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Abstract 

Objective  Working memory (WM) deficits have frequently been linked to attention deficit hyperactivity disorder 
(ADHD). Despite previous studies suggested its high heritability, its genetic basis, especially in ADHD, remains unclear. 
The current study aimed to comprehensively explore the genetic basis of visual-spatial working memory (VSWM) 
in ADHD using wide-ranging genetic analyses.

Methods  The current study recruited a cohort consisted of 802 ADHD individuals, all met DSM-IV ADHD diagnostic 
criteria. VSWM was assessed by Rey-Osterrieth complex figure test (RCFT), which is a widely used psychological test 
include four memory indexes: detail delayed (DD), structure delayed (SD), structure immediate (SI), detail immedi-
ate (DI). Genetic analyses were conducted at the single nucleotide polymorphism (SNP), gene, pathway, polygenic 
and protein network levels. Polygenic Risk Scores (PRS) were based on summary statistics of various psychiatric 
disorders, including ADHD, autism spectrum disorder (ASD), major depressive disorder (MDD), schizophrenia (SCZ), 
obsessive compulsive disorders (OCD), and substance use disorder (SUD).

Results  Analyses at the single-marker level did not yield significant results (5E−08). However, the potential signals 
with P values less than E−05 and their mapped genes suggested the regulation of VSWM involved both ocular 
and neural system related genes, moreover, ADHD-related genes were also involved. The gene-based analysis found 
RAB11FIP1, whose encoded protein modulates several neurodevelopment processes and visual system, as signifi-
cantly associated with DD scores (P = 1.96E−06, Padj = 0.036). Candidate pathway enrichment analyses (N = 53) found 
that forebrain neuron fate commitment significantly enriched in DD (P = 4.78E−04, Padj = 0.025), and dopamine 
transport enriched in SD (P = 5.90E-04, Padj = 0.031). We also observed a significant negative relationship between DD 
scores and ADHD PRS scores (P = 0.0025, Empirical P = 0.048).

Conclusions  Our results emphasized the joint contribution of ocular and neural genes in regulating VSWM. The 
study reveals a shared genetic basis between ADHD and VSWM, with GWAS indicating the involvement of ADHD-
related genes in VSWM. Additionally, the PRS analysis identifies a significant relationship between ADHD-PRS and DD 
scores. Overall, our findings shed light on the genetic basis of VSWM deficits in ADHD, and may have important impli-
cations for future research and clinical practice.
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Introduction
Attention deficit hyperactivity disorder (ADHD) is a 
highly heritable disorder in children, with an approxi-
mately 7.2% prevalence [1]. Except for the main clinical 
features (i.e., age-inappropriate attention deficit, hyper-
activity, and impulsivity), ADHD cases often display 
multiple neuropsychological deficits, including working 
memory (WM), planning, vigilance and inhibition [2].

Working memory is the capacity to manipulate some 
information and maintain other information simultane-
ously, including auditory-verbal working memory and 
nonverbal working memory [3]. Visual-spatial work-
ing memory (VSWM) is a kind of nonverbal work-
ing memory, refers to the ability of temporarily holding 
and manipulating visual and spatial information in the 
mind for use in ongoing tasks. Meta-analyses indicated 
that VSWM was impaired in ADHD individuals [4–7], 
and previous evidence showed a positive relationship 
between the severity of ADHD symptoms and VSWM 
deficits [8–10], suggesting VSWM might serve as one 
promising endophenotype for ADHD [4].

The Rey-Osterrieth Complex Figure (RCFT) is a vali-
dated and widely used measure of VSWM, developed by 
Rey [11]. The RCFT is capable of distinguishing between 
various aspects of VSWM, including the ability to retain 
the visual details of the figure, the ability to organize 
and integrate the different parts of the figure, and the 
ability to manipulate the figure mentally [12, 13]. Previ-
ous studies have consistently shown that ADHD indi-
viduals exhibit compromised performance on the RCFT 
task compared to typically developing (TD) individuals 
[14–16]. Specifically, deficits have been observed in the 
delayed scores and the organizational scores, indicating 
impairments in short-term working memory, global vis-
ual processing, and working memory integration [10, 14].

Visual-spatial working memory (VSWM) has been 
shown to be moderately to highly heritable by twin 
studies [17, 18]. At the molecular level, although the 
specific gene basis is still unknown, evidence from can-
didate gene-based analyses suggested that the dopa-
minergic circuit-related genes, which served as a main 
etiological pathway in ADHD, were involved [19]. 
Previous studies suggested the dopamine transporter 
(DAT) is a promising candidate risk gene in the etiolog-
ical process of ADHD and has also been found to affect 
WM [20–23]. Dopamine receptor D1 (DRD1) gene, 
in which SNPs rs4532 and rs265978 moderated work-
ing memory improvements over development, also 

predicted ADHD symptoms reduction [24]. The Asso-
ciations between superior VSWM function and carry-
ing Met in the Valine158Methionine (Val158Met) SNP 
(i.e., the rs4680) were also demonstrated [25–27].

