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Abstract 

Background Emerging evidence suggests bidirectional causal relationships between sleep disturbance and psy-
chiatric disorders, but the underlying mechanisms remain unclear. Understanding the bidirectional causality 
between sleep traits and brain imaging-derived phenotypes (IDPs) will help elucidate the mechanisms. Although 
previous studies have identified a range of structural differences in the brains of individuals with sleep disorders, it 
is still uncertain whether grey matter (GM) volume alterations precede or rather follow from the development of sleep 
disorders.

Results After Bonferroni correction, the forward MR analysis showed that insomnia complaint remained positively 
associated with the surface area (SA) of medial orbitofrontal cortex (β, 0.26; 95% CI, 0.15–0.37; P = 5.27 ×  10–6). In 
the inverse MR analysis, higher global cortical SA predisposed individuals less prone to suffering insomnia com-
plaint (OR, 0.89; 95%CI, 0.85–0.94; P = 1.51 ×  10–5) and short sleep (≤ 6 h; OR, 0.98; 95%CI, 0.97–0.99; P = 1.51 ×  10–5), 
while higher SA in posterior cingulate cortex resulted in a vulnerability to shorter sleep durations (β, − 0.09; 
95%CI, − 0.13 to − 0.05; P = 1.21 ×  10–5).

Conclusions Sleep habits not only result from but also contribute to alterations in brain structure, which may shed 
light on the possible mechanisms linking sleep behaviours with neuropsychiatric disorders, and offer new strategies 
for prevention and intervention in psychiatric disorders and sleep disturbance.
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Background
Sleep, as a modifiable lifestyle habit, is essential for sus-
taining human life. It is characterized by multiple dimen-
sions, including sleep quantity, quality, and circadian 
rhythm. Accumulating evidence suggests a complex bidi-
rectional causality between unhealthy sleep patterns and 
neuropsychiatric disorders [1, 2]. Additionally, various 
sleep traits have emerged as potential markers or treat-
ment targets for psychiatric disorders [3, 4]. For example, 
insomnia often precedes the onset of depressive disorder 
(DD) [5] and significantly increases the risk of developing 
DD in the future [6]; Sleep disturbances are prominent 
in patients with schizophrenia (SCZ) (up to 80% [7]), 
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compared to the general population (around 20% [8]). 
However, the mechanisms linking sleep behaviours with 
neuropsychiatric disorders remain unclear.

Psychiatric disorders refer to a group of mental dis-
orders characterized by psychological or behavioral 
abnormalities. Different brain structures have specific 
functions in controlling behavior and performance. 
Notably, the dorsolateral prefrontal cortex (PFC) and 
orbital frontal cortex (OFC) have been reported to be 
implicated in SCZ and bipolar disorder (BD), respectively 
[9]. Interestingly, these two brain regions have also been 
frequently identified as exhibiting morphological altera-
tions in sleep-related MRI studies [10–16]. Considering 
that neuropathological changes often precede the clini-
cal symptoms of neuropsychiatric disorders, it is hypoth-
esized that variations in brain structure may underlie 
the causality between sleep habits and neuropsychiatric 
disorders, serving as either a cause or consequence of 
sleep patterns. Therefore, understanding the bidirec-
tional causal relationships between sleep traits and brain 
imaging-derived phenotypes (IDPs) will help elucidate 
the mechanisms linking sleep behaviours with neuropsy-
chiatric disorders.

At present, associations have been reported between 
global and regional differences in brain morphology and 
sleep quality in small case–control studies of insomnia, 
as well as moderate-sized observational studies con-
ducted in general communities [10, 11, 15, 17–19]. How-
ever, the cross-sectional design of these neuroimaging 
studies limits their ability to infer the direction of the 
relationship between sleep patterns and brain structure. 
Furthermore, longitudinal studies addressing this issue 
have been unable to elucidate the temporal sequence 
between sleep habits and brain IDPs, as sleep condi-
tions or brain magnetic resonance imaging (MRI) were 
evaluated at only one time point [16, 20–24]. Recently, 
the normal dynamics of bidirectional acute interac-
tion between sleep duration and cortical thickness were 
revealed through microlongitudinal time series analyses 
based on data from one healthy individual [25]. However, 
no population-based longitudinal study or randomized 
controlled trial (RCT) has been published that can deter-
mine the bidirectional long-term causal relationships 
between sleep habits and brain structure.

