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Abstract 

Background  Living a happy and meaningful life is an eternal topic in positive psychology, which is crucial for indi-
viduals’ physical and mental health as well as social functioning. Well-being can be subdivided into pleasure attain-
ment related hedonic well-being or emotional well-being, and self-actualization related eudaimonic well-being 
or psychological well-being plus social well-being. Previous studies have mostly focused on human brain morphologi-
cal and functional mechanisms underlying different dimensions of well-being, but no study explored brain network 
mechanisms of well-being, especially in terms of topological properties of human brain morphological similarity 
network.

Methods  Therefore, in the study, we collected 65 datasets including magnetic resonance imaging (MRI) and well-
being data, and constructed human brain morphological network based on morphological distribution similarity 
of cortical thickness to explore the correlations between topological properties including network efficiency and cen-
trality and different dimensions of well-being.

Results  We found emotional well-being was negatively correlated with betweenness centrality in the visual net-
work but positively correlated with eigenvector centrality in the precentral sulcus, while the total score of well-being 
was positively correlated with local efficiency in the posterior cingulate cortex of cortical thickness network.

Conclusions  Our findings demonstrated that different dimensions of well-being corresponded to different cortical 
hierarchies: hedonic well-being was involved in more preliminary cognitive processing stages including perceptual 
and attentional information processing, while hedonic and eudaimonic well-being might share common morpho-
logical similarity network mechanisms in the subsequent advanced cognitive processing stages.
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Background
Living a happy and meaningful life is a major topic in 
positive psychology, which have a great impact on indi-
viduals’ physical and mental health and help people 

flourish in their lives, in their communities, and in the 
world [1–3]. Researchers have proved that healthy peo-
ple with higher levels of well-being tend to have better 
emotional states, better interpersonal relationships, 
and stronger senses of belonging to a group [2, 4, 5], 
thus they were less likely to suffer from mental illnesses 
[6]. Compared with other models of well-being mostly 
focusing on emotional (or subjective) aspect of well-
being, Keyes [7, 8] developed the mental health contin-
uum model composed of three well-being components: 
emotional (subjective) well-being, psychological well-
being, and social well-being. Specifically, emotional 
well-being reflect the hedonic aspect of well-being that 
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encompassed pleasure attainment, positive affective 
states, and high levels of life satisfaction [9]. Psycho-
logical well-being and social well-being together are 
considered as eudaimonic well-being, which refer to 
the actualization of individuals’ potential or true value 
and evaluation of one’s circumstance and functioning 
in society [10, 11]. Previous studies have shown that 
these three dimensions of well-being were moderately 
correlated with each other, and they were interrelated 
but distinct constructs [12–14].

Recently, neuroimaging studies have used different 
experimental approaches to enrich our understanding 
of both anatomical and functional substrates of differ-
ent dimensions of well-being and showed a variety of 
association results [15]. For instance, a result from an 
electroencephalography study showed that the greater 
left than right superior frontal activation was associ-
ated with the higher levels of both hedonic and eudai-
monic well-being [16]. MRI studies revealed many 
correlations between different dimensions of well-being 
and human brain structural metrics [e.g., the regional 
gray matter volume (rGMV) or regional gray matter 
density (rGMD)]. In more detail, social well-being was 
correlated with both rGMV in the left dorsolateral pre-
frontal cortex [17] and rGMD in the left orbitofrontal 
cortex [18], which were both involved in emotional reg-
ulation [19–21] and social-cognitive processes [22, 23]. 
Besides, several other studies reported the associations 
between emotional well-being and rGMV in the precu-
neus [24, 25], the rostral anterior cingulate [25, 26] and 
the left dorsolateral prefrontal cortex [26, 27]; as well as 
the correlation between psychological well-being and 
rGMV in the insula [27, 28]. Meanwhile, several rest-
ing-state fMRI studies also reported the links between 
(1) emotional well-being and human brain functional 
measurements [e.g., regional homogeneity (ReHo) and 
amplitude of low-frequency fluctuations (ALFF)] in 
the prefrontal cortex [28–30], subjective well-being 
and the fractional ALFF in the right precentral gyrus 
[31], and emotional well-being and resting state func-
tional measurements in the limbic regions including 
the posterior cingulate cortex [32], the thalamus, the 
hippocampus, and the amygdala [33]; and between (2) 
social well-being and ALFF in the temporal gyrus, the 
limbic regions including the anterior cingulate cortex, 
the insula and the thalamus [34]. As well as (3) func-
tional connectivity within the limbic network such as 
the bilateral anterior insula [35], and within the default 
mode network which was responsible for the internal 
thoughts concerning selfness as well as memory con-
struction [36–39] were correlated with well-being [32, 
33, 40–44]. Taken together, previous studies mostly 
concentrated on emotional and social well-being but 

