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Abstract 

Compulsivity is considered a transdiagnostic dimension in obsessive–compulsive and related disorders, characterized 
by heterogeneous cognitive and behavioral phenotypes associated with abnormalities in cortico‑striatal‑thalamic‑
cortical circuitry. The present study investigated the structural morphology of white and gray matter in rats selected 
for low‑ (LD) and high‑ (HD) compulsive drinking behavior on a schedule‑induced polydipsia (SIP) task. Regional brain 
morphology was assessed using ex-vivo high‑resolution magnetic resonance imaging (MRI). Voxel‑based morpho‑
metry of segmented MRI images revealed larger white matter volumes in anterior commissure and corpus callosum 
of HD rats compared with LD rats. HD rats also showed significantly larger regional volumes of dorsolateral orbitofron‑
tal cortex, striatum, amygdala, hippocampus, midbrain, sub‑thalamic nucleus, and cerebellum. By contrast, the medial 
prefrontal cortex was significantly smaller in HD rats compared with LD rats with no significant group differences 
in whole brain, ventricular, or cerebrospinal fluid volumes. These findings show that limbic cortico‑basal ganglia struc‑
tures implicated in impulse control disorders are distinct in rats that are vulnerable to develop compulsive behavior. 
Such abnormalities may be relevant to the etiology of compulsive disorders in humans.

Keywords Compulsive behavior, Schedule‑Induced Polydipsia, Magnetic resonance imaging, Voxel‑based 
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Compulsions are repetitive, stereotyped thoughts and 
behaviors designed to reduce harm and are performed 
according to rigid rules [1]. Compulsive behaviors are 
driven by repetitive urges and typically involve the expe-
rience of limited voluntary control over these urges [2]. 
Compulsions are not only a central symptom of obses-
sive–compulsive disorder (OCD), the paradigmatic 
example of compulsivity [3], but are also present in other 
neuropsychopathological conditions such as schizophre-
nia, autism spectrum disorder (ASD), attention-deficit 
hyperactivity disorder (ADHD), and addiction [4–6]. 
Obsessive Compulsive and Related Disorders (OCRDs) 
[4] includes body dysmorphic, hoarding, hair-pulling, 
skin picking and olfactory reference disorders and hypo-
chondriasis, all sharing compulsions as a cardinal charac-
teristic [7].
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Regarding compulsive symptomatology, there are dif-
ferent and heterogeneous cognitive and behavioral 
phenotypes, related to response inhibition, cognitive 
flexibility, planning (and goal-directed behavior), work-
ing memory, and error monitoring [6]. Behavioral and 
cognitive variability may be caused by distinct aberrant 
brain circuits centered on the ‘‘cortico-striatal loop’’ sys-
tem [8, 9]. Magnetic Resonance Imaging (MRI) stud-
ies have demonstrated increased connectivity between 
Prefrontal Cortex (PFC) and striatum in OCD [10–12]. 
Thus, several studies reveal a dorsolateral Prefrontal Cor-
tex (dlPFC)—striatum hypoactivity and a compensatory 
activation of Anterior Cingulate Cortex and ventrolat-
eral Prefrontal Cortex (vlPFC) in non-medicated OCD 
[13] and first-degree OCD relatives [14]. Moreover, OCD 
patients show ventromedial Prefrontal Cortex (vmPFC) 
hypoactivity during a recall memory task [15] or during 
symptom provocation [16] and a lack of a safety signal 
computed by this structure [17]. There is also a relation-
ship between the OFC and the striatum in OCD patients 
confirmed by meta-analyses of a variety of neuroimaging 
studies [18]. Moreover, there exists a hyperactivity of the 
lateral OFC in OCD patients during symptom provoca-
tion normalized over the course of behavioral therapy 
[19]. Finally, this frontostriatal dysregulation present in 
OCD patients is normalized by Deep Brain Stimulation 
(DBS) in the ventral striatum and transcranial magnetic 
stimulation in the mPFC [10, 20].