Mendelian randomization (MR) analysis is an epide-
miological study design that utilizes single nucleotide 
polymorphisms (SNPs) as instrumental variables (IVs) to 
establish causal effects of exposures on outcomes. This 
approach can be regarded as a natural RCT as it relies on 
the random allocation of alleles at gametogenesis, mak-
ing it less prone to confounders and reverse causality 
compared to conventional observational multivariable 
regression. Previous studies have utilized MR analysis to 

explore the causal relationship between sleep and brain 
structure. However, these studies only examined the 
causal relationship between daytime napping and overall 
cortical volume [26], as well as sleep duration and overall 
cortical thickness [27]. A more comprehensive explora-
tion of causal relationships between a wide range of sleep 
behaviors and global and regional brain structures is still 
warrant. This is critical for understanding what affects 
sleep habits and how adverse sleep behaviours contribute 
to a higher vulnerability to neuropsychiatric diseases. By 
elucidating the bidirectional causal relationships between 
sleep traits and brain structure, we may potentially pro-
vide guidance for prevention and intervention in psychi-
atric disorders and sleep disturbances.

Therefore, the objective of this study was to apply 
bidirectional two-sample MR analysis to investigate the 
causal effects between eight self-reported sleep pheno-
types (namely insomnia complaint, sleep duration, long 
sleep, short sleep, chronotype, morningness, napping 
frequency and sleepiness severity) and 92 brain IDPs 
(including global and regional surface area [SA] and 
thickness [TH], volume of subcortical structures, and 
longitudinal changes in 15 brain structures) in adults of 
European ancestry, without any prior hypothesis.

Results
Overview of the study and instrument variants selection
We conducted a bidirectional two-sample MR analysis to 
investigate the relationships between all sleep traits-brain 
IDPs pairs. The study flowchart is presented in Fig.  1. 
To ensure that the samples used in the GWAS study for 
exposures were independent from those for the out-
comes, we manually checked the sample description of 
each GWAS study. For subcortical brain structures, none 
of the participants were from the UK Biobank, indicat-
ing that there was no sample overlap between subcorti-
cal IDPs–sleep traits pairs; For cortical structures, 10 083 
participants were from the UK Biobank, resulting in a 
sample overlap proportion of 29.7% (10,083/33,992); For 
longitudinal changes in brain structures, 2536 partici-
pants were from the UK Biobank, giving a sample over-
lap proportion of 16.8% (2536/15,100). After pruning for 
linkage disequilibrium, we removed the IVs associated 
with outcome as well as potential confounders. Outlier 
IVs detected by MR Pleiotropy RESidual Sum and Out-
lier (MR-PRESSO) outliers test were also excluded from 
exposure-related SNPs for subsequent MR analysis. The 
full lists of IVs used for forward and reverse MR tests 
were provided in Additional file  1: Table  S1–S2. The Z 
scores of all exposure-outcome pairs derived from the 
random-effect inverse-variance weighted (IVW) method 
in the bidirectional two-sample MR analysis are showed 
in Fig. 2.
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Fig. 1 Flowchart of this bidirectional two-sample Mendelian randomization analysis. GWAS, genome-wide association studies; SNP, 
single-nucleotide polymorphism; BMI, body mass index; DD, depressive disorder; SCZ, schizophrenia; BD, bipolar disorder; ANX, anxiety disorder; 
OCD, obsessive–compulsive disorder; ASD, autism spectrum disorders; ADHD, attention deficit hyperactivity disorder; IVW, inverse-variance 
weighted; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier
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Forward Mendelian randomization
In the forward MR analysis, we identified that genetically 
predicted insomnia complaint was positively associated 
with the SA of medial orbitofrontal cortex (mOFC) (β, 

0.26; 95% CI, 0.15–0.37; P = 5.27 ×  10–6) (Fig. 3 and Addi-
tional file 1: Table S3). The other three MR methods cor-
roborated this association (Fig.  3 and Additional file  1: 
Table S3). No heterogeneity was identified among the IVs 
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Fig. 2 Z scores of all exposure-outcome pairs in the bidirectional two-sample Mendelian randomization analysis. All Z scores (β/SE) were derived 
using inverse-variance weighted method. The asterisk indicates significance after Bonferroni correction
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for insomnia complaints based on the Cochran’s Q test 
(P = 0.899) (Additional file  1: Table  S3). The P-values of 
MR-Egger intercept test and MR-PRESSO global test 
were 0.935 and 0.924, respectively, indicating the absence 
of horizontal pleiotropy (Additional file 1: Table S3). The 
scatter plot is shown in Additional file 1: Fig. S1. The esti-
mate was not biased by any single SNP in the leave-one-
out analysis (Additional file 1: Fig. S1). Furthermore, this 
association remained even when using non-overlapping 
IVs only in the MR analysis (β, 0.28; 95%CI 0.16–0.40; 
P = 3.65 ×  10–6) (Additional file 1: Table S4). According to 

the study by Burgess et al. [28], the bias estimated from a 
30% sample overlap for this exposure-outcome pair was 
less than 0.1%.

