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Abstract 

Background  The study aimed to determine how the resting-state EEG (rsEEG) complexity changes both over time 
and space (channels). The complexity of rsEEG and its sex/gender differences were examined using the multivariate 
Multiscale Entropy (mMSE) in 95 healthy adults. Following the probability maps (Giacometti et al. in J Neurosci Meth-
ods 229:84–96, 2014), channel sets have been identified that correspond to the functional networks. For each channel 
set the area under curve (AUC), which represents the total complexity, MaxSlope—the maximum complexity change 
of the EEG signal at thefine scales (1:4 timescales), and AvgEnt—to the average entropy level at coarse-grained scales 
(9:12 timescales), respectively, were extracted. To check dynamic changes between the entropy level at the fine 
and coarse-grained scales, the difference in mMSE between the #9 and #4 timescale (DiffEnt) was also calculated.

Results  We found the highest AUC for the channel sets corresponding to the somatomotor (SMN), dorsolateral net-
work (DAN) and default mode (DMN) whereas the visual network (VN), limbic (LN), and frontoparietal (FPN) network 
showed the lowest AUC. The largest MaxSlope were in the SMN, DMN, ventral attention network (VAN), LN and FPN, 
and the smallest in the VN. The SMN and DAN were characterized by the highest and the LN, FPN, and VN by the low-
est AvgEnt. The most stable entropy were for the DAN and VN while the LN showed the greatest drop of entropy 
at the coarse scales. Women, compared to men, showed higher MaxSlope and DiffEnt but lower AvgEnt in all channel 
sets.

Conclusions  Novel results of the present study are: (1) an identification of the mMSE features that capture entropy 
at the fine and coarse timescales in the channel sets corresponding to the main resting-state networks; (2) the sex/
gender differences in these features.
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Introduction
Despite an increasing number of studies [6, 40, 73, 95], 
the resting-state complexity of EEG signals remains 
poorly understood. New complexity measures, which 
are not directly comparable, along with unstructured 
terminology, complicate this task. We analyzed the bio-
electrical resting-state signal complexity with the use 
of multivariate extension of Multiscale Sample Entropy 
(MSE [15]; multivariate extension of MSE, [2–4]. Since 
this method estimates the repetition in the temporal pat-
terns of a signal across multiple timescales and space 
(electrodes) (spatiotemporal complexity profiles of sig-
nals [15]), it appears to be the best statistical approxi-
mation of the system dynamics and does not directly 
represent information processing but rather the condi-
tions in which it occurs.

Complexity understood in this way may reflect the 
functional couplings (temporal correlations) between 
anatomically distinct regions [59, 66, 94, 97], the range 
of possible responses to environmental demands [35], 
implementation of Bayesian inference by the neural cir-
cuits [57], the brain’s ability to explore alternative states 
[23, 34, 43, 63], a moderate noise level in the system 
which aids information processing [31], regulation of 
synchrony between/within areas [37] or the interplay 
between functional segregation and integration within 
the brain [86, 92]. The brain signal complexity can be 
best explored at rest when diverse states (functional net-
works) are activated or deactivated over time, the brain 
is free from tasks and stimuli influence, and never settles 
on a fixed point [13, 22]. The EEG/MEG techniques, with 
a millisecond temporal resolution, are considered to be 
the most adequate to detect these short and fast network 
state transitions [53, 84].

The EEG/MEG signals could be treated as external 
observations of a dynamical system at rest [82, 87]. To 
investigate this system we propose to use the sample 
entropy (SampEn) measure, introduced specifically for 
the analysis of non-stationary, physiological signals [76]. 
The SampEn is an unbiased version of the approximate 
entropy (ApEn), which essentially measures the logarith-
mic likelihood that, for n points of time series data, vec-
tors of length m that are within radius r from each other, 
remain within this radius from each other if their length 
is incremented to n + 1 data points [70]. From a math-
ematical perspective such formulation represents a real-
world computable analogue of the Kolmogorov-Sinai 
entropy (KS entropy) of a dynamical system which is 
obtained as a theoretical value from the same expression 
as used for ApEn, in the limit of data points n and vec-
tor length (i.e., the embedding dimension) m approach-
ing infinity and the similarity radius approaching zero 
[30, 70]. Therefore, for the EEG/MEG signals, ApEn and 

its unbiased extension (SampEn) allow to capture neural 
network state transitions by evaluating their complex-
ity (entropy) in the time domain, as both can be viewed 
as computable approximations of the KS entropy of the 
dynamical system of a working brain. Utilizing this fact, 
Costa, Goldberger and Peng (2002) proposed the Multi-
scale Sample Entropy (MSE) measure by computing the 
SampEn over coarse-grained time series obtained from 
the original signal by averaging it over non-overlapping 
segments of increasing length (scale). Computation of 
the SampEn over subsequent scales allows to distinguish 
between complexity profiles (understood as values of 
SampEn across scales) of signals conveying information 
only on shortest (non-averaged) scales such as white 
noise, and complexity profiles of signals such as colored 
noise, which exhibit more complex information (i.e., 
higher entropy represented by SampEn values) on longer 
(averaged) scales.

Building on the MSE approach, for a multivariate signal 
such as EEG, the multivariate MSE (mMSE), proposed by 
Ahmed and Mandic [2] and [3, 4], examines the complex-
ity both across time (scales) and space (electrodes) and is 
able to reveal spatiotemporal complexity profiles of mul-
tivariate signals, as opposed to only temporal complexity 
profiles obtained through univariate MSE method. As the 
EEG/MEG signals are multivariate, the mMSE method 
has been selected as the one providing the most insight 
into the entropy of the dynamical system of a working 
brain through its spatiotemporal complexity profiles.

The resting-state EEG (rsEEG) studies have produced 
inconsistent results regarding the scalp topography of 
entropy parameters. For example, the maximal complex-
ity values were located over the posterior region [6, 40] 
or the frontal, central and temporal areas [95]. Racz et al. 
[73] found the highest permutation entropy measures 
of rsEEG activity at the electrodes corresponding to the 
somatomotor and dorsal attention networks. In our pre-
vious study [29] the mMSE method revealed the largest 
complexity of the signals from the electrodes placed over 
the bilateral parietal cortex whereas the smallest entropy 
values were obtained separately for the left and right 
frontal and parietal areas.