However, inhibitory control deficit seems to be driven 
by different brain areas and its aberrant connectivity with 
the cortico-striatal system. For instance, inputs to the 
striatum are relayed from midbrain neurons in Ventral 
Tegmental Area (VTA) and Substantia Nigra (SN) [21–
23]. Plasticity mechanisms in these areas are implicated 
in habit formation [24] and in a multitude of pathological 
conditions, including OCD, ADHD, Parkinson disease, 
Huntington disease, Tourette syndrome, and schizophre-
nia [25]. Hippocampus and amygdala are postulated to 
play a central role in the neurobiology of OCD through 
mediation of cognitive and affective processes. Volumet-
ric abnormalities in hippocampus [26–30], its subregions 
[31–33], and amygdala [34–37] are reported in disorders 
with compulsive symptomatology. Furthermore, neuro-
modulation intervention of OCD points to several areas 
that may also be involved in the expression of compulsive 
symptoms: Presupplementary Motor Area (PSMA) and 
Supplementary Motor Area (SMA) are the most promis-
ing brain regions for Transcranial Direct Current Stimu-
lation (tDCS) [38–42] and Subthalamic Nucleus (STN) 
seems to be an effective target for DBS [43–45]. Finally, 
increasing evidence reveals the cerebellum as an impor-
tant structure of fronto-striatal circuit [46–49], highlight-
ing its important role in higher-order cognitive functions 

[50, 51]. Clinical studies have found that the connectivity 
between cerebellum and PFC is lower, while connectivity 
with basal ganglia is stronger in OCD patients [14] sug-
gesting less top-down control over the PFC on the lower 
regions.

Schedule-induced polydipsia (SIP) procedure is char-
acterized by the development of an adjunctive behavior 
of excessive drinking in food-deprived animals exposed 
to intermittent food-reinforcement schedules [52, 53]. 
Translationally, psychogenic polydipsia is a similar phe-
nomenon characterized by compulsive non-regulatory 
fluid consumption present in > 20% of chronic psychiatric 
patients, that has been linked compulsive spectrum dis-
orders [54–57]. As drinking behavior on SIP is an exces-
sive, persistent, and maladaptive behavior, SIP is one of 
the most well-established preclinical models for the study 
of neuropsychopathological disorders presenting com-
pulsive behavior such as OCD, schizophrenia and alco-
hol abuse [58–62]. Thus, SIP seems to meet the criteria 
as a valid model of compulsive behavior [60]. Moreover, 
different studies have demonstrated relevant individual 
differences in SIP acquisition [63–65]. Indeed, two pop-
ulations can be selected according to their SIP acquisi-
tion: High Drinker (HD) rats, considered as compulsive, 
versus Low Drinker (LD) rats, considered as non-com-
pulsive [60]. SIP preclinical model allows us to identify a 
compulsive vulnerable population to study the brain cor-
relates underlying compulsive spectrum disorders due to 
their transdiagnostic profile [60, 66].

The aim of the present study was to investigate the 
morphology of brain differences in white and gray matter 
structures in the compulsive phenotype of rats selected 
by SIP using high-resolution magnetic resonance imag-
ing, in order to clarify the neuroanatomical substrates 
related to OCRDs.

Methods and materials
Animals
Twenty-four male Wistar rats from Envigo (Barcelona, 
Spain) were used in the present study. The animals were 
housed in social groups of four per cage, kept in a tem-
perature-controlled environment at 22  °C, and with a 
12:12  h light–dark cycle. Water and food were freely 
available and environmental enrichment was provided 
throughout the experiment. After 10  days for habitua-
tion animals through controlled feeding were gradually 
reduced to 85% of their free-feeding body weight. All 
procedures were conducted in accordance with the Span-
ish Royal Decree 53/2013 and the European Community 
Directive (2010/63/EU) for animal research. The present 
study was also approved by the Animal Research Com-
mittee from the University of Almería and complied with 
the ARRIVE guidelines (Additional file 1).
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SIP procedure
Animals were tested in 8 standard operant chambers 
(32 × 25 × 34 cm) (MED Associates, St. Albans, VT, USA) 
equipped with a bottle of water, pellet dispenser and 
ambient light. Animals were exposed to a food pellet 
presentation using a fixed time 60  s (FT-60  s) schedule 
during 60 min sessions with free access to a bottle of tap 
water. Following the protocol described in [60] and after 
the 20 daily sessions, rats were divided into low drink-
ers (LD) and high drinkers (HD), depending on whether 
their water consumption (average of the last 5 sessions) 
was above or below the median of the group. Amount of 
water consumed (milliliters), total number of licks in the 
bottle, and total number of magazine entries were regis-
tered [67] (Additional file 1).