Reverse Mendelian randomization
In the reverse MR analysis, we observed a negative cor-
relation between the SA of global cortex and insomnia 
complaints (OR, 0.89; 95%CI, 0.85–0.94; P = 1.51 ×  10–5), 
as well as short sleep (OR, 0.98; 95%CI, 0.97–0.99; 
P = 1.51 ×  10–5) (Fig.  3 and Additional file  1: Table  S5). 
We also found a negative association between the SA 

Fig. 3 The significant causalities in the bidirectional two-sample Mendelian randomization analysis. These results all met the following criteria: 
the P-value derived from IVW method was < 3.40 ×  10–5; all estimates from four Mendelian randomization methods showed consistent directions 
of association (positive or negative); no heterogeneity was identified by the Cochran’s Q test after removing the underlying outliers by MRPRESSO; 
P-value of MR-Egger intercept and MR-PRESSO global tests were both > 0.05; the estimate was not biased by single single-nucleotide polymorphism 
in leave-one-out analysis. SA, surface area; IVW, inverse-variance weighted; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier; IVs, instrumental 
variables
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of posterior cingulate cortex (PCC) and sleep duration 
(β, − 0.09; 95%CI, − 0.13 to − 0.05; P = 1.21 ×  10–5). The 
other three MR methods supported these associations 
(Fig.  3 and Additional file  1: Table  S5). There was no 
heterogeneity or horizontal pleiotropy identified among 
these exposure-outcome pairs by the Cochran’s Q test, 
MR-Egger intercept test and MR-PRESSO global test 
(Additional file 1: Table S5). The scatter plots are shown 
in Additional file  1: Fig. S1, and the estimates were not 
biased by any single SNP in the leave-one-out analy-
sis (Additional file 1: Fig. S1). There were no substantial 
alterations in the above associations when using non-
overlapping SNPs only in the reverse MR analysis (Addi-
tional file 1: Table S6). According to the study by Burgess 
et al. [28], the bias estimated from a 30% sample overlap 
for these exposure-outcome pairs was all less than 0.1%.

Discussion
In this study, we provided reliable evidence for the bidi-
rectional causal relationships between a wide range of 
sleep habits and brain MRI morphological measures 
using summary-level data from large-scale GWAS. For-
ward MR analysis suggests that insomnia complaints 
have a causal effect on the SA of mOFC. Reverse MR 
analysis showed that individuals with reduced global 
cortical SA may be predisposed to experiencing insom-
nia complaints and short sleep (≤ 6 h/day), while reduced 
cortical SA in PCC could contribute to a vulnerability for 
longer sleep duration.

There is considerable interest in identifying modifi-
able risk factors that exert causal effects on brain struc-
ture because changes in brain structure can precede the 
onset of cognitive decline or dementia by several years. 
The finding that insomnia complaint was associated with 
the morphology of mOFC appears to be robust, given 
that previous sleep-related MRI literature have most fre-
quently detected morphological alterations in the OFC or 
PFC not only among insomnia patients [10–13], but also 
in healthy individuals with higher insomnia severity [14], 
early-morning awakenings [15], and poor sleep quality 
[16, 18]. However, these studies were mostly cross-sec-
tional, with the exception of one derived from a longitu-
dinal cohort study in which sleep quality was assessed at 
only one time point [16]. Therefore, these studies could 
not determine whether alterations in grey matter (GM) 
morphology precede or follow the development of sleep 
disturbances.