not examined all the three dimensions of well-being, 
and there were both distinct and common neural 
mechanisms in emotional and social well-being [15].

Complex network analysis can be used to characterize 
human brain connectivity within the whole brain net-
work and enhance our comprehension of human brain 
network architecture [45, 46]. In this study we used our 
macro-scale morphological similarity network based on 
the distributions of cortical thickness [47] to explore the 
neural mechanisms of the three different dimensions of 
well-being. Network topology represents the full connec-
tion details of a network and can elucidate the complex 
connectome of the brain network [45, 48, 49]. Recently, 
researchers have proposed a large number of meaningful 
local and remote connectivity measurements to quantify 
the topological properties of complex brain networks 
based on graph theory [45, 47, 48], of which network 
centrality and efficiency are two commonly used topo-
logical measurements. On one hand, network centrality 
assesses the functional importance of brain regions and 
provides us convincing information on how brain regions 
play crucial roles in promoting functional integration 
or segregation within the whole brain network [48–50]. 
On the other hand, network efficiency, as a measure of 
functional integration and segregation, assesses the abil-
ity of information transfer within the brain network 
[51, 52]. In more detail, global efficiency corresponds to 
long-distance information interaction; nodal efficiency 
reflects the ability of information transfer in the given 
region (node) over the whole network and local efficiency 
reflects the specialization of a single node and functional 
segregation within the neighbors of a given node [51, 
53]. Researchers have applied these topological measure-
ments to investigate brain network topological mecha-
nisms of various behaviors and diseases [47, 49, 54].

In the study, we recruited 67 healthy participants 
(aged 18–64), who finished structural MRI scanning, 
followed by the assessments of well-being includ-
ing emotional, psychological, and social well-being, to 
explore human brain morphological network topologi-
cal mechanisms of different dimensions of well-being. 
We firstly constructed human brain morphological 
similarity network of cortical thickness for each par-
ticipant, and then calculated topological properties 
including network centralities and efficiencies. Human 
brain morphological similarity network characterized 
individual regional distribution similarity of morphol-
ogy. We attempted to answer the following questions: 
whether there were associations between well-being 
and human cortical thickness similarity network topol-
ogy? Did different dimensions of well-being correspond 
to topological characteristics of different brain regions 
encoded in cortical thickness similarity network?
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Results
Table  1 illustrated detailed information about MHC-SF 
(the Mental Health Continuum, the Short Form) for the 
entire group including their average, standard deviation, 
maximum and minimum. There was no significant cor-
relation between well-being and demographic variables 
such as age and education. Betweenness centrality reflects 
the important and bridging roles that connect disparate 
parts of the network, and we found emotional well-being 
was negatively correlated with the betweenness central-
ity in the RH_Vis (the visual network of the right hemi-
sphere) of cortical thickness network (A: r = − 0.4433, 
corrected p-value = 0.0125, shown in Fig.  1a). Eigenvec-
tor centrality indicates a central and important role of 
the node within the network, and we found emotional 
well-being was positively correlated with the eigenvector 