The current work presents the mMSE results of spon-
taneous EEG signal acquired using the channel sets 
assigned to the 7 main functional resting-state networks 
[88], extracted from a large fMRI database following 
the probability maps provided by Giacometti et  al. [38]. 
Therefore, we expect that our rsEEG entropy outcomes 
will resemble the resting-state fMRI complexity pat-
terns, found by other authors, i.e. the highest entropy 
values in the intrinsic (large-scale) neural networks (the 
default mode network, DMN and/or the frontopari-
etal network, FPN) [59, 67–69] and the lowest—in the 
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sensory networks (somatomotor, visual, auditory) [47, 
65, 67, 69, 99]. The greatest complexity of spontaneous 
EEG signal over the areas corresponding to the DMN 
might reflect constant information processing within and 
across this network [11, 74]. Since the FPN is connected 
with the DMN for executive control of introspective pro-
cesses [26] which are favored by a resting condition, a 
high entropy level in this network is also expected. The 
sensory networks might be characterized by the lowest 
rsEEG signal entropy due to a lack of external stimuli or 
motor reactions to be performed at rest.

We hypothesize that the intrinsic, distributed cogni-
tive control networks (the DMN and the FPN), will dem-
onstrate the smallest complexity of spontaneous EEG 
signal at the fine scales (considered as reflecting local 
information processing) and the greatest entropy at the 
coarse scales (associated with long-range interactions in 
the brain) [64, 93, 97]. The task-positive networks, on 
the other hand, as dependent on task demands, might be 
characterized by the lowest entropy levels at both time-
scales at rest.

Furthermore, given the limited number of studies 
showing the dynamics of changes in entropy level across 
the timescales, we intend to investigate whether a rela-
tively high complexity of each network at the fine scales 
is maintained or reduced at the coarse scales.

The second objective of the present study was to 
determine the sex/gender (s/g) differences in the mMSE 
parameters of rsEEG activity. Overall, regardless of the 
different methods used to calculate neural complexity, 
women’s brains have been more complex than men’s [1, 
32, 50, 56, 72, 98]. For example, Luders et al. [56] found 
greater right-hemispheric cortical complexity, i.e. spatial 
frequency of the brain surface gyrification and fissura-
tion, in females compared to males. Wang demonstrated 
higher SampEn values of resting-state fMRI activity in 
women than men in most cortical areas [98]. Some rsEEG 
studies also revealed that females, relative to males, dis-
played greater complexity of the signals recorded over 
the anterior, central and posterior regions [1, 32, 72].

The s/g differences in rsEEG complexity have been also 
investigated separately for the frequency bands [46, 50]. 
Specifically, women exhibited higher ApEn parameters 
than men in the lower bands (delta, theta, low alpha) 
whereas in the high frequency bands (beta, gamma), 
men demonstrated greater entropy levels [46]. These out-
comes suggest a complex pattern of s/g differences in the 
excitability of resting-state networks.

In our previous work [29] we found different patterns 
of relationship between fluid intelligence and the spon-
taneous EEG signal entropy in men and women. Here 
we will investigate the ‘pure’ s/g differences in the mMSE 
features, without a reference to any cognitive task. In line 

with the previous studies [1, 72, 98] we hypothesize that 
women will demonstrate higher total rsEEG complexity 
than men and this effect will be more likely observed for 
all analyzed electrode sets (networks).

At rest women display stronger functional connections 
within the DMN [5, 10, 20, 77] and spent more time in 
this network compared to men [19, 90] while men have 
more interactions in the somatomotor network (SMN) 
[5, 77] and a greater occurrence rate of microstate cor-
responding to the SMN [54]. Therefore, considering the 
neural complexity as reflecting functional connectivity or 
the brain capacity to explore alternative states, we might 
assume that, in our study, women will show a higher 
entropy level of rsEEG signal from the electrodes corre-
sponding to the DMN and men will have greater degrees 
of entropy in the sensory networks.

Men and women are thought to demonstrate different 
patterns of local and global information processing in the 
brain [45, 46, 79, 89, 100]. Assuming that the brain sig-
nal complexity at fine scales represents local information 
processing and the entropy at coarse scales reflects long-
range interactions [17], we expect to see s\g differences 
in the mMSE features corresponding to both these scales. 
Following the resting-state fMRI studies showing that 
women have more within-network (short-range) func-
tional connections and men produce more (long-range) 
interactions between the attention, memory, default 
mode and sensory networks [45, 79, 89], we hypothesize 
that females will demonstrate a higher entropy level at 
the fine scales whereas males will display greater com-
plexity at the coarse scales.

Materials and methods
Participants
Out of 100 healthy young adults, 95 (42 women and 53 
men, mean age = 25.74 ± 4.5 year, age range: 20–41 years, 
for details refer to Additional file 1: Appendix S1), right-
handed, with normal or corrected-to-normal vision, 
comprised the study sample (5 persons were excluded 
due to excessive artifacts in the EEG signal). All partici-
pants did not suffer from any neurological/psychiatric 
disorders, had no history of brain injury or drug abuse, 
and did not take any medications affecting the Central 
Nervous System (as was revealed by a screening proce-
dure under the supervision of a clinical psychologist and 
a neurologist). All participants received monetary remu-
neration for their participation in the study.

The study was approved by the Research Ethics Com-
mittee at the Faculty of Humanities, Nicolaus Copernicus 
University in Toruń, Poland (The Consents No. 6/2018 
and 5/2021) and by the Bioethics Committee of the Nico-
laus Copernicus University in Toruń, Poland (The Per-
mission No. KB 196/2016). The study is congruent with 
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the principles of the WMA Declaration of Helsinki. Each 
subject provided written informed consent to take part in 
the study after all procedures had been fully explained.

EEG data acquisition and pre‑processing
Each participant went through a 5-min session of rsEEG 
signal acquisition with eyes open. After arrival and before 
the EEG recording procedure, participants were asked to 
sit at rest in order to calm down emotions which could 
potentially affect resting state EEG. The instruction was 
to focus on the fixation point in the center of the screen 
and do not think of anything in particular. The data 
were acquired using 128 electrodes Ag/AgCl electrodes 
(Actipower and Acticap; Brain Products GmbH) at a 
sampling rate of 500 Hz. The electrodes were positioned 
according to the extended 10–20 system. The signal was 
referenced to FCz and FPz was the ground electrode. The 
impedance was kept below 10 kΩ during the whole data 
registration.

The data were processed using MATLAB (ver. R2017a, 
Mathworks Inc., Natick MA, USA) and the EEGLAB 
toolbox (ver. 14) [24]. EEG signals were down-sampled 
to 256  Hz and high pass (> 1  Hz) filtered. Bad channels 
were removed using an automated procedure (POP_
REJCHANSPEC) based on signal SD (rejection thresh-
old of  > 5 SD was used for the frequency range: 0–5 Hz 
and > 2.5 SD for the frequency range: 5–40  Hz). Epochs 
containing unusually high amplitudes were detected and 
removed using a threshold of 444 μV. The remaining sig-
nal was low-pass filtered (< 40 Hz) and re-referenced to 
the average (common) reference. Epochs containing unu-
sually high amplitudes were found and removed using a 
threshold of 222 μV. Independent components (IC) were 
identified and rejected in an automated manner using 
the ADJUST tool (an EEGLAB plugin). The previously 
removed or missing channels were interpolated (POP_
INTERP) purely for the sake of fitting the pre-processed 
data into the EEGLAB format for subsequent analysis 
and have not been used otherwise. Finally, we identified 
and removed the epochs containing amplitudes > 111 μV.