Using genetic instruments identified in large-scale 
GWAS, this MR study identified robust evidence sup-
porting a causal effect of insomnia complaints on the SA 
of mOFC. Considering that insufficient sleep has adverse 
effects on a variety of neurobiological processes that 
can potentially affect GM morphology (e.g., metabolite 

clearance and synaptic homeostasis), it is plausible that 
insomnia can directly impact brain structure. Some prior 
studies that identified a correlation between insomnia 
and morphological changes in the mOFC tended to sup-
port the view that sleep is a consequence rather than a 
contributor to mOFC structural abnormalities, as the 
GM reduction was not specifically related to insom-
nia duration [10, 11], contradicting the findings of this 
study. However, it is possible that insomnia duration may 
be nonlinearly correlated with OFC structural changes, 
with compensatory GM enlargement occurring dur-
ing early stages followed by subsequent atrophy. If this 
hypothesis holds true, it would make sense that some 
studies observed GM hypertrophy in primary insomnia 
[12, 13, 17, 29], while others reported a negative corre-
lation between insomnia and GM volume [10–12, 14]. 
Evidence supporting this speculation is that the mean 
insomnia duration of patients in the studies where cor-
tical atrophy was observed were 7.6 and 17.7  years [10, 
11], compared to 4.9 years in study where cortical hyper-
trophy was observed [13]. Future longitudinal studies are 
warranted to determine whether the neuropathology of 
insomnia is initial hypertrophy and later atrophy. Addi-
tionally, it cannot be denied that heterogeneity in sample 
size, demographic characteristics, neuroimaging analysis 
approach (e.g., surface-based morphometry and voxel-
based morphometry) and brain imaging indicators (e.g., 
TH, volume and density) may also contribute to these 
inconsistencies.

The present study found a causal effect of insomnia on 
the SA in mOFC, specifically, insomnia complaint may 
lead to an increase rather than a decrease in it, which 
is consistent with a recent study reporting that pri-
mary insomnia patients showed cortical thickening and 
increased cortical volume in the left OFC [13]. Moreover, 
insomnia-related GM hypertrophy in other brain regions 
has also been reported [12, 17, 29]. These hypertrophic 
cortices can be explained by activity-related changes, 
for instance, skilled musicians showed increases in audi-
tory cortical representation [30]; extensive learning tasks 
resulted in an increased volume of right hippocampal 
[31]. Therefore, the increased SA of mOFC maybe a com-
pensation of persistent deleterious effect of hyperarousal, 
as the mOFC is involved in decision-making, behavioral 
flexibility, and social behavior. The cellular mechanism 
underlying the increased cortical SA is still unknown, 
potential process may include hypertrophy of neurons 
or glial cells, changes in the size or density of the capil-
laries, and remodeling of dendritic spines and synaptic 
connections [17]. Besides, shorter sleep duration and 
poorer sleep quality have been proved to be associated 
with greater Aβ burden [32]. Therefore, the increment 
of the sleep-related cortical SA may be explained by the 
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space-occupying effects of amyloid plaques and other 
metabolic waste.

In addition, it is also possible that the relationship 
between insomnia complaints and SA of mOFC could be 
mediated by potential confounders. In the current study, 
the IVs used for final MR analysis excluded the SNPs 
associated with education, BMI/obesity, hypertension, 
and seven common psychiatric disease (DD, SCZ, BD, 
anxiety disorder [ANX], obsessive–compulsive disorder 
[OCD], autism spectrum disorders [ASD] and attention 
deficit hyperactivity disorder [ADHD]). Furthermore, 
age, sex, and a maximum of 10 principal components 
were included as confounding regressors in the primary 
GWAS studies.

Emerging evidence suggests complex causalities between 
sleep problems and neuropsychiatric disorders [3]. How-
ever, the mechanisms remain unclear. The causal relation-
ship between insomnia complaints and SA alteration in 
mOFC, identified in this study, may provide insights into 
the underlying mechanism. The mOFC has functional 
connectivity with a number of brain regions involved in 
higher cognitive functions (such as hippocampus, amyg-
dala, prefrontal lobe, dorsolateral thalamic nucleus, ante-
rior cingulate gyrus, etc.) and plays an important role in 
the pathophysiological mechanisms of multiple psychiatric 
disorders (such as DD, SCZ, BD, OCD, ADHD, etc.) [33]. 
Sleep disturbances often precede the onset of psychiatric 
disorders, or develop in their early stages as the chief com-
plaint on the first visit [34]. A study designed to describe 
residual symptoms in 943 patients with remission from 
major DD after treatment with citalopram reported that 
the most common residual symptom domains were sleep 
disturbance (71.7%), indicating that sleep disturbance (pri-
marily insomnia) did not disappear with the remission of 
depression [35]. All these clinical phenomena suggest that 
insomnia may lie “upstream” in the causal chain of psychi-
atric disorders. Therefore, we propose the hypothesis that 
structural alterations in mOFC may partially mediate the 
link between insomnia and neuropsychiatric disorders, 
which needs to be tested in future studies. If the hypoth-
esis holds, it is necessary to further explore whether sleep 
interventions can arrest, slow or reverse the progression of 
neuropsychiatric disorders. At the very least, our findings 
support that sleep patterns may be a cause of brain struc-
tural alteration, enhancing the importance of measuring 
and adjust for insomnia complaints in neuropsychiatric 
research aiming to delineate the morphological correlates 
or even antecedents of psychopathology. 