However, recent evidence suggests that causal vari-
ants involved in complex traits are not restricted 
to specific core pathways [28]. Consistent with this 
notion, recent GWAS studies in VSWM also revealed 
a more complicated landscape, with not only dopamin-
ergic genes, but also genes associated with synaptic 
plasticity, apolipoprotein, neurodegenerative disorders, 
and others being involved [29–32]. A GWAS study by 
Blokland et  al. failed to test significant SNP associ-
ated with WM-related brain regions, however, nominal 
signals were found within genes BANK1 and FOXQ1, 
which were involved in dopaminergic circuit and DNA 
binding, respectively [31]. Other two GWAS study 
found genes potentially associated with WM or visual-
spatial ability at the 10–6 significant level, with impli-
cations in several psychiatric disorders and adrenergic 
receptor signaling pathway [29, 30]. A study published 
in 2022 found significant SNPs associated with verbal 
short-term memory, involving gene APOE and CDH18, 
which were responsible for Alzheimer’s disorders and 
synaptic plasticity, respectively [32].

The manipulation of VSWM involves coordinated 
interactions of a distributed neural network, with the 
frontal lobe playing a central role as a control structure 
[33–36] Dopamine transmission in the frontal cortex is 
critically for VSWM [37, 38], and the frontal lobe might 
serve as an important mediate factor between gene and 
WM deficits in ADHD [39]. An inverted U-shaped curve 
has been demonstrated in the relationship of frontal 
lobe functioning and WM performance, whereby both 
deficient and excessive amounts of prefrontal dopamine 
activity predict poor task performance [40].

The prefrontal lobe and dopaminergic circuit also 
involved in WM treatment response. Prior evidence 
has shown that improvements of VSWM after behavio-
ral training was associated with changes in the density 
of cortical dopamine D1 receptors in prefrontal lobe 
[41]. Methylphenidate, a most widely used pharmaceu-
tical treatment for ADHD, acts to increase the synap-
tic concentration of dopamine and noradrenaline could 
improve WM by altering regional cerebral flow (rCBF) 
in frontal and parietal lobes [42].

In conclusion, VSWM deficits in ADHD have a com-
plex genetic basis that has not been fully understood. 

Keywords  Attention deficit hyperactivity disorder, Visual-spatial working memory, Genome-wide association study, 
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Previous candidate-gene based studies have identified 
that ADHD related genes involved in the dopaminer-
gic circuit in frontal lobe are associated with VSWM 
deficits in TD and ADHD. As a primary neuropsy-
chological function and endophenotype, VSWM is 
considered to be less genetically complex than clini-
cal phenotypes. Thus, deconstructing the genetic basis 
underlying VSWM might shed light on illuminating the 
pathophysiological processes of ADHD, helps estab-
lish objective neurocognitive diagnostic modalities and 
holds promises for the development of precise behavio-
ral therapies.

The current study had two main objectives: (1) to iden-
tify genes associated with VSWM in individuals with 
ADHD using a genome-wide approach and explore the 
relevant biological processes, especially in dopaminer-
gic circuit and forebrain development; (2) to disentangle 
overlapping and distinct genetic structures underlying 
different visuospatial processes involved in different parts 
of the RCFT task.

Materials and method
Participants
The cohort, which consisted of 802 ADHD cases (684 
males, 85.3%) aged between 6 and 16 (9.9 ± 2.4) was 
recruited from the Child and Adolescent mental health 
center at Peking University Sixth Hospital. All patients 
met the diagnostic criteria of the Statistical Manual of 
Mental Disorders-IV (DSM-IV) for ADHD. The diagnosis 
was first made by a child psychiatrist and then confirmed 
by semi-structural interview using the Chinese version 
of KSADS-PL [43]. Patients with epilepsy, schizophrenia, 
pervasive development disorder or mental retardation 
(IQ < 70) were excluded [44]. Chinese Children version of 
the Wechsler Intelligence Scale (C-WISC, third edition) 
was used to assess IQ [45, 46]. The protocol was reviewed 
and approved by the Ethics Committee of Peking Uni-
versity Health Science Center. Written informed consent 
was obtained from the parents and from both the par-
ticipants themselves and their parents if they were over 
8 years old.