For further analysis a number of continuous, uncut, 
disjoint 10,240 samples (40  s) long epochs from each 
dataset were extracted.

mMSE analysis
The rsEEG signal was analyzed using the multivariate 
Multiscale Sample Entropy (mMSE) which is an exten-
sion of the MSE method based on the sample entropy 
parameter [76] for coarse-grained (averaged) time 
series proposed by Costa et al. (15, 16). A full descrip-
tion of the mMSE algorithm is included in our previous 
work [29].

The mMSE analysis was conducted on the EEG 
activity registered from only selected electrodes. Spe-
cifically, in each participant the mMSE vectors were 
constructed based on the rsEEG signals from the chan-
nel sets corresponding to the 7 resting-state functional 
networks labeled after the work by Yeo et  al. (2011): 
the default mode (DMN, T7, Fz, F4, T8, Fp2), the dor-
sal attention (DAN, P3, P4, C3, C4, Pz), the frontopari-
etal (FPN, Fp1, F4, F8, F7, F3), the limbic (LN, F7, Fp2, 
F8, T7, T8), the somatomotor (SMN, C3, T8, T7, C4, 
Cz), the ventral attention (VAN, F8, F7, Cz, T7, T8), 
and the visual (VN, Pz, P8, P7, O1, O2). The electrodes 
were assigned to each network following the probability 
maps provided by Giacometti et al. [38].

mMSE features
Taking into account the specific skewed inverted-U 
shape profile of the mMSE vector (Fig. 1), observed in 
the previous studies (e.g., [15, 29, 51, 96, 98], the fol-
lowing features of the mMSE curve were determined: 
the area under curve (AUC​) to characterize the general 
(total) entropy level, the MaxSlope and the AvgEnt to 
capture the complexity at the high-frequency fine scales 
and at the low-frequency coarse scales respectively, 
as well as the DiffEnt to check changes of dynamics 
between the entropy level at the fine and coarse-grained 
scales, the difference in mMSE between the #9 and #4 
timescale (DiffEnt) was also calculated.

The AUC​ is obtained from trapezoidal approxima-
tion of the area delimited by the mMSE vector and is 
considered as the total EEG complexity represented 
by the mMSE vector. The MaxSlope is the maximum 
pairwise difference between the first four elements (1:4 
timescales) of the mMSE vector divided by the indi-
ces’ difference. The MaxSlope represents the maximum 
complexity change of the EEG signal at the high-fre-
quency fine-scales. The AvgEnt is defined as the average 
value of the last four elements (9:12 timescales) of the 
mMSE vector and it can be considered as representing 
the baseline value of entropy of the EEG signal at the 
low-frequency coarse-scales. These features have been 
already used in the analysis of neurophysiological data 
such as EEG or ECG (e.g., [15, 21, 96] bringing impor-
tant information about the complexity of these signals. 
The DiffEnt was obtained as the difference in entropy 
levels between the #9 and #4 timescales for each net-
work. The scale #4 represents the peak mMSE values 
at the fine scales whereas the scale #9 reflects the com-
plexity level at the coarse scales where the entropy val-
ues begin to stabilize.
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The scripts used to determine all these features are 
placed here: https://​github.​com/​IS-​UMK/​compl​exity/​
tree/​master/​MMSE_​featu​res.

Statistical analysis
The statistical analysis was divided into two parts. The 
first part contained an assessment of the quality of the 
data obtained using the mMSE algorithm, which included 
the evaluation of the shape of the mMSE curve, but also 
the internal consistency of the mMSE vectors and their 
features. The second part consisted of statistical tests of 
both channel set and s/g effects on the mMSE features.

In the first part (assessment of the quality of the data), 
both the vectors mMSE and their features (AUC​, MaxS-
lope, AvgEnt, and DiffEnt) were analyzed. In the second 
part (statistical tests of hypothesis), only the mMSE fea-
tures were used.

To evaluate the internal consistency of the mMSE vec-
tors and their features, Cronbach’s alpha coefficients [18] 
were determined for each network, timescale (1–12), and 
feature (AUC​, MaxSlope, AvgEnt, and DiffEnt).

Next, the series of mixed ANOVA, with Greenhouse–
Geisser correction, with the “Network” (7 levels) as a 
within-subject factor and the sex/gender as a between-
subject factor was applied to check the effects of both 
channel set and s/g on the mMSE features (AUC​, MaxS-
lope, AvgEnt, and DiffEnt).

Results
Internal consistency of the mMSE vectors and their 
features
The obtained mMSE vectors were stable and character-
ized by a desired skewed inverted-U shape across the 
time scales (Fig.  1). The mMSE values stabilized at the 
coarse-grained time series for scale ε = 12, comparable to 
our previous work [29].

To evaluate the internal consistency (homogeneity) 
of the mMSE vectors and their features, the Cronbach’s 
alpha coefficients [18] were determined for each network, 
timescale (1–12) and feature (AUC​, MaxSlope, AvgEnt, 
and DiffEnt). The 5-min rsEEG data acquisition block was 
divided into 40-s. segments resulting in 10,240 samples 
(the signal was down-sampled to 256 Hz). We chose the 
first three uncut segments of the signal and treated each 
segment as an ‘item’.

The Cronbach’s alpha coefficients calculated for all net-
works and scales (1–12) were high or very high (Cron-
bach’s alphas: 0.828–0.968), especially for the fine (1–4; 
alphas: 0.912–0.968) and coarse scales (9–12; alphas: 
0.887- 0.935) (Fig. 2).

The Cronbach’s alphas coefficients for particular net-
works and mMSE features are shown in Table  1. All 
values were in the range from 0.840 to 0.928 (for AUC​: 

Fig. 1  The skewed inverted-U shapes of the mMSE vectors 
for each channel set. The X-axis represents time scales (for details 
see Introduction Section) and the Y-axis represents the average 
of the mMSE values across the participants. Error bars represent 
the confidence intervals (95% CI). A shows the profile in the whole 
sample (F(1.259, 117.07) = 286.219, p < 0.001, η2

p = 0.755). The red 
box represents the time scales at which women showed higher 
resting-state EEG signal complexity than men (“W > M”) whereas 
the blue box includes the scales with larger complexity values 
in men compared to women (“W < M”). B shows a complexity 
profile for males, and C for females. Error bars represent 
the confidence intervals (95% CI). mMSE vectors were calculated 
using the following parameters for all channel sets: m = 2, r = 0.15, 
p = 4, ε = 12, where m is the embedding coefficient, r is the similarity 
threshold, p is the number of channels in a given channel set, and ε 
is the time scale factor. The time delay τk was set to 1 for k = 1,2,…,p. 
DMN- default mode network, DAN-dorsal attention network, 
FPN-frontoparietal network, LN-limbic network, SMN-somatomotor 
network, VAN-ventral attention network, VN-visual network

https://github.com/IS-UMK/complexity/tree/master/MMSE_features
https://github.com/IS-UMK/complexity/tree/master/MMSE_features
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from 0.855 to 0.917; for MaxSlope: from 0.886 to 0.915; 
for AvgEnt: from 0.907 to 0.928, for DiffEnt: from 0.950 
to 0.973), suggesting that the mMSE features had either a 
relatively high or a very high internal consistency.