Alternatively, we also found that sleep architecture can 
be a consequence of brain structural abnormalities. In the 
reverse MR analysis, we identified a negative correlation 
of the SA of global cortex with insomnia complaint and 
short sleep, which may partially account for the higher 

prevalence of sleep impairment in older adults [36], 
since global brain atrophy is commonly seen as we age. 
Sleep problems are also frequently reported in neurode-
generative diseases [37], such as Alzheimer disease and 
Parkinson’s disease, the finding that brain atrophy could 
increase vulnerability to insomnia provides new insights 
into the mechanisms of developing chronic insomnia in 
neurodegenerative diseases and supports efforts to pro-
mote healthy brain aging through cognitive-behavioral 
therapy and lifestyle improvements. Interestingly, unlike 
the global cortical SA, the decreased SA in PCC may 
result in longer sleep duration. In the past few decades, 
scientists have devoted significant effort to identifying 
the subcortical brain regions responsible for wakeful-
ness and sleep, and the possibility that cortical neurons 
regulate vigilance states has been overlooked. Recently, a 
study from Oxford University observed that silencing of 
layer 5 pyramidal and archicortical dentate gyrus gran-
ule cells in male mice markedly increased wakefulness 
and reduced rebound of slow-wave activity after sleep 
deprivation, supporting a role for the cortex in sleep 
homeostasis [38]. Additionally, the default mode network 
(DMN), a network of brain regions that display increased 
activity during wakeful rest in the absence of cognitively 
demanding tasks, plays a central role in the modulation 
of consciousness. During the transition from wakefulness 
to slow-wave sleep, functional connectivity within the 
DMN, particularly between the frontal (medial prefron-
tal, anterior cingulate) and posterior regions (PCC and 
precuneus) of the DMN, displayed a disconnected status, 
which is associated with the reduction in consciousness 
[39]. Therefore, it is plausible that a reduction in the SA 
of PCC may predispose individuals to sleep. However, the 
effect size was small, indicating that variables other than 
brain morphology significantly contribute to explaining 
the variance in sleep architecture.

There are some limitations in our study. First, sleep 
traits were self-reported rather than objectively meas-
ured, such as by using polysomnography, but it is usu-
ally not feasible in a large cohort study. Previous studies 
have suggested a moderate correlation between self-
reported and objectively measured actigraphy [40]. 
Second, we did not explore the potential relation-
ships between sleep habits and white matter micro-
structure, given that the GWAS data on human white 
matter microstructure were obtained from a meta-
analysis of 43,802 subjects, including 36,624 from UK 
Biobank, which will lead to an overlap of up to 83.6% 
between the exposure and outcome samples. Third, in 
the inverse MR analysis, the genome-wide significance 
threshold was set at P < 5 ×  10−6 due to the limited sam-
ple size of the brain structure GWAS, resulting in a lack 
of significant SNPs available when threshold was set 
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at P < 5 ×  10−8. This method of relaxing the statistical 
threshold for IVs has been used in previous high qual-
ity MR research when few associated SNPs are avail-
able [41]. Considering that this method carries the risk 
of introducing weak IVs, we selected SNPs with F sta-
tistics > 10 and conducted a series of sensitivity analy-
ses. Only the consistent estimates from the four MR 
analyses, without horizontal pleiotropy and not biased 
by single SNP, were considered reliable. Fourth, there 
was partial overlap between the exposure and out-
come datasets (29.7% for cortical structure and 16.8% 
for longitudinal change of brain structure), which may 
potentially bias the results. However, due to the lack of 
individual-level GWAS data, we were unable to remove 
the overlapping samples. Nonetheless, according to the 
study by Burgess et  al. [28], the bias estimated from a 
30% sample overlap was < 0.1% for the four causally 
associated exposure-outcome pairs identified in this 
MR research. Therefore, we speculate that the impact 
of sample overlap between GWAS studies of exposures 
and outcomes on our MR estimates is minor. Fifth, as 
the population we studied was Europeans, the esti-
mates cannot be generalized to other races.