Cerebral MRI volumetric assessment
Immediately after the last SIP session and the separa-
tion into HD and LD rats, animals were perfused with 4% 
PFA, and the whole skull was stored in PFA prior to high-
resolution ex-vivo analyses in the University of Cam-
bridge. Brains were scanned intact inside the cranium 
using MRI at 9.4 Tesla using a Bruker BioSpec 94/20 sys-
tem with the manufacturer-provided 4-channel rat brain 
array coil with an 86 mm birdcage transmit/receive coil 
[68]. (Parameters in Additional file 1).

Cerebral MR image processing
The user bias-free automatic pipe-line for image process-
ing included the following steps: Images were treated for 
bias field correction using the ITK implementation of the 
N4 algorithm in python [69]. Segmentation of the brain 
and removal of signal from skull and external tissues 
was achieved by Brain extraction using the rBET soft-
ware [70]. A normalization algorithm was implemented 
in Python to normalize signal intensities from different 
scans. Finally, each individual brain image was co-reg-
istered to a common space using the SIGMA rat brain 
atlas for reference [71]. For this task we used ANTs, the 
ANTsX ecosystem for quantitative biological and medi-
cal imaging [72]. Segmented regions of interest (ROIs) of 
the brain atlas were used to calculate volumes and sig-
nal intensities for those regions for each individual brain 
(Additional file 1).

Data analysis
SIP acquisition was analyzed using a two-way repeated-
measures analysis of variance (ANOVA), with “group” 
(LD and HD) as between-subject factor and “sessions” 
(20 sessions) as the within-subject factor. The differences 
between groups in the volume of the different cerebral 
areas were studied using Student’s t-test (T-test). When 

appropriate, post hoc analyses were performed using 
Bonferroni correction. Statistical significance was estab-
lished at p < 0.05. Effect size was reported when appro-
priate. All analyses were performed using Statistica® 
software (version 8.0) and all figures were made using 
GraphPad Prism 8 (Additional file 1).

Results
Screening for compulsivity on the schedule‑induced 
polydipsia task
The mean water intake, total licks and total magazine 
entries in LD and HD over 20 SIP sessions are shown 
in Fig.  1. Concerning the water intake, repeated meas-
ures ANOVA revealed significant differences according 
to the interaction between the SIP acquisition sessions 
and LD vs HD (interaction SIP session × group effect: 
F(19,418) = 14,89, p < 0.001; η2

p = 0.4). Repeated measures 
ANOVA and η2p also showed a significant interaction 
in total number of licks (interaction SIP session × group 
effect: F(19, 418) = 5.94, p < 0.001; η2

p = 0.21). Post hoc 
analysis indicated that SIP induced different rates in 
drinking behavior across the 20 sessions in both groups. 
In water intake, the LD and HD groups differed in ses-
sion 5 (p < 0.001; d = 1.65) and the HD group increased 
their water consumption in session 5 (p < 0.001; d = 2.01) 
compared to session 1. Similar differences between LD 
and HD were found in total number of licks: the LD and 
HD group differed in session 5 (p < 0.01; d = 1.68) and 
the HD group increased their number of licks in session 
5 (p < 0.001; d = 2.18) compared to session 1. There were 
no significant differences between LD and HD animals 
in the total magazine entries on SIP (SIP session inter-
action × group effect: F(19, 418) = 1.23, p = 0.23). Please, 
note that the effect showed on SIP between HD and LD 
groups might not be due to a difference in motivation or 
reward processing, as both groups did not show differ-
ences in magazine entries. Therefore, these differences 
are associated to the performance of excessive and per-
sistent drinking behavior, measured by water consumed 
and licking behavior on SIP (For a review see [60, 73, 74].