centrality in the RH_DorsAttn_PrCv (the inferior part of 
the precentral sulcus) of cortical thickness network (B: 
r = 0.4427, corrected p-value = 0.0127, shown in Fig. 1b). 
Local efficiency reflects the ability of information trans-
fer within the given brain region, and we found that total 
score of well-being was positively correlated with local 
efficiency in the RH_Default_PCC (the precuneus and 
the dorsal posterior cingulate cortex) of cortical thick-
ness network (C: r = 0.4011, corrected p-value = 0.0477, 
shown in Fig. 1c), in which the effect sizes of emotional 
well-being, psychological well-being and social well-
being were respectively 0.248, 0.341, and 0.340.

Our results showed that there were associations 
between well-being and human cortical thickness simi-
larity network topology, and also different dimensions of 
well-being exhibited both common and different brain 

Table 1  Participant information: descriptive statistics and inter-variable correlations

N = 65; *p < 0.05; **p < 0.01

Variables Mean Range Age Years of education Total score of 
well-being

Emotional 
well-being

Psychological 
well-being

Age 37.29 13.11 18.59–64.3 1

Years of education 15.37 3.19 8–22  − 0.401** 1

Total score of well-being 53.88 13.17 19–70 0.101  − 0.126 1

Emotional well-being 11.22 3.23 0–15 0.094  − 0.112 0.839** 1

Psychological well-being 23.49 5.97 6–30 0.096  − 0.147 0.937** 0.700** 1

Social well-being 19.17 5.28 4–25 0.085  − 0.08 0.922** 0.688** 0.778**

Fig. 1  Brain regions that were significantly correlated with well-being. Betweenness centrality in the RH_Vis of cortical thickness network 
was negatively correlated with emotional well-being (A: r =  − 0.4433, corrected p-value = 0.0125). Eigenvector centrality in the RH_DorsAttn_PrCv 
of cortical thickness network was positively correlated with emotional well-being (B: r = 0.4427, corrected p-value = 0.0127). Local efficiency 
in the RH_Default_PCC of cortical thickness network was positively correlated with total scores of well-being (C: r = 0.4011, corrected 
p-value = 0.0477)
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mechanisms encoded in cortical thickness similarity 
network.

Discussion and conclusions
In the study, we applied a novel method to construct 
human brain morphological similarity network to inves-
tigate topological mechanisms of well-being in healthy 
participants. Compared with temporal synchronism 
encoded in human brain functional network, our mor-
phological similarity network characterized individual 
regional distribution similarity of human brain morphol-
ogy. Our results showed that emotional well-being was 
significantly correlated with global centrality meas-
urements: negatively correlated with the betweenness 
centrality in the right visual network but positively cor-
related with the eigenvector centrality in the right pre-
central sulcus; total score of well-being was positively 
correlated with the local efficiency in the right posterior 
cingulate cortex and the right precuneus of cortical thick-
ness network. We inferred that emotional well-being was 
involved in more preliminary processing stages includ-
ing perceptual and attentional information, and hedonic 
and eudaimonic well-being might share some common 
morphological network mechanisms in the subsequent 
advanced cognitive processing stages.

The role of the visual network and the precentral sulcus 
in emotional well‑being
Our results showed that emotional well-being was signif-
icantly correlated with global centrality measurements: 
negatively correlated with the betweenness centrality 
in the visual network but positively correlated with the 
eigenvector centrality in the precentral sulcus of corti-
cal thickness network. Emotional well-being, also known 
as subjective or hedonic well-being, is comprised of two 
components: an affective component, which refers to 
positive effects and affect balance; and a cognitive com-
ponent, which refers to participants’ levels of life satis-
faction and cognitive control [7, 9, 55]. Considering the 
affective component, people with high well-being tended 
to pay more attention to positive emotional expression 
[56] while people with low well-being were sensitive to 
unpleasant feedback and showed impaired attention 
to adverse results [57]. Considering the cognitive com-
ponent, researchers proposed people with high or low 
levels of well-being would apply various cognitive and 
motivational processing strategies such as perceptional 
and emotional processing [58]. For instance, people with 
high well-being had a strong ability of emotional regula-
tion and resilience [56], while people with low well-being 

were sensitive to negative implications and showed self-
focused cognition (rumination) [57].