In conclusion, this study provided reliable evidence that 
sleep traits have a causal effect on brain GM structure. 
Additionally, it raised the possibility that the structural 
correlates of sleep measures in cross-sectional studies 
may represent pre-existing morphological GM deficits, 
which could increase susceptibility to certain sleep pat-
terns. Undoubtedly, understanding whether modifiable 
lifestyle habits have a causal effect on the brain is cru-
cial for allowing appropriate intervention. These findings 
imply that addressing and managing insomnia com-
plaints may potentially mitigate changes in brain struc-
tural dynamics, thereby contributing to the prevention 
of neurological and psychiatric disorders. Further sup-
port for these suggestions is needed through additional 
sleep intervention trials and long-term cohort studies. 
This study also warrants further laboratory experiments 
to uncover the mechanism underlying the bidirectional 
causal relationships.

Methods
The aim, design and setting of the study
We conducted a bidirectional two-sample MR analy-
sis to explore causal relationships between sleep behav-
iours and brain IDPs using summary-level results of 
published GWAS studies from the UK Biobank and the 
Enhancing Neuroimaging Genetics through Meta-Anal-
ysis (ENIGMA) Consortium. The study flowchart is pre-
sented in Fig. 1.

The definition of sleep traits

(1) Insomnia complaint: Participants were asked: “Do 
you have trouble falling asleep at night or do you 
wake up in the middle of the night?” with responses 
“Never/rarely,” “Sometimes,” and “Usually”. Par-
ticipants who answered “usually” were consid-
ered as having insomnia complaints, while those 
who answered “never/rarely” or “sometimes” were 
defined as controls in the GWAS study [42].

(2) Sleep duration, long and short sleep: Participants 
were asked: “About how many hours sleep do 
you get in every 24  h? (Please include naps)”, with 
responses in hour increments. Sleep duration was 
treated as a continuous variable in GWAS analy-
sis. Binary variables for short sleep (≤ 6 h vs. 7–8 h) 
and long sleep (≥ 9 h vs. 7–8 h) were also derived. 
Extreme responses of less than 3  h or more than 
18 h were excluded [43].

(3) Chronotype and morningness: Participants were 
prompted to answer the question “Do you con-
sider yourself to be?” with answers: “Definitely a 
‘morning’ person”, “More a ‘morning’ than ‘even-
ing’ person”, “More an ‘evening’ than a ‘morning’ 
person”, “Definitely an ‘evening’ person”, or “Do 
not know”, which were coded as 2, 1, − 1, − 2, and 
0, respectively. Participants who answered “Defi-
nitely a ‘morning’ person” and “More a ‘morning’ 
than ‘evening’ person” were categorized as cases for 
morningness, while those who answered “Definitely 
an ‘evening’ person” and “More an ‘evening’ than a 
‘morning’ person” were considered as controls [44].

(4) Napping frequency: Participants were asked “Do you 
have a nap during the day?” with responses “Never/
rarely”, “Sometimes”, “Usually”. The responses were 
treated as a continuous variable in the GWAS [45].

(5) Daytime sleepiness: This phenotype was deter-
mined by asking the question “How likely are you 
to dose off or fall asleep during the daytime when 
you don’t mean to? (e.g., when working, reading 
or driving)” with the response options of “Never/
rarely”, “sometimes”, “often”, and “all of the time”. The 
responses were coded continuously as one to four, 
corresponding to the severity of daytime sleepiness 
[46].

GWAS summary data for sleep traits
Genetic variants associated with sleep traits, includ-
ing insomnia complaints (N = 386,533) [42], sleep dura-
tion (N = 446,118) [43], long sleep (N = 339,926) [43], 
short sleep (N = 411,934) [43], chronotype (N = 449,734) 
[44], morningness (N = 403,195) [44], napping frequency 
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(N = 452,633) [45], sleepiness severity (N = 452,071) 
[46], were available from corresponding GWAS studies 
conducted among European-ancestry adults in the UK 
Biobank. All associations have been adjusted for age, sex, 
a maximum of 10 principal components.