Total rsEEG complexity and the rsEEG complexity 
at the fine and coarse timescales vary across the networks
The mixed ANOVA, calculated on the AUC​ values, with 
the “Network” (7 levels) as a within-subject factor and the 
“S/g” as a between-subject factor, revealed a significant 
main effect of the “Network” (Greenhouse–Geisser-cor-
rected F(3.318, 308.558) = 29.484, p < 0.001, η2

p = 0.147).

The Bonferroni-corrected post-hoc comparisons have 
shown the highest AUC​ values for the SMN, DAN, and 
the DMN (SMN = DAN = DMN, p > 0.05) and the low-
est for the VN, LN, and FPN (VN = LN = FPN, p > 0.05). 
In the case of SMN, the AUC​ was greater compared to 
the FPN, LN, VAN, VN (p < 0.001) and to the DMN 
(p = 0.005). The DAN was characterized by significantly 
(p < 0.001) higher AUC​ than the FPN, LN, and VN. The 
AUC​ values for the DMN and the VAN were significantly 
(p < 0.01) higher than for the FPN, LN, and VN. The 
descriptive statistics for the AUC​ features of the mMSE 
vectors are presented in Table 2 (separate for women and 
men, refer to Additional file 1: Appendix Table S1).

There was a significant main effect of the “Net-
work” for both MaxSlope (Greenhouse–Geisser-cor-
rected F(4.457, 414.490) = 15.983, p < 0.001, η2

p = 0.147) 
and AvgEnt (Greenhouse–Geisser-corrected F(3.350, 
311.547) = 31.949, p < 0.001, η2

p = 0.256) mMSE features. 
Table 2 contains the descriptive statistics for the MaxS-
lope and AvgEnt features of the mMSE vectors. The com-
parisons of the MaxSlope and AvgEnt values between 
particular channel sets are shown in Table 3.

Considering the AvgEnt feature, both SMN and DAN 
(SMN = DAN, p > 0.05) were characterized by the highest 
value, significantly (p < 0.001) different from other net-
works. The LN, FPN, and VN were characterized by the 
lowest entropy (LN = FPN = VN). The LN and FPN dem-
onstrated smaller (p < 0.05) degrees of entropy at coarse 
scales compared to the DMN, DAN, SMN, and the VAN 
whereas the VN was significantly different (p < 0.001) 

Fig. 2  The internal consistency of each timescale for the channel sets corresponding to the resting-state networks. The X-axis represents 
the timescales (1–12) and the Y-axis represents the Cronbach’s alphas across the networks. DMN— default mode network, DAN-dorsal attention 
network, FPN frontoparietal network, LN limbic network, SMN somatomotor network, VAN ventral attention network, VN visual network

Table 1  The internal consistency determined using the 
Cronbach’s alpha coefficients calculated for first three 
segments of resting-state EEG signal, separately for each mMSE 
feature (AUC, MaxSlope, AvgEnt, DiffEnt) and the channel sets 
corresponding to seven resting-state networks. 

DMN default mode network, DAN dorsal attention network, FPN frontoparietal 
network, LN limbic network, SMN somatomotor network, VAN ventral attention 
network, VN visual network

Network AUC​ MaxSlope AvgEnt DiffEnt

DMN 0.855 0.896 0.912 0.971

DAN 0.917 0.840 0.923 0.950

FPN 0.890 0.903 0.923 0.973

LN 0.893 0.915 0.916 0.971

SMN 0.893 0.858 0.928 0.962

VAN 0.909 0.886 0.925 0.968

VN 0.914 0.890 0.907 0.961
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only from the DAN and the SMN. The AvgEnt value for 
the DMN was significantly (p < 0.001) lower than for the 
DAN and SMN but higher compared to the FPN and LN. 
There were no meaningful (p > 0.05) differences between 
this parameter for the DMN, VAN, and the VN.

The changes in the entropy level across the timescales
The main effect of “Network” was significant (Green-
house–Geisser-corrected F(2.762, 259.674) = 42.57, 
p < 0.001, η2

p = 0.312). The post-hoc analysis revealed 

the highest DiffEnt values for the LN whereas, the DAN 
and the VN (DAN = VN) demonstrated the lowest Diff-
Ent values, significantly different from all other networks. 
(Fig. 3; Table 2).

Men and women are different in the rsEEG complexity 
at the fine and coarse timescales
For the AUC​ both the main effect of “S/g” (Greenhouse–
Geisser-corrected F(1,93) = 0.159, p = 0.691, η2

p = 0.002) 
and the “S/g × network” interaction (Greenhouse–
Geisser-corrected F(3.318, 308.558) = 0.670, p = 0.586, 
η2

p = 0.007) were nonsignificant.
There was a significant main effect of “S/g” for the Max-

Slope (Greenhouse–Geisser-corrected F(1,93) = 4.485, 
p < 0.037, η2

p = 0.046) and the AvgEnt (Green-
house–Geisser-corrected F(1,93) = 9.023, p < 0.003, 
η2

p = 0.088). Women showed greater MaxSlope values 
(M = 0.52 ± 0.017) than men (M = 0.472 ± 0.015) whereas 
men had higher AvgEnt (M = 1.991 ± 0.037) than women 
(M = 1.823 ± 0.042). For both MaxSlope and AvgEnt, the 
“S/g × network” interaction was nonsignificant (MaxS-
lope: F(4.457, 414.490) = 1.377, p = 0.237, η2

p = 0.015, and 
AvgEnt: (F(3.350, 311.547) = 0.304, p = 0.843, η2

p = 0.003).
We also found a significant main effect of “S/g” for the 

DiffEnt (Greenhouse–Geisser-corrected F(1,92) = 15.701, 
p < 0.001, η2

p = 0.146). In general, women showed 
greater differences between the #9 and #4 scales 
(M = -0.512 ± 0.049) than men (M = -0.255 ± 0.043) 
(see: Fig.  1 panel A and B for further exploration). The 
“S/g × network” interaction was non-significant (Green-
house–Geisser-corrected F(2.775, 255.193) = 2.154, 
p = 0.099, η2

p = 0.023).