Neuropsychological test: rey‑osterrieth complex figure test 
(RCFT)
All subjects finished the RCFT to evaluate VSWM. 
Subjects were instructed to remember the RCFT figure 
within 30  s and subsequently draw what they remem-
bered immediately (without intervening distraction) 
and then a 20–30 min’ delay (other tests were conducted 
during this delay) [10]. This test allowed us to observe 
subjects’ immediate and delayed visual-spatial working 
memory performances [14]. Detail and structure scores 
were rated using 36-point and 6-point, respectively. The 

36-point scoring system was initially devised by Osterri-
eth [50] and adapted by Booth [75], which could reflect 
both local and global VSWM. In the 36-point system, 
each figure is scored using 18 features: two points are 
given if the feature is placed correctly, and one point 
given if it is incomplete or placed poorly. The 6-point 
scoring system was devised by Binder [51], evaluated the 
accuracy and completeness for constructing five configu-
ral elements and the addition of the base rectangle, which 
was used to evaluate the organizational strategies during 
RCFT task and global processing.

Genotyping quality control
The Omega DNA extraction Kit (Omega Bio-tek Inc., 
Doraville, GA) was used to extract genomic DNA from 
peripheral blood. The genomic DNA was genotyped 
using the Affymetrix 6.0 array with standard protocol at 
Capital Bio Ltd (Beijing) [44]. For quality control at the 
individual level, we excluded those with per-individual 
autosomal heterozygosity > 5 SD away from the mean, 
missing age or IQ information, as well as with a per-
individual call rate < 95%. For quality control at the SNP 
level, we included SNPs with call rate > 98%, Hardy–
Weinberg equilibrium test P > 0.001 [47], and minor allele 
frequency (MAF) > 5%. After quality control, 802 ADHD 
patients remained. We then used MACH-admix 1.0 [48] 
to impute non-genotyped SNPs, using the ASN data from 
the Integrated Phase 1 Release of the 1000 Genome Pro-
jects (GRCh37/hg19) as the reference panel. Imputed 
SNPs with a squared correlation between imputed and 
true genotypes r2 < 0.6 or SNPs with minor allele fre-
quency < 0.05 were removed.

Principle component analysis (PCA) was performed 
to check population stratification. It was conducted 
using the SNPs with low linkage disequilibrium (LD, 
MAF > 0.05 and r2 < 0.05 for each pair of SNPs) that 
were outside the 5 long-range LD regions using the 
EIGENSOFT 4.2 software [49], and validated by the 
Tracy-Widom test. There was no significant population 
stratification. Only the top 1 eigenvector was used as a 
covariate in subsequent statistical analyses.

Genome wide association analyses (GWAS) and annotation
The association between SNPs and the RCFT scores was 
conducted using the additive linear regression model 
by PLINK version 1.9 with age, sex and eigenvector one 
from principle component analysis as covariates [50–52] 
In order to thoroughly address potential confounding 
effects of age, we conducted additional tests to examine 
the potential interaction relationships between age and 
genotypes (GWAS P-value less than 1E−05).

We used three methods for gene mapping: positional 
mapping, eQTL mapping, and chromatin interaction 
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mapping. For positional mapping, we used a maximum 
distance of 10  kb [53]. The eQTL data and additional 
annotation data based on Hi-C results were obtained 
from 3D SNP and GTEx database ([54], https://​gtexp​
ortal.​org/​home/). The Genecards website was used to 
check the function of genes [55, 56].

Gene‑based analysis
We used Multi-marker Analysis of GenoMic Annota-
tion (MAGMA) [57] for gene-based analysis. As recom-
mended by de Leeuw et al. [57], we utilized the genotypic 
data as inputs instead of using GWAS summary statistics. 
The analytic procedure is as follows: SNPs were mapped 
to corresponding genes based on the NCBI 37.3 gene 
definitions, extending gene footprints by an additional 35 
kilobase (kb) up- and 10 kb downstream as default. After 
SNP annotation, there were 18,177 genes that were cov-
ered by at least one SNP. Bonferroni correction was used, 
setting the two-side genome-wide threshold for signifi-
cance at 2.75E−06.

Candidate pathway‑based analysis
Since previous evidence emphasized the critical role of 
dopaminergic circuits and the frontal lobe in the regula-
tion of VSWM; and the current GWAS results indicated 
participation of ocular system (described in the result 
section). The current study included 53 Gene ontology 
biological process (GOBP) pathways involved in frontal 
lobe/forebrain (n = 14), dopaminergic circuit (n = 15), 
and eye/visual perception (n = 24) as candidate pathways. 
Using MAGMA, we tested the association of candidate 
pathways with four RCFT scores. We adopted a Bon-
ferroni correction, setting the threshold of significance 
P < 9.43E−04.