GWAS summary data for brain imaging‑derived 
phenotypes
The summary-level GWAS data correlated with the 
human cerebral cortex structure were obtained from a 
meta-analysis of the GWAS studies conducted among 
33,992 European-ancestry participants, including 23,909 
participants from 49 cohorts affiliated with the ENIGMA 
Consortium and 10,083 participants from the UK 
Biobank [47]. The cohorts that were enrolled are listed in 
Additional file 1: Table S7. The SA and TH of the whole 
cortex and 34 brain regions defined by the Desikan-
Killiany atlas were extracted from structural brain MRI 
scans. The summary-level GWAS data correlated with 
the volumes of seven subcortical regions (nucleus accum-
bens, caudate, putamen, pallidum, amygdala, hippocam-
pus and thalamus) were obtained from a meta-analysis of 
13,171 individuals of European ancestry from 28 cohorts 
participating in the ENIGMA Consortium [48]. The 
cohorts that were enrolled are listed in Additional file 1: 
Table  S8. The subcortical measures were extracted by 
the automatic subcortical segmentation software pack-
ages: FIRST, part of the FMRIB Software Library (FSL), 
and the FreeSurfer. The summary-level GWAS data cor-
related with the longitudinal changes in 15 brain struc-
tures across the human lifespan were obtained from a 
meta-analysis of 15,100 European-ancestry participants, 
including 12,564 participants from 35 cohorts affili-
ated with the ENIGMA Consortium and 2536 partici-
pants from the UK Biobank [49]. The cohorts that were 
enrolled are listed in Additional file  1: Table  S9. The 15 
brain structures consisted of seven subcortical structures 
and eight global brain measures (total brain including 
cerebellum and excluding brainstem, SA measured at the 
gray–white matter boundary, average cortical TH, total 
lateral ventricle volume and cortical and cerebellar gray 
and white matter volume). All of these measures were 
extracted using the FreeSurfer processing pipeline.

Selection of instrument variant
We selected instrument variants (IVs) from two different 
GWAS summary results to perform a two-sample MR 
analysis, which can increase the estimated power. The 
selection of IVs should satisfy three assumptions: (1) IVs 
are strongly associated with exposure; (2) IVs should not 
be associated with potential confounders; (3) IVs influ-
ence the outcome only through the exposure of inter-
est. To fulfill the first assumption, we chose two sets of 

P-values for genetic variants associated with the exposure 
in the bidirectional MR analysis. We used a threshold of 
P < 5 ×  10−8 as the criterion for genome-wide significance 
to select IVs for estimating the causal effects of sleep 
traits on brain IDPs. In the inverse MR analysis for causal 
estimation of brain IDPs on sleep traits, the threshold 
of genome-wide significance was set at P < 5 ×  10−6. We 
relaxed the statistical threshold for selecting IVs given 
that few (usually less than 4) or even none SNPs were 
identified when we used P < 5 ×  10−8 as the threshold. 
However, as reported in the original GWAS study of the 
human brain structure [47], common variants explained 
34% of the variation in total SA and 26% in average TH. 
These heritability estimates suggest that SNPs beyond 
those identified at P < 5 ×  10−8 may contribute to varia-
tion in brain structure. This method of relaxing the sta-
tistical threshold for IVs has been used in previous high 
quality MR research when few associated SNPs are avail-
able [41]. Considering that this method carries the risk 
of introducing weak IVs, we calculated the F-statistic of 
each SNP and only the SNPs with F-statistic > 10 were 
retained. We also used linkage disequilibrium clumping 
 (r2 > 0.001, and < 1 MB) to obtain independent SNPs asso-
ciated with the exposure, and excluded the SNPs with 
minor allele frequency of < 0.01. For the second assump-
tion, we removed SNPs associated with confounders 
that interfere with the association between brain struc-
tures and sleep traits. We determined age, sex, education, 
body mass index (BMI)/obesity, hypertension, and com-
mon psychiatric disorders (DD, SCZ, BD, ANX, OCD, 
ASD and ADHD) as confounders after reviewing a large 
amount of literature on the correlation between sleep 
and brain structure, as well as their respective influenc-
ing factors. These factors have been reported by previ-
ous studies to influence both sleep traits and brain IDPs 
[50–52]. In addition, these factors are also the most fre-
quently adjusted covariates in sleep-related MRI studies 
[16, 53–56]. While some studies do not include mental 
status or psychological test scores as covariates, partici-
pants with psychiatric diseases are directly exclude [11, 
20, 57]. Therefore, it is necessary for us to remove the 
SNPs related to these factors from the selected IVs for 
sleep traits or brain structures, in order to avoid attribut-
ing the causal effects of these factors to sleep habits or 
brain structure. Considering that all associations in the 
original GWAS studies have been adjusted for age, sex, 
a maximum of 10 principal components, then we fur-
ther identified and removed the SNPs that are associated 
with education, BMI/obesity, hypertension, and com-
mon psychiatric disorders in the PhenoScanner database 
(http:// www. pheno scann er. medsc hl. cam. ac. uk/) and the 
NHGRI-EBI GWAS catalog database (https:// www. ebi. 
ac. uk/ gwas/ docs/ file- downl oads/) via PhenoScanner 

http://www.phenoscanner.medschl.cam.ac.uk/
https://www.ebi.ac.uk/gwas/docs/file-downloads/
https://www.ebi.ac.uk/gwas/docs/file-downloads/