Discussion
We are first to compare the rsEEG mMSE features 
between the electrode sets corresponding to the main 
resting-state networks. A novel result here is also an 
identification of the sex/gender differences in the rsEEG 
complexity at the fine and the coarse scales. To the best 
of our knowledge, this work is the second one, follow-
ing Dreszer et al. [29], that quantify ed the rsEEG signal 
complexity using the mMSE algorithm, i.e. an extension 
of the multiscale SampEn (MSE) [15] to the multivariate 
timeseries (signals, e.g., EEG), proposed by Ahmed and 
Mandic (25), [3, 4]and Looney et al. [55]. Therefore, the 
key property of the mMSE, not present in the SampEn 
and MSE methods, is that it is designed for analysis of 
multivariate signals whereas the SampEn and MSE are 
applicable to univariate signals only. Moreover, just as the 
MSE, the algorithm, used here, examines the complexity 

Table 2  Descriptive statistics for the AUC​ (area under curve), 
MaxSlope, AvgEnt and the DiffEnt features of the multivariate 
Multiscale Entropy (mMSE) vector determined for the channel 
sets corresponding to the seven resting-state networks (Yeo et al. 
2011). 

DMN default mode network, DAN dorsal attention network, FPN frontoparietal 
network, LN limbic network, SMN somatomotor network, VAN ventral attention 
network, VN visual network

Network M SD Skewness Kurtosis

AUC​

 DMN 23.448 2.790 −0.688 0.697

 DAN 23.617 3.349 −0.624 0.593

 FPN 21.964 3.007 −0.700 0.616

 LN 21.879 3.081 −0.835 0.510

 SMN 24.200 2.677 −0.941 1.752

 VAN 23.066 3.033 −0.893 1.009

 VN 21.381 3.554 −0.554 −0.186

MaxSlope

 DMN 0.519 0.148 0.406 −1.072

 DAN 0.466 0.117 0.843 0.849

 FPN 0.491 0.147 0.388 −1.097

 LN 0.514 0.150 0.170 −1.132

 SMN 0.517 0.131 0.567 −0.707

 VAN 0.520 0.147 0.246 −1.048

 VN 0.426 0.127 0.729 0.053

AvgEnt

 DMN 1.944 0.331 −0.297 −0.461

 DAN 2.078 0.365 −0.368 −0.348

 FPN 1.831 0.334 −0.208 −0.070

 LN 1.760 0.323 −0.190 −0.298

 SMN 2.032 0.324 −0.469 0.057

 VAN 1.924 0.317 −0.254 −0.229

 VN 1.846 0.341 −0.289 −0.522

DiffEnt

 DMN −0.438 0.409 −0.168 −0.421

 DAN −0.195 0.303 −0.590 0.580

 FPN −0.391 0.404 −0.751 0.886

 LN −0.502 0.414 −0.312 −0.356

 SMN −0.395 0.352 −0.189 −0.093

 VAN −0.424 0.381 −0.476 0.218

 VN −0.223 0.307 −1.272 2.244
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at both fine-grained (short) and coarse-grained (long) 
timescales (M.U. [2–4, 55]. The shape of mMSE vectors 
in our study (Fig. 1) resembles a typical skewed inverted 
U-pattern [15, 16] which is believed to result from the 
shortest scales representing only a random signal and the 
longest scales reflecting a more stable system, character-
ized by a reduced variance [15, 62].

The highest resting‑state EEG entropy at the scalp 
locations corresponding to the SMN and the DAN
We found the highest, relative to other networks, AUC​ 
values, representing a total entropy, in the electrode 
sets corresponding to the SMN and the DAN (Fig.  1, 
Table  2). A similar location of the largest complexity (a 
central area) has been identified by other authors [32, 73, 
95], however, the SMN also demonstrated relatively low 
entropy levels [47, 65, 67]. These inconsistent results may 
arise from different methodology, i.e. various brain sig-
nals (EEG,MEG or fMRI), resting-state conditions (eyes 
open or eyes closed) and algorithms used for data com-
putation (e.g., Lempel–Ziv Complexity, ApEn, SampEn).

Spontaneous SMN fluctuations reflect activation of 
the motor system in the absence of any movement [9] 
whereas the DAN is involved in the top–down atten-
tion control and the expectation of objects at a particu-
lar location or with certain features [14]. The topography 
and strength of resting-state networks are associated 
with the history of network activation [22]. Therefore, 
the highest degrees of entropy in the SMN and DAN 

may reflect their increased functional connectivity with 
other regions or a large repertoire of possible responses 
to stimuli resulting from a great experience in coding fea-
tures/spatial locations of the objects and motor response 
to these stimuli. Since the SMN and the DAN are the 
“task-positive” networks, their complexity levels might 
be more influenced by online processing and the changes 
in cognitive demands than the intrinsic networks such as 
the DMN. When there are no external tasks or stimuli, 
the SMN and DAN are just prepared to respond to them 
and in this condition there is probably no need to com-
municate extensively with other regions. In this context, 
we would be rather inclined to accept the theory postu-
lating that greater degrees of neural complexity represent 
less information exchanged across brain areas [37]. Oth-
erwise, the brain signal entropy may not directly reflect 
the “activity” or amount of information processing which 
has been already suggested by other authors (e.g., [67].

In the current study the SMN and the DAN demon-
strated the greatest AvgEnt values corresponding to the 
complexity at the coarse scales (Fig.  1, Table  2) which 
might represent a greater capacity of these networks to 
process information globally, across distributed brain 
regions [17, 64, 94]. The long-range connections in the 
brain play an important role in perception [86] and infor-
mation integration [48] which makes them crucial for the 
main functions of the SMN and the DAN. Congruently 
with [69] who found the highest positive correlations 
between the complexity at the coarse timescales and 

Fig. 3  The dynamics of MSE changes (DiffEnt: the difference between #9 and #4 timescales) for particular resting-state networks 
across the timescales. DMN-default mode network, DAN-dorsal attention network, FPN frontoparietal network, LN limbic network, SMN 
somatomotor network, VAN ventral attention network, VN-visual network. DiffEnt values for the limbic network were significantly higher compared 
to other networks, marked on plot by the red arrow. On the other hand, both DAN and VN exhibited significantly lower values, indicated by blue 
arrows
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functional connectivity of the fMRI resting-state signal 
for the SMN and VN, the entropy at the scalp location 
corresponding to the SMN in our study might represent 
long-range interactions with other areas. The rsEEG sig-
nal from the electrode sets corresponding to the SMN 
also demonstrated the greatest complexity at the fine 
scales (Fig. 1, Table 2) suggesting the strongest, compared 
to other networks, short-distant functional couplings, 
and local synchronization across connected regions [64, 
94].