Protein–protein interaction (PPI) network construction
GeneMANIA (http://​www.​genem​ania.​org) was adopted 
to construct the network of RCFT interactive proteins 
based on physical interactions, co-expression, predicted, 
co-localization, pathway, genetic interactions, and shared 
protein domains [58]. Visualization was implemented 
using Cytoscape [59].

Polygenic risk score (PRS)
Using the current cohort as target, we calculated PRSs 
using latest Psychiatric Genomic Consortium (PGC) 
GWAS statistics of six psychiatric disorders as base data, 

including ADHD, autism spectrum disorder (ASD), 
obsessive compulsive disorder (OCD), major depres-
sion disorder (MDD), schizophrenia (SCZ), bipolar dis-
order (BIP), and substance use disorder (SUD) [60–66]. 
PRSice-2 [67] were used to calculate PRS scores and per-
form the high-resolution scoring method to select the 
most precise threshold for SNPs associated with each 
RCFT score (with lower and upper threshold as 0 and 0.5 
respectively and the interval as 0.0001). The significance 
of the regression results was corrected by a permutation 
test with 10,000 replicates, an empirical P value less than 
0.05 will be taken as significant. Pearson correlation pho 
was calculated between each index and psychiatric PRS 
scores and shown in a heatmap to aid in visualization.

Results
A total of 802 ADHD cases were included in the study, 
comprising 684 boys (85.3%) with an average age of 
9.9 ± 2.4  years, and an average IQ was 104.5 ± 15.7. 
The average points for DD (9.1 ± 0.2), DI (9.5 ± 0.2), SD 
(2.7 ± 0.1), and SI (2.9 ± 0.1) were also measured (Table 1).

Furthermore, we found significant positive relation-
ships between ages and all four RCFT scores (Pbon < 0.05), 
suggesting that VSWM functions undergo dynamic 
changes over time (Fig. 1).

SNP, gene level associations and protein networks
Genome-wide association analyses, after quality control, 
were conducted for four RCFT scores. The SNP level 
association results did not reach genome-wide signifi-
cance (P < 5e−8). However, we identified 26 potential risk 
loci with P < 1e−05 of DD, DI, SD, and SI (Table 2). None 
of the 26 risk loci showed potential interaction relation-
ships between age and genotypes (interaction P values in 
all variants were larger than 10E−03).

We identified 3, 6, 5, and 12 SNPs potentially associ-
ated with DD, DI, SD, and SI, respectively. Candidate 
risk genes for each locus were mapped and prioritized 
accordingly (Table  2). Interestingly, locus rs56111147 
was potentially associated with three indexes except for 
SD, and it was located in the gene TCL1B, which has 
been previously linked to myopia [68]. Inspection of the 
mapped genes revealed that relevant genes were mainly 
related to the ocular and neural system (Fig. 2A). Addi-
tionally, delayed scores were associated mostly with neu-
ral system related genes, while most of the oculus related 
genes were relevant to immediate scores.

Table 1  Demographic characteristic and VSWM profile of the current cohort

Num of participants Age (years) Sex (boy: girl) IQ REYDD REYDI REYSD REYSI

802 9.9 (2.4) 684:118 104.5 (15.7) 9.1 (0.2) 9.5 (0.2) 2.7 (0.1) 2.9 (0.1)

https://gtexportal.org/home/
https://gtexportal.org/home/
http://www.genemania.org
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Gene-based analysis identified a gene Rab11-family 
interacting protein one (RAB11FIP1) significantly associ-
ated with DD score (P = 1.96E-06, Padj = 0.036).

Furthermore, in order to detect the genetic interaction 
networks between these four indexes, we constructed the 
protein networks connected by the mapped candidate 
genes (Fig. 2A). Both distinctive and common parts in the 
network were highlighted. Gene TCL1B and TCL1A were 
the central hub protein shared by DD, DI, and SI, and 

interacts with genes involved in DI, SD, and SI (FHDC1, 
ADAMTSL1, PARM1, CERS4, CDKL2, ZSCAN16, 
CREB1). Genes of zinc protein family were also high-
lighted as top hub shared by DD and DI (ZSCAN16, 
ZSCAN31).

Candidate pathway analyses
We identified two pathways significantly involved in 
the RCFT. The forebrain neuron fate commitment 

Fig. 1  A Bar plots showing RCFT scores in different age groups (the residual bars denote standard error of mean RCFT scores); B, C Plots presenting 
the positive relationships between RCFT scores and ages (the shaded area represents the 95% confidence interval of the regression)
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pathway was enriched in DD (P = 4.78E−04, 
Padj = 0.025), and the dopamine transport pathway was 
enriched in SD (P = 5.90E−04, Padj = 0.031).