Page 10 of 13Wang et al. Behavioral and Brain Functions           (2023) 19:17 

(version 1.0) [58] and gwasrapidd (version 0.99.13) [59] 
R Package. For the third assumption, we removed the 
outcome-related SNPs (p < 5 ×  10–8) as well as the SNPs 
whose high LD SNPs are associated with the outcome. 
Besides, palindromic SNPs were also excluded after har-
monizing the exposure and outcome data.

Mendelian randomization analysis
Four different methods of MR (random-effect IVW [60], 
MR-Egger [61], weighted median [62], and weighted 
mode [63]) were conducted to obtain causal effects of 
the exposure on outcome, taking into account variants 
heterogeneity and pleiotropy effects. The random-effect 
IVW method was implemented as the primary statisti-
cal analysis because it provides estimates with the high-
est precision by combining the ratios of SNP-exposure to 
SNP-outcome in a random-effects meta-analysis to esti-
mate the causal relationship between the exposure and 
outcome. However, this method relies on the assump-
tion of no directional horizontal pleiotropy, as it con-
strains the intercept of the regression to zero. Therefore, 
MR-Egger, weighted median and weighted mode were 
performed to complement and enhance the robustness 
of the results. The MR-Egger approach models a pleiot-
ropy parameter by fitting an intercept term, allowing it to 
detect and correct for directional pleiotropy, albeit with 
compromised power [61]. The weighted median method 
can yield valid causal effects if at least half of the weight 
in the analysis comes from valid IVs [62]. The weighted 
mode method provides consistent estimates when the 
relaxed IV assumption has less bias and a lower type I 
error rate [63]. When only one genetic instrument was 
available, we used the Wald ratio method for MR analysis.

Sensitivity analysis
To improve the reliability of the genetic instruments, we 
conducted Cochran’s Q test to identify heterogeneity and 
removed any outlying SNPs by applying MR-PRESSO 
outliers test [64] before conducting the final MR analy-
sis. We also performed the MR-Egger intercept test and 
MR-PRESSO global test to assess horizontal pleiotropy. 
Additionally, we applied leave-one-out analysis to check 
whether the causal relationship was mainly driven by 
a single SNP. To eliminate potential interference from 
overlapping IVs between exposure phenotypes, we re-
conducted the MR analysis after removing the overlap-
ping SNPs.

Statistics
All analyses were performed using the TwoSampleMR 
package (version 0.5.6) in R (version 4.1.2). A Bonferroni-
corrected P-value threshold was set at 3.40 ×  10−5 (0.05/

[92 × 8 × 2]; 92 represents the number of brain IDPs, eight 
represents the number of sleep traits, and two represents 
both forward and reverse MR analysis). The significant 
estimates should meet the following criteria: The P-value 
derived from IVW method was < 3.40 ×  10–5; all estimates 
from the four MR methods showed consistent directions 
of association (either positive or negative); no heteroge-
neity was identified by the Cochran’s Q test after remov-
ing the outlying SNPs by MRPRESSO; the P-values of 
MR-Egger intercept and MR-PRESSO global tests were 
both > 0.05, indicating the absence of horizontal pleiot-
ropy; the estimate was not biased by a single SNP, as indi-
cated by the leave-one-out plot. In the forward MR, the 
effect estimates [β and 95% CI] for cortical structures were 
divided by standard deviation (SD) to visually measure the 
effect size. However, for subcortical structures and longitu-
dinal changes of brain structures, the original results were 
presented given that the GWAS study did not provide SD 
information. In the reverse MR, the effect estimates for 
cortical structures were calculated as the change in sleep 
traits per SD change in brain IDPs, while the effect esti-
mates for subcortical structures and longitudinal changes 
of brain structures were presented as original results. 
Moreover, for binary outcome, including short sleep, long 
sleep, and morningness, the effect estimates were trans-
formed from [β and 95% CI] to [OR and 95% CI].
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