Cerebral MRI volumetric assessment
The following subsections show the significant brain 
volumetric differences in percentage (in relation to 
total brain volume) between HD and LD rats assessed 
by MRI and their relationship with SIP. The results are 
organized into: (1) general measures (whole brain vol-
ume, WM, GM, and CSF); (2) WM areas; (3) GM cor-
tical areas; and (4) GM subcortical areas from anterior 
to posterior according to the Paxinos and Watson [75] 
brain atlas. In supplementary information: brain volu-
metric results in  mm3 and no significant differences in 
Additional file  1: Table  S1, and correlations between 
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SIP variables and volumetric measures are presented 
in Additional file 1: Table S2 and S3.

Whole brain gray matter, white matter, and cerebrospinal 
fluid
The percentage of volume of whole brain, gray mat-
ter (GM), white matter (WM), and cerebrospinal fluid 
(CSF) are shown in Fig.  2. No significant differences 
between groups were observed in whole brain volume 
(Fig.  2A; total volume in  mm3: df = 22; T-test = 1.19; 
p = 0.24), GM (Fig. 2B; df = 22; T-test = − 0.93; p = 0.36) 
or CSF (Fig.  2C; df = 22; T-test = − 1.11; p = 0.28). 
However, T-test analysis revealed an increased per-
centage of WM volume in HD animals compared to 
LD animals (Fig.  2D.; df = 22; T-test = − 2.66; p < 0.05; 
d = 1.09).

White matter structures
Volume in percentage of WM areas with statistical dif-
ferences are shown in Fig. 3. T-test analysis revealed that 
HD animals showed an increased volume in the Corpus 
Callosum (CC) (Fig.  3B; df = 22; T-test = − 2.95; p < 0.05; 
d = 1.4) and Anterior Commissure (AC) (Fig. 3C; df = 22; 
T-test = − 3.1; p < 0.01; d = 1.38) compared to LD animals.

Gray matter structures: cortical areas
Volume in percentage of GM cortical areas with statisti-
cal differences between groups are shown in Fig. 4. T-test 
analysis revealed that HD animals showed an increased 
volume of motor cortex (Fig. 4C; df = 22; T-test = − 2.72; 
p < 0.05; d = 1) and dlOFC (Fig. 4E; df = 22; T-test = − 2.19; 
p < 0.05; d = 0.85) compared to LD animals. However, 
compulsive HD presented a decreased volume of mPFC 
compared to LD rats (Fig.  4A; df = 22; T-test = 2.54; 
p < 0.05; d = 1,13).
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Fig. 1 Schedule‑Induced Polydipsia. The mean (± SEM) water intake (A), total number of licks (B), and magazine entries (C) in FT‑60 s across 20 
sessions of Schedule‑Induced Polydipsia (SIP) in High drinker (HD, n = 12) and Low drinker (LD, n = 12) rats. *p < 0 .05 indicates significant differences 
between HD and LD rats from that session onward. #p < 0 .05 indicates significant differences from that session onward compared with session 1 
in the same group
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Water consumed (ml) during the last 5 sessions on SIP 
correlated with volume of motor cortex (Fig. 4D; r = 0.5; 
p < 0.05). Moreover, licking behavior during the last 5 
sessions on SIP correlated with volume of Motor Cortex 
(r = 0.57; p < 0.01) and mPFC (Fig. 4B; r = − 0.47; p < 0.05).

Gray matter structures: subcortical anterior areas
Volume in percentage of GM subcortical anterior 
areas with statistical differences between groups are 

shown in Fig.  5. T-test analysis revealed that HD ani-
mals showed an increased volume in striatum (Fig. 5A; 
df = 22; T-test = − 2.44; p < 0.05; d = 1.26), and Preoptic 
Area (POA) (Fig.  5C; df = 22; T-test = − 2.59; p < 0.05; 
d = 1.17) compared LD rats.