Inconsistently with the previous results [59, 67, 69], the 
DMN in our study did not demonstrate the largest rsEEG 
complexity but, still, the AUC​, MaxSlope and AvgEnt val-
ues for this network were among the highest, same as for 
the VAN (Fig. 1, Table 2). A relatively high entropy level 
in the DMN and the VAN across the timescales might be 
interpreted as representing greater information process-
ing by both local and distributed neural assemblies. The 
DMN is considered a critical gateway for transferring 
information within local and across distributed networks 
[8, 12] which may be reflected in high degrees of entropy 
at the fine and the coarse scales. However, in light of the 
evidence showing that the DMN complexity is one of 
the least associated with the functional couplings [69], 
the interpretation of entropy in the context of func-
tional connectivity becomes less obvious than in the case 
of other networks. The DMN is “active” at rest [11, 75] 
when its “information processing” relies on the spontane-
ous generation of images, voices, thoughts, and feelings 
that are stimulus-independent and resulted from mind 
wandering [58] and/or monitoring the external environ-
ment [83]. Therefore, it is even more natural to interpret 
a high complexity of this network in terms of extensive 
transitions between states and the brain’s tendency to 
wander [43, 63].

The lowest resting‑state EEG entropy at the scalp locations 
corresponding to the LN, VN and the FPN
The lowest total rsEEG entropies were observed for the 
channel sets linked to the LN, VN and the FPN (Fig. 1, 
Table  2). Similar results have been obtained by other 
authors in the case of VN [47, 65, 67, 99] or the LN [65, 
67], however, the results suggesting the highest degrees 
of complexity in these two networks, compared to oth-
ers, have been also reported [47, 85]. In the current study 
the VN showed the smallest total entropy and the com-
plexity at both fine and coarse scales. Similarly to the 
VN, the LN demonstrated one of the lowest AUC​ and 
AvgEnt values. These outcomes might reflect less tran-
sitions between states [31] and/or reduced (short- and 
long-distant) functional connections of these networks 
with other regions [64]. Since the VN is mainly activated 
by visual stimuli, it was probably not very involved at rest 

when the participants are asked to keep their eyes fixated 
on one point in space and avoid any ocular movements. 
Similarly, the resting protocol favors a state of relaxation 
and calmness where the LN might be not particularly 
engaged. In this context the brain entropy would directly 
reflect its activity.

In contrast to other authors [59, 65, 67, 69], we demon-
strated that the FPN was characterized by one of the low-
est entropies (Fig. 1, Table 2). The FPN is considered as 
an intrinsic network, recruited by executive control tasks 
[28], and its complexity, similarly to the DMN, is rather 
expected to be among the highest at rest. A relatively low 
FPN entropy level, found here, may be explained refer-
ring to the method of obtaining the mMSE vectors. In 
this context a small complexity in the FPN might rep-
resent a lack of meaningful spontaneous interactions 
between the frontal and parietal regions forming this 
network. Indeed, in our previous study [29] where the 
mMSE method was applied to quantify rsEEG complex-
ity, the parietal region was characterized by the great-
est entropy whereas the frontal areas demonstrated one 
of the lowest entropies. Thus, we might assume that the 
frontal and the parietal regions, analyzed together as the 
FPN, will demonstrate different entropy levels than the 
same areas examined separately. To test this assumption, 
an additional mMSE analysis was performed on the cur-
rent database but using the channel sets from our previ-
ous work [29]. We found a similar complexity pattern in 
case of both former and current datasets revealing the 
highest degrees of total complexity and the entropy at 
the coarse scales separately for the frontal and parietal 
regions (see Additional file 1: Appendix Figs. S2 and S4 ). 
Therefore, we might carefully conclude that the low FPN 
entropy in the present study results from different spa-
tiotemporal patterns of spontaneous fluctuations in the 
anterior and posterior part of this network.

Resting‑state EEG entropy range between the fine 
and the coarse timescales
In the current study the LN showed the greatest com-
plexity range, i.e. among the highest entropy levels at the 
fine scales and the lowest at the coarse scales (Fig. 1 and 
3, Table 2). A similar complexity pattern was reported by 
McDonough and Nashiro [59] for the Cingulo-Opercular 
Network (CON) whose core hubs (the dorsal anterior 
cingulate cortex and the insula) are involved in emotional 
processing [27]. Such a mMSE profile of the LN, possibly 
reflecting the synchrony of neural assemblies at the fine 
scales and desynchrony at the coarse scales [7], may rep-
resent a process of emotional adaptation to the resting-
state condition.

The DAN and the VN demonstrated relatively stable 
mMSE patterns across the timescales (had the smallest 
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DiffEnt values, Fig.  3, Table  2) suggesting comparable 
amount and strength of local and global information pro-
cessing. After reaching a relatively high complexity level 
both these networks showed a slow decrease of entropy 
(Fig. 1) which may reflect keeping balance between neu-
ral excitation and inhibition processes.

The DAN could be also considered as a separable, sta-
ble, internally more coherent, module in the brain [42]. 
The complexity of the task-positive networks such as 
the DAN and the VN, may change more in a task than 
at rest [59]. Therefore, a small differences in the entropy 
level at the fine and the coarse scales (low DiffEnt values) 
in the DAN and the VN may result from a relatively sta-
ble amount of visual stimulation and recruited cognitive 
resources during the resting state.

Interestingly, the DMN and the VAN in our study had 
almost overlapping mMSE vector shapes (Fig. 1) showing 
among the highest MaxSlope and AvgEnt values relative 
to other networks (Table 2). This effect is hard to explain 
in terms of sharing the same channels by these networks 
(the DMN and the VAN had only two common positions: 
T7 and T8). It is of note that we analyzed the rsEEG sig-
nal from the electrode set corresponding to the VAN, 
extracted by Yeo et al. (2011), and this network includes 
both the CON and the “classic” VAN which have dem-
onstrated strong synchronization at rest [27, 71] possibly 
reflected in the great degrees of rsEEG entropy.

The DMN is considered as a part of the task-negative 
system whereas the VAN/CON is identified as a task-
positive network [52]. In this context the DMN and the 
VAN/CON were supposed to indicate some inverse (anti-
correlated) functionality resulting from the allocation of 
limited resources. As a support for this claim McDon-
ough and Nashiro [59] found the lowest complexity at the 
fine scales and the highest entropy at the coarse scales in 
the DMN whereas for the CON the inverse neural com-
plexity profile was obtained. In our study similar mMSE 
patterns in the DMN and the VAN may result from the 
function that they both share, e.g. tonic alertness [11, 78] 
which is highly involved during the resting state.