Accordingly, on one hand, the visual network mainly 
spans across the visual cortex including the occipital 
and the lingual gyrus as well as the cuneus. Previous 
studies demonstrated the cuneus was functionally con-
nected to the visual network and played a role in visual 
information integration [59], and the lingual gyrus was 
associated with the fear network [60, 61] and identifica-
tion of facial emotional expressions [62, 63]. The visual 
cortex including the occipital cortex was involved in 
conscious processing [64], processing of uncertain cues 
[65] as well as perceptual processing [66]. Killgore and 
Yurgelun-Todd also demonstrated the activations of 
parts of the visual network were correlated with stress 
from social interactions [67]. Thus, the negative cor-
relation between betweenness centrality in the visual 
network and emotional well-being indicated that com-
pared with happy individuals, individuals with low 
emotional well-being might have a tendency to show 
more perception and conscious attention to uncertain 
cues or fear events arousing negative emotions and 
feelings.

On the other hand, the precentral sulcus is typi-
cally segmented into two parts including the superior 
and the inferior precentral sulcus and these two parts 
develop independently [68]. Previous studies referred 
to both regions as the frontal eyes field (FEF) because 
both of them were activated by saccade tasks [69–71]. 
The inferior precentral sulcus was mainly involved 
in auditory and visual attention as well as short-time 
memory [72–74]. And the FEF in the precentral sul-
cus was not only involved in preparing and triggering 
various eye movements [75–78] but also in various pre-
liminary cognitive processing including attention ori-
entating and visual awareness [79–82]. Therefore, the 
positive correlation between emotional well-being and 
the eigenvector centrality in the inferior precentral sul-
cus indicated the central role of the precentral sulcus 
in enhancing participants’ emotional well-being, and 
participants with higher emotional well-being might be 
inclined to pay more perceptual (auditory and visual) 
attention to dwell about positive implications of events 
and circumstance to enhance their levels of well-being.

In a summary, our results demonstrated compared to 
unhappy people, people with high emotional well-being 
would apply various preliminary cognitive processing 
strategies such as perception (visual and auditory) pro-
cessing and attention orientating to more positive feed-
back and aspects of events, to maintain and enhance 
their levels of emotional well-being, which was in line 
with the construct theory of well-being [58].
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The role of the precuneus and the posterior cingulate 
cortex in total score of well‑being
We also found total score of well-being was positively 
correlated with the local efficiency in the RH_Default_
PCC [the precuneus and the posterior cingulate cortex 
(PCC)] of cortical thickness network, which was con-
sistent with previous studies [24, 32, 33]. The local effi-
ciency was at the spatial scale of local, compared with the 
above global measurements associated with emotional 
well-being. The PCC and the precuneus were parts of the 
default mode network [83], and they were related to mul-
tiple cognitive processing including identification of self 
and emotional states of others [84], construction of past, 
present, and future selves [36], autobiographical and ret-
rospective memory [36] as well as self-reflection [85]. In 
more detail, on the one hand, the PCC was involved in 
a series of memory-based construction/simulation func-
tions including autobiographical memory, situational 
future thinking, and scene construction [83]. Previ-
ous studies also demonstrated the correlations between 
impairments of the PCC and the degeneration of scene 
construction capacity in Alzheimer’s disease [86]. Mean-
while, the PCC was also involved in a series of cognitive 
processes including emotional processes [87], memory 
retrieval [88], self-referential [89–91] and self-reflection 
[85]. On the other hand, the precuneus, as a part of the 
medial posterior parietal cortex, was also involved in an 
array of cognitive processing including self-related pro-
cessing [92, 93], conscious information processing [94], 
episodic memory [95] and visuospatial processing [96]. 
Previous studies also demonstrated the anatomical and 
functional abnormalities of the precuneus in various 
diseases including Alzheimer’s disease [97–99], Hun-
tington’s disease [100], and mild cognitive impairment 
[101–103].

