 
weight, Sigma-Aldrich). Rolling leukocytes were defined 
as leukocytes moving at a lower speed than erythrocytes. 
Adherent leukocytes were defined as cells that remained 
stationary for at least 30 s.

Measurement of BBB permeability
The assessment of BBB permeability was performed by 
measuring Evans blue extravasation, as described previ-
ously [55]. Briefly, mice were administered 2% Evans blue 
dye solution (4 ml/kg, Beyotime biotechnology, Shang-
hai, CHN) intravenously 30  min before sacrifice. After 
the whole brains were harvested, brain tissues used for 
BBB permeability assessment were homogenized and 
incubated in formamide (24  h, 55  °C). The quantifica-
tion of BBB permeability was performed by measuring 
the absorbance at 620 nm in the supernatant from each 
sample.

ELISA for brain cytokine detection
Brain tissues, used for cytokine detection, were homog-
enized on ice in 0.01  M PBS (pH 7.4) with a protease 
inhibitor cocktail (diluted 1:100 (v/v), MedChemExpress, 
Shanghai, CHN), using a FastPrep-96 high-throughput 
homogenizer (MP Biomedicals, CA, USA) at 281.7 ✕g 
for 45  s (2 cycles). After homogenization, each sample 
was visually examined to ensure thorough sample disrup-
tion. Then, the samples were centrifuged at 12,000  rpm 
for 15 min at 4 °C to remove cell debris. The supernatants 
were collected and stored at − 80  °C until the measure-
ment. The protein concentration was determined using 
a BCA protein concentration assay kit (Beyotime bio-
technology). The cytokine levels in brain tissues were 
examinated using TNF-α, IL-6, IL-1β and IL-10 ELISA 
kits (Boster & Biological Technology, Wuhan, CHN). 
Experimental procedures were strictly followed accord-
ing to the manufacturer’s instructions. Briefly, the protein 
samples were added to a 96-well microplate coated with 
antibodies against mouse TNF-α, IL-6, IL-1β, or IL-10. 
After 2 h incubation at room temperature, the microplate 
was incubated with horseradish peroxidase-conjugated 
streptavidin for an additional 1  h. The plates were then 
developed with tetramethylbenzidine substrate solu-
tion, and the optical densities were measured at 450 nm. 
Mouse cytokine standards with known concentrations 
were used to establish standard curves, and cytokine lev-
els were expressed as relative titers.

Immunofluorescence staining
Brain tissues used for immunofluorescence staining were 
fixed in paraformaldehyde, followed by immersion in 
sucrose solution. The tissues were cut into 10 µm-thick 
frozen sections and blocked with 10% goat serum. 
Then, sections were incubated with primary antibodies, 
including anti-P-selectin (1:80; Santa Cruz, CA, USA), 
VCAM-1 (1:200; Abcam, Cambridge, UK) and α7nAChR 
(1:100; ABclonal, Wuhan, CHN). On the following day, 
the primary antibodies were removed and sections were 
incubated with secondary antibody Alexa Fluor 488-con-
jugated goat anti-rabbit IgG (1:200, Proteintech, Wuhan, 
CHN). For IgG and lectin staining, sections were incu-
bated with Alexa Fluor 488-conjugated goat anti-mouse 
IgG (1:200, Proteintech) and lectin solution (Thermo 
Fisher, Massachusetts, USA). DAPI staining (Beyotime 
biotechnology) was used to locate cell nuclei. To exam-
ine autofluorescent lipofuscin, regions of interest were 
captured at 480 nm exciting light. The mean fluorescence 
intensity of P-selectin, VCAM-1 and IgG and the mean 
gray value of autofluorescent lipofuscin were calculated 
using Image J software.

Statistical analysis
GraphPad Prism V8 software (La Jolla, CA, USA) was 
used for statistical analysis. Before applying paramet-
ric statistics, all data were assessed for normality using 
the D’Agostino-Pearson omnibus normality test. Data 
were expressed as the mean ± SEM. Differences in this 
study were analyzed using one-way analysis of variance 
(ANOVA) followed by Tukey’s post hoc test for multiple 
comparison. P < 0.05 was considered a statistically signifi-
cant difference in all tested groups.
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