In our study the SMN and the LN had similar mMSE 
vector shape to the DMN/VAN (Fig. 1). While the VAN 
and the LN signals were acquired from very similar sets of 
electrodes (which may, to some extent, explain the simi-
larity of their rsEEG complexity profiles), for the DMN or 
the SMN this was not the case. We might speculate then 
that the resemblance of mMSE patterns between par-
ticular channel sets (networks) might reflect their strong 
interactions or interdependencies. Conversely, differ-
ent entropy patterns in given networks might represent 
weak connections between these systems. Therefore, in 
the present study, similar complexity profiles, especially 
in the DMN and the VAN and, to a lesser extent, in the 

SMN and the LN, might suggest the increased communi-
cation between these networks at rest.

Higher resting‑state EEG complexity at the fine timescales 
and lower at the coarse scales in women compared to men
Although we did not find any significant s/g differences 
in the AUC​ values, corresponding to the total rsEEG 
complexity, women, relative to men, showed higher Max-
Slope values (the fine scales) but lower AvgEnt values (the 
coarse scales) (Fig. 1). Since we are not aware of any work 
presenting the s/g differences in the mMSE values, we 
decided to quantify the complexity of the current data 
using exactly the same method and regions of interest 
as in our previous work [29]. The detailed results of this 
re-analysis were shown in the Additional file 1: Appendix 
Figs. S2–4. Basically, we found a reproducible pattern of 
the s/g differences in the entropy level at the fine and the 
coarse timescales: for both datasets, women, compared 
to men, produced significantly higher MaxSlope val-
ues in the frontal areas and men showed greater AvgEnt 
values than women for all analyzed channel sets. Con-
sidering the AUC​, the outcomes across both our studies 
were inconsistent: females demonstrated a greater total 
entropy level than males only for our previous dataset 
and we did not observe such s/g differences in the cur-
rent study.

The way how the MaxSlope is calculated (the maximum 
change in the EEG signal complexity at the fine scales) 
allows to compare this parameter with the entropy, deter-
mined using other methods and measured at a single 
timescale. In this context, the s/g differences in the Max-
Slope value are congruent with some previous findings 
[32, 50, 72, 98]. Higher degrees of entropy at the short 
scales and lower complexity at the long scales in women 
might reflect enhanced information processing in local 
neural assemblies but reduced large-scale interactions 
in the resting brain [64, 93]. The previous resting-state 
fMRI evidence suggesting a greater overall brain integra-
tion of specialized information at a global network level 
in males and higher segregation, i.e. specialized process-
ing of the brain at a local level, in females supports the 
aforementioned interpretation of the brain complexity [5, 
45, 79, 89]. Some authors, however, reported the opposite 
s/g differences in the short- and long-range functional 
connectivity [33, 100]. There is also evidence on greater 
anatomical connectivity and higher both local and global 
efficiency of the cortical networks in women compared to 
men [39].

Greater neural complexity at the coarse scales as 
reflecting more distributed organization of the brain in 
men might result from optimal functioning of special-
ized and complex processes such as visuospatial imagery 
or orientation, which recruit long-distance connections. 
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For example, the mental rotation tasks, where men often 
outperformed women [39, 41, 44], require visualization 
of the rotation of objects in space and, then, correctly 
matching them with exemplars which involve testing 
and comparisons before a decision is made. Further-
more, previous studies have revealed that men do not 
exhibit a higher local efficiency in visuospatial processing 
regions [39] suggesting that men’s superior performance 
in such tasks may also rely on the long-range interactions 
of these areas. The greater local information process-
ing in females, on the other hand, might optimize func-
tions that require synchronization across local networks 
such as those supporting verbal fluency in which women 
achieve better scores [36, 80, 81]. The s/g differences in 
the neural complexity at the fine and the coarse scales 
(and corresponding local and global network processing) 
might also reflect a predisposition of one of the sexes to 
develop certain disorders including autism which occur 
the 5–10 times more often in men than in women and is 
characterized by reduced local functional connections in 
the brain [91].

In the present study we did not find any significant 
interaction effects between the s/g factor and the chan-
nel sets corresponding to the resting-state networks, dis-
tinguished by Yeo et al. (2011). The s/g differences in the 
neural complexity at the short and the long scales, were 
observed in the whole brain, not in particular networks. 
However, when we analyzed the current data using the 
same regions of interest as in our previous study [29], it 
turned out that women, relative to men, showed higher 

MaxSlope values in the frontal areas which is, basically, in 
line with other findings [1, 72]. In the current study a lack 
of specific scalp locations with significant s/g differences 
in the rsEEG entropy level might result from overlapping 
channel sets forming particular networks. For exam-
ple, the frontal electrodes from our previous work [29], 
where women showed higher MaxSlope values than men, 
are here distributed among 4 networks (FPN, DMN, LN 
and VAN). Therefore, it is possible that the signals from 
these channels contributed significantly to the temporal 
dynamics of all aforementioned networks producing the 
cumulative effect observed at the whole brain level.

Interestingly, in our study women showed higher Dif-
fEnt values (less stable mMSE profiles) than men in all 
analyzed networks (Fig.  4). These outcomes may sug-
gest comparable levels of local and global information 
processing in male brain during the resting state and the 
advantage of short-distance over the long-distance inter-
actions in females.

Limitations of the study and further directions
The present outcomes should be interpreted in light of 
several limitations. The most serious concern the valid-
ity and reliability of the analyzed variables. The particular 
aspects of current study burdened by the most important 
limitations are listed below.

Fig. 4  The s/g-related differences in the dynamics of MSE changes (DiffEnt: the difference between #9 and #4 timescales) for particular resting-state 
networks across the timescales. DMN default mode network, DAN dorsal attention network, FPN frontoparietal network, LN limbic network, SMN 
somatomotor network, VAN ventral attention network, VN visual network
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Interpretation of entropy values at the fine and the coarse 
scales
Referring the brain signal complexity at the short and 
the long scales to local and global information process-
ing respectively, has already met some criticism [49, 69] 
and needs further verification. In future studies it would 
be beneficial to take into account the anatomical data 
while interpreting the neural complexity results, espe-
cially information about the white matter microstructure 
since the white matter integrity has been already related 
to the network complexity at both fine and coarse scales 
[60]. Furthermore, the coarse-graining procedure acts 
as a moving average low-pass filter that impedes sepa-
ration of particular frequency bands from the signal. 
Therefore, the relationship between the mMSE and the 
frequency content of EEG signal is difficult to determine 
[17], although a certain progress has been made recently 
in this area [49].

Reliability of the mMSE vectors and their features
In our study stability of the mMSE vectors has been 
checked using an internal consistency method. The 
obtained results suggest either a high or a very high reli-
ability, both in the case of timescales and features of the 
mMSE vectors. To date, attempts to check the internal 
consistency of complexity indexes have been made in a 
few EEG studies (e.g., [89]. However, it does not exhaust 
the need for in-depth research on the reliability of MSE 
measures. In future research the test–retest stability 
should be determined (comparable to some fMRI studies, 
e.g., [69]).