Total score of well-being can be subdivided into two 
dimensions of well-being, hedonic well-being, also 
known as emotional well-being, and eudaimonic well-
being (including psychological and social well-being) 
[10]. These two dimensions are positively correlated but 
distinct components [9, 11, 104]. Previous studies have 
proved that compared to hedonic well-being, people with 
high eudaimonic well-being tended to spend more time 
on self-reflection to identify selves’ true value and inte-
grate past, present, as well as future events to maintain 
and realize their levels of well-being [104, 105]. While 
people with high hedonic well-being were inclined to 
focus on positive emotional events [56] and showed less 
attention to adverse results [57] and would apply multiple 
cognitive and motivational processing strategies such as 
self-reflection, perception processing, and emotional pro-
cessing to maintain their levels of well-being [58]. These 
characteristics of hedonic and eudaimonic well-being 

were in line with the functions of the precuneus and the 
PCC in the default mode network mentioned above. We 
inferred that people with either hedonic or eudaimonic 
well-being would apply some similar cognitive strategies 
in subsequent advanced processing procedures possibly 
for different goals. Thus, the cognitive processes of these 
two regions reflected both dimensions of well-being in 
high levels of autonomy, self-acceptance, self-reflection, 
various memory, scene construction as well as emotional 
processing in pursuits of positive affect (hedonic well-
being) and actualization of one’s potential or true value 
(eudaimonic well-being) [7, 8].

In conclusion, in the study, we applied a novel method 
to construct human brain morphological similarity net-
work to explore topological mechanisms of well-being. 
We confirmed that different dimensions of well-being 
were associated with human brain morphological simi-
larity network topology at different spatial scales. Our 
results provided compelling evidence of the ability of 
information transfer and the central role of the visual 
network, the precentral sulcus, the precuneus and the 
posterior cingulate cortex in different dimensions of 
well-being, which were involved in various cognitive 
processes. We inferred that emotional well-being was 
involved in more preliminary processing stages includ-
ing perceptual and attentional information processing, as 
well as hedonic and eudaimonic well-being might share 
some common morphological network mechanisms in 
the subsequent advanced cognitive processing stages.

Limitations
Several limitations should be taken into consideration: 
(1) The sample size was small but across a big age span, 
and the generalizability of its results should be tested in 
future big sample; (2) Also, well-being was a multifac-
eted and complex component, and was also related to 
various brain regions involving subcortical structures. 
The present study only explored human brain informa-
tion of cerebral cortex but did not involve the exploration 
and analysis of subcortical structures; (3) The behavioral 
data were collected from participants’ self-reports, which 
were largely influenced by participants’ subjective feel-
ings and emotions. More objective measurements should 
be applied in future studies.

Methods
Participants
Participants were recruited from local community by 
advertisements. The initial sample included 67 data-
sets (32 males and 35 females; mean age = 32.79 ± 13.11; 
ranged from 18.59 to 64.30). All the participants were 
invited for a detailed mental health interview using the 
Mini-International Neuro-Psychiatric Interview and 
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people with a history of or current major neuropsy-
chiatric illness, head injury, alcohol, drug abuse were 
excluded from the study. We also excluded people with 
MRI contraindications, including people with implants, 
pacemakers, brain surgery, current pregnancy, and very 
recent tattoos. In addition to the MRI scanning, the par-
ticipants were also assessed with the Short Form of the 
Mental Health Continuum (Chinese). The final sample 
included 65 datasets. Participants who were absent from 
the MRI scanning (n = 1) or didn’t pass the mental health 
interview (n = 1) were excluded. The institutional review 
board of the Institute of Psychology Chinese Academy 
of Sciences approved this study and written informed 
consent was obtained from participants before data 
acquisition.