Although no pathways associated with DI and SI 
scores passed the multiple test correction, forebrain 
neuron fate commitment and dopamine transport were 
implied to be potentially relevant to DI (P = 1.16E−03, 
2.55E−03); dopamine transport, adenylate cyclase 
inhibiting dopamine receptor signaling pathway and 
forebrain neuron differentiation potentially enriched 
in SI (P = 2.16E−03, 4.73E−03, 7.62E−03) (Table 3).

Polygenic risk score
A significant relationship was observed between DD 
and ADHD PRS scores, with an uncorrected P value 
of 0.0025, and an empirical P value of 0.035 (Fig.  2B). 
Although potential relationships between other RCFT 
scores and PRS were suggested, however, failed to pass 
the permutation test. The correlation heatmap was 
shown in the Fig. 2C.

Table 2  Nominal significant loci associated with four RCFT scores

SNP CHR BP A1 Beta P-value Mapped genes (location) Mapped genes (eQTL and HiC)

REYDD

 rs56111147 14 96,153,765 C −2.368 1.34E−06 TCL1B TCL1A, TCL6 (HiC), TCL1B (eQTL)

 rs277785 8 94,335,268 A 1.36 4.12E−06 LOC107986956 C8orf87 (Hi-C)

 rs141358499 6 28,803,174 T 2.914 6.25E−06 NA ZSCAN31, ZNF603P, ZSCAN8 (eQTL & HiC), AL022393.9, 
ZSCAN16 (HiC)

REYDI

 rs56111147 14 96,153,765 C −2.656 1.25E−07 TCL1B TCL1A, TCL6 (HiC), TCL1B (eQTL)

 rs150898617 6 28,834,324 A 2.769 9.97E−07 RPL13P ZSCAN31, ZNF192P1, ZNF602P, ZSCAN16 (eQTL); RPSAP2, 
ZNF311, RN7SL471P (HiC)

 rs637487 1 191,459,085 A −1.58 1.03E−06 NA NA

 rs857125 1 57,205,340 C 1.843 1.70E−06 C1orf168 C1orf168, PRKAA2 (Hi-C)

 rs7667462 4 153,841,204 A 1.293 4.68E−06 FHDC1 ARFIP1 (eQTL)

 rs4394025 4 76,497,433 C −2.193 5.73E−06 NA G3BP2, CDKL2 (eQTL & HiC); C4orf26, PARM1, RCHY1, 
THAP6, SO1 (HiC)

REYSD

 rs7594919 2 207,999,571 C −0.648 3.29E−06 KLF7 KLF7, MIR2355 (HiC)

 rs12981571 19 8,175,595 C 0.133 3.50E−06 FBN3 FBN3, CCL25, CERS4, ELAVL1 (HiC)

 rs2778915 9 101,385,524 C 0.484 7.41E−06 GABBR2 GABBR2 (HiC)

 rs12686018 9 18,879,776 A −0.565 7.59E−06 ADAMTSL1 NA

 rs72909972 2 157,109,471 C 0.505 9.65E−06 LINC01876 NR4A2

REYSI

 rs4932303 15 90,752,952 C 1.030 1.83E−06 SEMA4B CIB1, SEMA4B (HiC & eQTL), GABARAPL3, GDPGP1, IDH2, 
NGRN (HiC), ZNF774 (eQTL)

 rs12629965 3 128,422,658 A −0.461 3.99E−06 NA RPN1, POU5F1P6 (eQTL)

 rs62188624 2 208,017,033 A −0.651 4.18E−06 KLF7 KLF7, CREB1 (HiC)

 rs56111147 14 96,153,765 C −0.785 5.89E−06 TCL1B TCL1A, TCL6 (HiC), TCL1B (eQTL)

 rs2826536 21 22,187,947 C 0.415 6.29E−06 NA LINC00320, NCAM2 (HiC)

 rs4472720 1 187,613,231 G −0.760 7.01E−06 NA NA

 rs12981571 19 8,175,595 C 0.593 7.40E−06 FBN3 FBN3, CCL25, CERS4, ELAVL1 (HiC)

 rs17178718 17 5,551,690 C 0.812 7.64E−06 NA NLRP1 (eQTL)

 rs2761312 10 95,052,262 C −0.731 7.83E−06 NA MYOF (sQTL)

 rs2088308 3 82,839,698 A −0.432 8.1E−06 NA NA

 rs2705168 12 48,959,389 G 0.512 9.29E−06 LALBA LALBA (HiC)