The necessity to replicate the study results
The present study is the second in the literature (after our 
previous work) where the mMSE algorithm was used to 
describe the dynamics of resting-state EEG activity at the 
short and the long timescales and is also the first attempt 
to use the multivariate method to describe the dynam-
ics of the brain networks during the resting state. Hence, 
it would be strongly recommended to ensure to what 
extent obtained results could be replicated on a different 
sample. Being aware of this problem in this work we re-
analyzed the current results with the use of electrode sets 
from our previous work [29] and demonstrated a sub-
stantial consistency in both our studies (Additional file). 
In future research, however, it would be desired to repli-
cate the results also from the brain network perspective.

Weaknesses of the methods: the mMSE algorithm 
and the proximity maps
Limitations of the mMSE algorithm  In the present study 
the same mMSE algorithm with the same parameters 
(EEG signal segmented into multivariate time series of 

length n = 1024, with m = 2, r = 0.15, p = 4, ε = 12, τk was 
set to 1 for k = 1,2,…,p, where m is the embedding coef-
ficient, r is the similarity threshold, p is the number of 
channels in a given channel set, and ε is the timescale fac-
tor, τk is the time delay) as in our previous work [29] was 
used which allows for direct result comparisons. On the 
other hand, both these analyses share the same limitations 
of the mMSE algorithm which was already discussed else-
where [29]. (Sec. 4.3)

A lack of  direct localization of  EEG sources/problem 
of proximity maps  An important limitation of our anal-
ysis is the selection of channel sets based on the average 
electrode proximity maps provided by Giacometti et  al. 
[38] without a direct localization of EEG sources in our 
dataset. Unfortunately in the present study the MRI ana-
tomical data useful for proper source localization were 
not available. A lack of EEG source locations did not 
allow to exact identification of the networks, therefore, 
the proximity parcellations can ONLY be treated as an 
approximation.

Since our sample comprised only young healthy adults, 
the models (the regions of interest from the standard 
brain atlases), used by Giacometti et al. [38], might be a 
quite good approximation. However, in the case of more 
specific groups, these models could be hardly applied (a 
decreased effect size, [25]. In our opinion this method is 
only applicable when we may assume that the variabil-
ity of anatomical locations of EEG sources will be com-
parable across participants, i.e. mainly in the case of a 
relatively homogenous sample, e.g. healthy young adults. 
In future research on the resting networks complexity, 
tested using EEG, it would be reasonable to perform the 
source localization.

Electrode sets  We should also mention about the elec-
trode sets used in our study. They correspond to 7 main 
resting networks determined using the algorithm devel-
oped by Giacometti et  al. [38] and have the important 
disadvantage of including overlapping channels forming 
particular networks. It would be advisable to give up the 
overlapping electrodes and assign each channel to only 
one network. Otherwise, it would be recommended to 
resign from including to the analysis both LN and VAN 
channel sets differing in only one electrode. However, this 
change would cause a serious interference in the original 
parcellation which was created based on the localization 
and reconstruction of the EEG sources. In this case the 
confirmation of the procedure validity would be required.

Finally, our study was not free from limitations that 
also exist in almost every resting-state EEG study on the 
s/g differences (e.g., lack of controlling for the menstrual 
cycle [61].
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Conclusions
We found the highest overall resting-state EEG complex-
ity, measured using the mMSE method, at the channel 
sets corresponding to both intrinsic (DMN) and extrin-
sic (SMN and DAN) networks, which is basically in line 
with previous studies. Surprisingly, in contrast to other 
findings, the FPN was characterized by one of the lowest 
total entropy which may be explained by specificity of the 
mMSE algorithm. A novel result of this study is an indi-
cation of the resting-state EEG dynamics across different 
electrode sets (networks) and the timescales. Further-
more, our study highlights the importance of the neural 
complexity range while interpreting the outcomes. For 
the first time we have shown the sex/gender differences 
in the spontaneous EEG signal complexity at the fine and 
the coarse scales. Women, relative to men, demonstrated 
a higher degree of entropy at the short scales and lower 
at the long scales which might be interpreted in terms of 
an increased local and decreased global information pro-
cessing in the female compared to the male brain.
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Additional file 1: Figure A1. Age-related differences between females 
and males. Figure A2 Overall complexity level (AUC​) measured by mMSE 
for nine areas of the scalp. Channel set effect: F(8,87) =139.93, p <0.001,  
η²p = 0.928. Figure A3 Fine-scale complexity (MaxSlope) values for nine 
areas of the scalp. Channel set effect: F(8,87)  =55.326, p < 0.001,  η²p = 
0.836. Figure A4 Coarse-grained time scales complexity (AvgEnt) for nine 
areas of the scalp. Channel set effect: F(8,87) = 125.049, p < 0.001,  η²p = 
0.920. Figure A5 mMSE features (a. AUC​, b. MaxSlope, c. AvgEnt) for par-
ticular resting-state networks across the timescales and three segments 
(bars marked with different textures: segment #1 (stripes), segment #2 
(checkered), segment #3 (dotted)). DMN-default mode network, DAN-
dorsal attention network, FPN-frontoparietal network, LN-limbic network, 
SMN-somatomotor network, VAN-ventral attention network, and VN-visual 
network. Figure A6 The dynamics of MSE changes (DiffEnt: the difference 
between #9 and #4 timescales) for particular resting-state networks across 
the timescales and three segments (bars marked with different textures: 

segment #1 (stripes), segment #2 (checkered), segment #3 (dotted)). 
DMN-default mode network, DAN-dorsal attention network, FPN-
frontoparietal network, LN-limbic network, SMN-somatomotor network, 
VAN-ventral attention network, and VN-visual network. DiffEnt values for 
the limbic network were significantly higher compared to other networks. 
On the other hand, both DAN and VN exhibited significantly lower values. 
Figure A7 The s/g-related differences in the dynamics of MSE changes 
(DiffEnt: the difference between #9 and #4 timescales) for particular 
resting-state networks across the timescales. DMN-default mode network, 
DAN-dorsal attention network, FPN-frontoparietal network, LN-limbic 
network, SMN-somatomotor network, VAN-ventral attention network, 
VN-visual network. Males - bars marked with beige; females - bars marked 
with checkered texture. Table A1 Descriptive statistics for the AUC​ (area 
under curve), MaxSlope, AvgEnt and the DiffEnt features of the multivariate 
Multiscale Entropy (mMSE) vector determined for the channel sets corre-
sponding to the seven resting-state networks (Yeo et al., 2011) for females 
(A) and males (B), separately. DMN default mode network, DAN dorsal 
attention network, FPN frontoparietal network, LN limbic network, SMN 
somatomotor network, VAN ventral attention network, VN visual network.
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