Behavior measurements
The Short Form of the Mental Health Continuum in Chi-
nese (MHC-SF) was applied to measure participants’ 
well-being. The 14-item version was based on a model 
comprising three components of well-being [8, 106]: 
emotional well-being (3 items including positive affects 
and avowed quality of life), psychological well-being (6 
items including self-acceptance, personal growth, pur-
pose in life, positive relations with others, autonomy, and 
environmental mastery) and social well-being (5 items 
including social contribution, social integration, social 
actualization, social acceptance, and social coherence). It 
includes items like, “I feel happy” (Emotional well-being), 
“I like most parts of my personality” (Psychological well-
being), “I feel close to other people in my community” 
(Social well-being). Participants were asked to respond 
on which ‘1’ represented ‘never’ and ‘6’ represented ‘every 
day’ in the item according to the frequency of experienc-
ing various symptoms of well-being in the past month. 
The scores of each dimension were calculated by sum-
ming the scores of the items belonging to them. Higher 
scores indicate higher levels of well-being. The Chinese 
version has high reliability and validity, via a 6-point scale 
for all items and describes the frequency of experiencing 
various symptoms of well-being [107]. The Cronbach’s α 
coefficient in the present study was 0.944.

Imaging acquisition
All the MRI images were collected on a GE 3.0 T scan-
ner (Discovery MR750) at the Institute of Psychology 
Chinese Academy of Sciences. Participants completed 
a T1-weighted structural MRI scan (eyes closed) with a 
magnetization-prepared rapid gradient-echo (MPRAGE) 
sequence with the following parameters: repetition 
time (TR) = 6.652ms, echo time (TE) = 2.928ms, inver-
sion time (T1) = 450ms, flip angle (FA) = 12°, field of 

view = 256 × 256 mm2 and acquisition matrix = 256 × 256, 
slice thickness = 1.0mm, 192 sagittal slices, voxel size = 1 ×  
1 × 1 mm3.

Imaging data preprocessing
MRI images were preprocessed by the Connectome 
Computation System (CCS) (http://​github.​com/​zuoxi​
nian/​CCS), which was developed by our laboratory [108] 
integrating several software including AFNI [109] (Anal-
ysis of Functional NeuroImages), FSL [110] (fMRI Soft-
ware Library), and FreeSurfer [111]. The CCS pipelines 
were employed to preprocess all individual structural 
images as well as quality control [108, 112]. The struc-
tural images preprocessing included (1) noise removal 
and brain extraction (skull stripping) using volBrain 
automated volumetry system (http://​volbr​ain.​upv.​es) 
[113]; (2) image intensity inhomogeneity correction; (3) 
tissue segmentation of cerebrospinal fluid (CSF), white 
matter (WM) and deep gray matter (GM); (4) genera-
tion of the GM-WM (white surface) and GM-CSF inter-
face (pial surface); (5) spatial registration via matching 
of the cortical folding patterns across participants by 
recon-all in FreeSurfer and Gaussian spatial smoothing 
(FWHM = 6mm, Full Width at Half Maxima); (6) Finally, 
the 3D (dimensional) structure images were projected 
onto the fsaverage5 standard cortical surface with 10,242 
vertices per hemisphere.

Quality control procedure
Quality control is very significant for solid data analy-
sis. The CCS provided quality control procedures for 
both functional and structural images. For structural 
MRI in this study, the quality control procedure (QCP) 
was as follows: (1) brain extraction or skull stripping; 
(2) image tissue segmentation; (3) reconstruction of pial 
and white surface; and (4) head motion. We performed 
the visual inspection on all the original structural images 
and excluded participants with obvious structural brain 
abnormalities and significant motor artifacts during the 
scan. The CCS provides screenshots of the brain tissue 
segmentation as well as screenshots of pial and white 
surface reconstruction. We visually checked the screen-
shots, and participants with bad brain tissue segmenta-
tion and surface reconstruction were excluded from the 
subsequent analysis. All the participants passed the qual-
ity control. The final sample included 65 participants and 
their descriptive information and inter-variable correla-
tions were shown in Table 1.