 rs7071815 10 133,871,035 G 0.479 9.65E−06 JAKMIP3 JAKMIP3 (HiC & eQTL)
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Discussion
The present study employed wide-range genetic analy-
ses to explore the genetic basis underlying VSWM in 
ADHD. Although no SNP reached the genome wide sig-
nificance, following the previous evidence demonstrated 
that missing heritability could be explained by the SNPs 
far below the genome-wide significance [28], we inves-
tigated the nominal significant SNPs (P < 1E−05) and 
highlighted a joint modulation pattern implemented by 
ocular and neural genes. And a differential pattern under 
four indexes might exist, with oculus related genes were 
implied to be more involved and neural system related 
genes less involved in detail scores compared with imme-
diate scores. Gene-based analysis identified a significant 
brain-expressed gene RAB11FIP1 (UniProt & lifeMap 
Discovery), which is critical for several neurodevelop-
mental process and visual pathways, associated with DD 
score. Dopaminergic circuit and forebrain development 
were suggested to be involved in SD and DD, respectively. 
Shared genetic basis between ADHD and VSWM were 
indicated, as the current study found the involvement of 
ADHD-related genes underlying VSWM and significant 
relationship between ADHD PRS and DD scores.

(1)	Ocular and neural system related genes jointly mod-
ulate VSWM.

Working memory is a complex and intricate system 
[69]. Neurobiological studies found that VSWM mainly 
includes two stages: (1) Visual perception, during which 
a set of physical signals enter the visual system and the 
brain interprets the electromagnetic signals and pro-
duces “a percept” or interpretation of the physical reality. 
In this process, neurons in the visual pathway, poste-
rior early sensory and association areas are involved; (2) 
mnemonic representation, i.e., the brain, mainly PFC 
produces and maintains a mental representation of a per-
cept when unavailable to the senses [70–72] The above 
findings from neurobiological studies suggested that the 
visual organ, the visual pathway, and the brain (mainly 
frontal lobe) are the basic biological structure underlying 
VSWM.

In line with previous knowledge, the current study 
provided further evidence that ocular and neural genes 
jointly modulate visual-spatial working memory through 
a comprehensive set of genetic analyses. Using GWAS 
method (P < 1e−05) (Table  2), we found that most rel-
evant genes are brain-expressed (GTEx v8), and sev-
eral genes are related to neurodevelopmental process 
and psychiatric disorders (Zinc finger family coding 
genes, C8orf87, RPL13P, G3BP2, GABBR2, LINC01876, 
SEMA4B, RPN1 [73–85]); Meanwhile, multiple genes 
were found to be involved in the ocular system, with gene 

Fig. 2  Results of network and polygenic risk score analyses. A Gene interaction networks. Nodes and edges were constructed using relevant 
genes and gene interactions detected by GeneMANIA. Genes involved in four indexes exhibited a cooperative pattern, and TCL1A and TCL1B 
were identified as overlap nodes for three indexes (DD, DI, SI). Node size was determined by −log P (single–marker based P value), with sizes 
doubling if SNPs were involved in more than one index. Edges were constructed based on correlations between genes, with line width indicating 
the strength of correlation; B correlation heatmap between four RCFT scores and PRS scores for five psychiatric disorders. White asterisk denotes 
significant correlations (empirical P value less than 0.05); C Scatter plots for ADHD PRS scores and REY-DD, significant negative relationships were 
revealed
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NLRP1 enhancing in Muller glia cells, gene NR4A2 and 
gene IDH2 over-expressing in the eye (LifeMap), and 
genes TCL1B, TCL1A, TCL6, KLF7, FBN3, C1orf168, 
ADAMTSL1, MYOF, SEMA4B, CIB1, CREB1, CERS4 and 
NLRP1 being involved in eye diseases and eye measure-
ments, such as myopia [68], [86–93]glaucoma [88, 94], 
retinopathy [95], pinguecula [96], uveitis [97], corneal 
resistance factor, exploratory eye movement [86], and 
intraocular pressure measurement [87, 98].

Moreover, our findings suggested that portions of ocu-
lar genes and neural genes underlying the four indexes 
might vary. Compared with delayed recall, genes under-
lying immediate recall might be slightly more related to 
the visual system and less related to the neural system 
(Fig.  2A). KLF7, FBN3, SEMA4B, CIB1, NLRP1, NR4A2 
and MYOF, which were suggested only in immediate 
recall, were associated with visual system. However, in 
delayed recall task, only TCLs (TCL1A, TCL1B, TCL6), 
which also related to immediate recall (Table  3), and 
C1orf168 were involved in visual function.

The results of gene-based analysis further support the 
current findings from GWAS analysis. Specifically, we 

identified an association between DD scores and the 
RAB11FIP1 gene, which was involved in both ocular and 
neural processes. RAB11FIP1 is over-expressed in brain, 
encodes one of the Rab11-family interacting proteins 
(Rab11-FIPs), which plays a crucial role in the Rab-11 
mediated recycling of vesicles. Proteins in the Rab11-FIPs 
family are known to modulate various neurodevelop-
mental processes, such as dendritic arborization, neurite 
pruning, synaptic plasticity, and spatial memory forma-
tion [99, 100]. Moreover, previous evidence indicated 
that these proteins are also involved in the visual system, 
as they have been implicated in retina neurogenesis [101, 
102], photoreceptor cells development and maintenance 
[103, 104].