Morphological similarity network construction
In the study, we used a macro-scale brain network parcel-
lation, which subdivided the entire cortical surface into 
51 spatially connected parcels which were derived from 

http://github.com/zuoxinian/CCS
http://github.com/zuoxinian/CCS
http://volbrain.upv.es
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a clustering approach on MRI images of 1000 subjects to 
identify networks of functionally coupled regions across 
the cerebral cortex [114], to construct human brain mor-
phological network based on their distributions, and then 
we calculated mean cortical thickness of each parcel. We 
excluded the parcels whose vertex number was less than 
50, and finally got 32 parcels reserved for final group 
analysis: expanding across all the Yeo-7 networks: visual 
network, somatomotor network, dorsal attention net-
work, ventral attention network, limbic network, fron-
toparietal (control) network, and default mode network 
(see Table 2).

As in our previous study [47], we estimated distribu-
tion similarity of cortical thickness for each pair of par-
cels to construct human brain morphological similarity 
network. Firstly, for each pair of parcels, we segmented 
both of their cortical thickness into 30 bins. Secondly, we 
calculated the vertex frequency for each bin of the two 
parcels, and then we got the frequency distribution histo-
gram for each parcel. Finally, we computed the Pearson’s 
correlation to estimate the similarity of cortical thickness 
distribution, and then we obtained a 32 × 32 morphologi-
cal correlation matrix for each participant. There were 
both positive and negative connections between differ-
ent brain regions which respectively demonstrated co-
varying and anti-correlated distribution curves, and the 
negative connections only occupied a tiny proportion of 
the entire connection matrix. Therefore, in the study, we 
considered the absolute values of connections to comput-
ing network topological measurements considering the 
little effects of negative connections on the whole brain 

network topology. Then, we used orthogonal minimal 
spanning trees (OMST) analysis, which was a thresh-
old-free method to derive the strongest connections 
of a network and reserve important information about 
brain network organization [115], to get an undirected 
weighted graph, and then the topological measurements 
could be computed based on the binary (unweighted) 
correlation matrix.

Topological measurements
We computed network efficiency including global effi-
ciency (Eglob), nodal efficiency (Enodal) and local effi-
ciency (Elocal) as well as network centrality including 
degree centrality (DC), betweenness centrality (BC), 
eigenvector centrality (EC) and pagerank centrality (PC) 
based on the binary (unweighted) correlation matrix 
using the Brain Connectivity Toolbox (http://​www.​brain-​
conne​ctivi​ty-​toolb​ox.​net) [48] and the CCS scripts [108].

Network efficiency
Global efficiency for network G is defined as:

where N is the number of nodes and Lij is the shortest 
path length between node i and node j in graph G [52]. 
Global efficiency is a global measurement of the parallel 
ability of information transfer within the whole network.

(1)Eglob(G) =
1

N (N − 1)

∑

i,j,i �=j∈G

1

Lij

Table 2  The vertex number of reserved 32 brain regions

Brain region Vertex number Brain region Vertex number

LH_Vis 1213 RH_Vis 1264

LH_SomMot 1590 RH_SomMot 1612

LH_DorsAttn_Post 627 RH_DorsAttn_Post 614

LH_DorsAttn_FEF 97 RH_DorsAttn_FEF 98

LH_SalVentAttn_ParOper 130 RH_DorsAttn_PrCv 50

LH_SalVentAttn_FrOper 331 RH_SalVentAttn_TempOccPar 208

LH_SalVentAttn_Med 216 RH_SalVentAttn_FrOper 313

LH_Limbic_OFC 213 RH_SalVentAttn_Med 242

LH_Limbic_TempPole 328 RH_Limbic_OFC 237

LH_Cont_Par 151 RH_Limbic_TempPole 318

LH_Cont_PFCl 291 RH_Cont_Par 167

LH_Default_Par 263 RH_Cont_PFCl 543

LH_Default_Temp 359 RH_Default_Par 183

LH_Default_PFC 771 RH_Default_Temp 269

LH_Default_PCC 275 RH_Default_PFCv 60

RH_Default_PFCm 461

RH_Default_PCC 225

http://www.brain-connectivity-toolbox.net
http://www.brain-connectivity-toolbox.net


Page 8 of 12Li et al. Behavioral and Brain Functions           (2023) 19:16 

Nodal efficiency of node i is defined as:

where N and Lij are the same as that in Eq.  (1), respec-
tively representing the number of nodes and the shortest 
path length between node i and node j in graph G. Nodal 
efficiency measures the ability of the node for informa-
tion transfer within the whole network and is also a 
global measurement.

Local efficiency of node i is defined as:

where Gi is a subgraph and is composed of the nodes 
that connect to node i (not including node i) directly and 
interconnected edges. Local efficiency indicates how well 
the information is exchanged in the given brain region 
and hence is a local measurement.

Network centrality
Degree centrality of node i is defined as:

where N is the set of all nodes in the network, and aij is 
the connection status between i and j: aij = 1 when i and 
j were connected and aij = 0 when i and j weren’t con-
nected. DC identifies the nodes with the most connected 
links and is the most common quantifiable local central-
ity measure [48, 49, 116].

Betweenness centrality of node i is defined as:

where Lkj is the number of shortest paths between node 
k and node j, and Lkj(i) is the number of shortest paths 
between k and j that pass through node i. BC represents 
the fraction of all shortest paths in the network that pass 
through a given node. High BC indicated the nodes were 
important in connecting disparate parts of the network 
[48, 117] and were global measuremens.

Eigenvector centrality of node i is defined as:

where µj(i) is the i-th component of the j-th eigenvector 
of the adjacency matrix aij, and �1 is the corresponding 

(2)Enodal(i) =
1

N − 1

∑

j,i �=j∈G

1

Lij

(3)Elocal(i) = Eglob(Gi)

(4)DC(i) =
∑

j∈N

aij

(5)BC(i) =
∑

k ,j∈N ,k �=j,k �=i,i �=j

Lkj(i)

Lkj

(6)EC(i) = µ1(i) =
1

�1

N∑

j=1

aijµ1(j)

j-th eigenvalue. N is the set of all nodes in the network, 
and aij is the connection matrix. EC considers the nodes 
connecting to other high degree nodes as highly central 
and indicates a central and important role of the node in 
the network [118, 119].

Pagerank centrality of node i is defined as:

Pagerank centrality was introduced originally by 
Google to rank web pages. In graph theory, PC represents 
the importance of nodes assuming that the importance of 
a node is the expected sum of the importance of all con-
nected nodes and the direction of edges [120, 121]. The 
PC algorithm is a variant of EC, which introduces a small 
probability (1—d = 0.15, d is damping factor) of random 
damping to handle walking traps on a graph [122]. Both 
EC and PC are global centrality measurements.

Statistics
To investigate the associations between topological 
measurements (i.e., network efficiency Effi and centrality 
Cent) of human brain morphological similarity network 
and different dimensions of well-being, we applied gen-
eral linear model that took age, sex, education, intrac-
ranial volume (ICV), mean cortical thickness (CT) as 
covariates. The detailed statistical model was shown in 
Eq. (8).

False discovery rate (FDR, q < 0.05) correction for 32 
parcels was used to control type 1 error over multiple 
tests. And the General Linear Model statistical analysis 
and FDR correction were performed using MATLAB 
scripts in the study.
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N∑

j=1

aijr(j)

DC(j)
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