(2)	Shared genetic basics between ADHD and VSWM.

The current studies identified genes shared by VSWM 
and ADHD, including C8orf87 (DD) [105], ZSCAN31 
(DD, DI) [77, 83], RPL13P (DI) [85], FBN3 (SD, SI) [74], 
and LINC01876 (SD) [81, 83]. C8orf87 was identified in a 
meta-analysis of ADHD GWAS studies [105]. ZSCAN31, 

Table 3  Top 5 enriched gene ontology (GO) pathway in four indexes

*Statistical significance with P-value < 9.43E−04

GO pathway N gene Beta SE P

REYDD

 Forebrain neuron fate commitment 9 1.1369 0.3441 4.78E−04*
 Dopamine transport 47 0.20113 0.13196 6.37E−02

 Wnt signaling pathway involved in midbrain dopaminergic neuron dif-
ferentiation

11 0.39499 0.29188 8.80E−02

 Midbrain dopaminergic neuron differentiation 16 0.29743 0.24711 1.14E−01

 Regulation of dopamine uptake involved in synaptic transmission 7 0.33785 0.29334 1.25E−01

REYDI

 Forebrain neuron fate commitment 9 1.0519 0.34518 1.16E−03

 Dopamine transport 47 0.37079 0.13236 2.55E−03

 Forebrain morphogenesis 11 0.63099 0.30332 1.88E−02

 Synaptic transmission dopaminergic 28 0.28778 0.14888 2.66E−02

 Adenylate cyclase inhibiting dopamine receptor signaling pathway 8 0.68815 0.35835 2.74E−02

REYSD

 Dopamine transport 47 0.43833 0.1351 5.90E−04*
 Forebrain neuron fate commitment 9 0.97901 0.35241 2.74E−03

 Dopamine secretion 36 0.37745 0.16311 1.03E−02

 Forebrain morphogenesis 11 0.58913 0.30966 2.86E−02

 Forebrain regionalization 21 0.37972 0.22967 4.91E−02

REYSI

 Dopamine transport 47 0.3859 0.13521 2.16E−03

 Adenylate cyclase inhibiting dopamine receptor signaling pathway 8 0.95016 0.36607 4.73E−03

 Regulation of dopamine uptake involved in synaptic transmission 7 0.73861 0.30058 7.00E−03

 Forebrain neuron differentiation 46 0.37687 0.15529 7.62E−03

 Forebrain neuron fate commitment 9 0.80482 0.3527 1.13E−02
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a member of Zinc finger protein family, encodes a pro-
tein containing multiple C2H2-type zinc finger motifs 
that are critical for neurodevelopment [73, 77]. Evidence 
found that ZSCAN31 might underlie several neurode-
velopmental disorders, including ADHD, ASD, Tourette 
syndrome, and SCZ [82, 83]. FBN3 encodes a member of 
the fibrillin protein family. Previous GWAS analysis have 
indicated associations between FBN3 and ADHD, brain 
morphology [74, 106].

Furthermore, our PRS analyses revealed ADHD PRS 
significantly predicted DD scores, providing additional 
evidence for a shared genetic basis between ADHD and 
short-term VSWM. Relationships between PRS and other 
three indexes failed to pass the permutation test, which 
might suggest the validity of DD, but not other indexes, 
as a neuropsychological endophenotype for ADHD. 
And this result was not surprising, because the delayed 
recall was one of the most consistent impaired functions 
reported in ADHD during RCFT task, and DD was sup-
posed to demand the most WM load, able to reflect both 
encoding, maintenance, retrieval, organization, local and 
global processing [10, 14–16]. Our findings showed con-
sistency with previous investigations found genetic corre-
lations between ADHD and WM function [29, 107].

(3)	Shared genetic basis between different part of 
VSWM.

Notably, one potentially shared genetic locus between 
DD, DI, and SI is rs56111147 located within the TCL1B 
gene, which encodes a T-Cell Leukemia/Lymphoma-1 
family protein. In addition, the Hi-C data suggested 
that a chromatin loop can form between the genomic 
region (chr14:96,016,337–96026337, hg19) where 
rs56111147 is located and the promoter of TCL1A and 
TCL6 (chr14:96,186,337–96,196,337, hg19). Although 
evidence mainly focused on the involvement of TCLs 
in hematological diseases and cancers, a previous large-
scale GWAS (n = 542,934) study identified associations 
between myopia and TCLs [68]. Further researches need 
to be done to fully understand the role of TCLs play in 
VSWM.

Genes FBN3 and KLF7 were also shared in structure 
scores, i.e., SD and SI. FBN3 encodes a member of the 
fibrillin protein family, mainly localized to extracel-
lular microfibrils of developing skeletal elements, and 
responsible to Weill–Marchesani Syndrome and Mar-
fan syndrome. Evidence also suggested its expression 
in the brain (UniProt/SwissProt) [108]. Although pre-
vious studies have not yet clarified the function FBN3 
plays in nervous system, GWAS studies identified asso-
ciations between FBN3 and ADHD, brain morphol-
ogy, which implied its role in NDDs by altering brain 

development. KLF7 encodes kruppel-like transcrip-
tional regulator family, which regulates cell prolifera-
tion, differentiation, survival and contains three C2H2 
zinc fingers at the C-terminus that mediate binding to 
GC-rich sites. KLF7 plays a critical role in neuronal 
morphogenesis and survival of sensory neurons, and 
represses the corneal epithelium differentiation [76]. 
KLF7 are also found to be associated with several psy-
chiatric disorders, including ASD [109, 110], MDD 
[111] and sleep problems [112, 113]. A previous study 
reported that knockdowning KLF7 in human brain 
organoids caused dysregulation of 517 ASD risk genes. 
Moreover, an increase of KLF7 in the neural system in 
KLF7 ± adult mice significantly rescued ASD symptoms 
and the expression of majority of dysregulated ASD 
genes [110]. According to previous literatures, KLF7 
might provide protective effects to the brain through 
regulating the neural axon plasticity and activation of 
the JAK2/STAT3 signaling pathway [114, 115]. While 
there is no research on the potential role KLF7 plays in 
VSWM or ADHD, our results encourage future studies.

(4)	Forebrain commitment and dopamine transport are 
involved with VSWM.

The current study identified that forebrain neuron 
fate commitment and dopamine transport were signifi-
cantly associated with DD and SD, respectively. Fore-
brain neuron fate commitment refers to the process in 
which the developmental fate of a cell in frontal lobe 
becomes restricted, which mostly occurs prenatally 
[116, 117]. Studies have demonstrated that distur-
bances in neural differentiation have profound effects 
on brain development and function, which might con-
tribute to psychiatric disorders and cognitive deficits 
in later life through a variety of mechanisms, including 
aberrant neural migration, impaired synaptogenesis, 
and disruptions in neurotransmitter systems, et, al. Of 
particular interest are the neurotransmitter systems, 
where disruptions in the expression of genes in this 
pathway, including PAX6, BCL11B, GATA2, ASCL1, 
TBL1, NKX2.1 could result in abnormal GABAergic, 
dopaminergic, and glutamatergic neuron development 
[118–124], and are associated with cognitive deficits 
[122, 125–128]. A possible underling pathophysiologi-
cal pathway is that the relevant genes might affect the 
excitatory/inhibitory balance [122–124], which is also 
considered as mechanisms in most psychiatry disorders 
including ADHD [129–131]

To conclude, our results indicated an early onset of 
altered neural substrates occurred during neuronal dif-
ferentiation underlying VSWM and further emphasized 
the involvement of dopaminergic circuit.
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Our study should be interpreted in light of some limi-
tations. Firstly, we solely utilized the RCFT to evalu-
ate VSWM. As previous studies have demonstrated, the 
RCFT is more sensitive to active WM processes [132]. 
Besides, EF is intensively required in RCFT task, which 
might be a confounding factor [12]. Therefore, future 
studies are encouraged to incorporate multiple VSWM 
tests to provide a more comprehensive assessment. Sec-
ondly, although we have performed interaction analyses 
to explore potential confounding effects caused by age, 
it remains difficult to fully address these effects. Future 
studies should take this issue into consideration through 
subgroup analyses or other methods with a larger sample 
size to provide more comprehensive insights.

It is worth noting that, as highlighted by previous find-
ings, complex traits are often influenced by thousands 
or more genetic variants that exert their effects cumu-
latively. The "nominal" variants are believed to contrib-
ute a considerable proportion of the overall heritability 
[28, 133]. Thus, although no significant variants were 
detected by the current analysis, the suggestive variants 
might still provide further insights and lay a foundation 
for future studies in this area.

Conclusion
This study represents a genome-wide association study 
of VSWM, in which several genes, including TCL1B, 
KLF7, and FBN3, were identified as potentially related 
to VSWM. In addition, the brain-expressed gene RAB-
11FIP1 was found to be significantly associated with DD. 
The results of polygenic risk score analyses provided evi-
dence of shared genetic underpinnings between ADHD 
and VSWM, shedding light on the genetic basis of these 
conditions and potentially informing clinical practice in 
the future.
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