Moreover, water consumed (ml) during the last 5 
sessions on SIP correlated with volume of Striatum 
(Fig.  5B; r = 0.43; p < 0.05) and POA (Fig.  5D; r = 0.51; 
p < 0.01).
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Fig. 2 Volumetric MRI data of whole brain (A), GM (B), CFS (C) and WM (D). Scheme of brain segmentation (E). Data are expressed 
as the means ± SEM. *p < 0.05 indicates significant differences between LD and HD rats. CSF: cerebrospinal fluid; GM: gray matter; WM: white matter

Fig. 3 Volumetric MRI data of selected brain white matter structures. (Left). Statistical differences between groups in corpus callosum (CC), 
and Anterior Commissure (AC). (Right) One sagittal plane (top left), one transverse plane (top right), one coronal plane (bottom right) and a 3D 
rendered representation (bottom left) of the selected regions of interest analyzed including CC in cyan and AC in red. Data are expressed 
as the means ± SEM. *p < 0.05; **p < 0.01 indicate significant differences between LD and HD rats. (note: for some 2D views is not possible 
to visualize all ROIs in a single plain)
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Gray matter structures: subcortical medial areas
Volume in percentage of GM subcortical medial areas 
with statistical differences between groups are shown 
in Fig.  6. T-test analysis revealed that HD animals 

showed increased volume in amygdala (Fig.  6A; df = 22; 
T-test = − 3.21; p < 0.01; d = 1.54), dentate gyrus (DG) 
(Fig. 6C; df = 22; T-test = − 2.72; p < 0.05; d = 1.5) and STN 
(Fig. 6D; df = 22; T-test = − 2.18; p < 0.05; d = 0.91).

Fig. 4 Volumetric MRI data of selected prefrontal brain grain matter structures. (Left). Statistical differences between groups in A, B medial 
prefrontral cortex (mPF), C, D Motor Cortex (MC), and E dorsolateral orbitofrontal cortex (dlOFC). (Right) One sagittal plane (top left), one transverse 
plane (top right), one coronal plane (bottom right) and a 3D rendered representation (bottom left) of the selected regions of interest analyzed 
including mPFC in magenta, MC in cyan and dlOFC in green. Data are expressed as the means ± SEM. *p < 0.05; **p < 0.01 indicate significant 
differences between LD and HD rats. (note: for some 2D views is not possible to visualize all ROIs in a single plain)

Fig. 5 Volumetric MRI data of selected brain gray matter structures. (Left) Statistical differences between groups in A, B) Striatum (ST), and C, D 
Preoptic area (POA). (Right) One sagittal plane (top left), one transverse plane (top right), one coronal plane (bottom right) and a 3D rendered 
representation (bottom left) of the selected regions of interest analyzed including Striatum in green and POA in purple. Data are expressed 
as the means ± SEM. *p < 0.05 indicates significant differences between LD and HD rats
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Water consumed (ml) during the last 5 sessions on SIP 
correlated with volume of Amygdala (Fig.  6B; r = 0.47; 
p < 0.05).

Gray matter structures: subcortical posterior areas
Volume in percentage of GM subcortical posterior areas 
with statistical differences between groups are shown in 
Fig. 8. T-test analysis revealed that HD animals showed 
increased volume in periaqueductal gray (PAG) (Fig. 7A; 

df = 22; T-test = − 3.2; p < 0.01; d = 2.22), midbrain 
(Fig.  7C; df = 22; T-test = − 2.46; p < 0.05; d = 0.85) and 
parasubiculum (PaS) (Fig.  7D; df = 22; T-test = − 2.68; 
p < 0.05; d = 1.13).

Water consumed (ml) during the last 5 sessions on 
SIP correlated with volume of PAG (Fig.  7B; r = 0.66; 
p < 0.001). Moreover, licking behavior during the last 5 
sessions on SIP correlated with volume of PAG (r = 0.62; 
p < 0.001).

Fig. 6 Volumetric MRI data of subcortical medial gray matter structures. (Left) Statistical differences between groups in A, B Amygdala, C Dentate 
gyrus (DG), and D Subthalamic nucleus (STN). (Right) One sagittal plane (top left), one transverse plane (top right), one coronal plane (bottom right) 
and a 3D rendered representation (bottom left) of the selected regions of interest analyzed including: Amygdala in yellows, DG in cyan and STN 
in purple. Data are expressed as the means ± SEM. *p < 0.05; **p < 0.01 indicate significant differences between LD and HD rats. (for some 2D views 
is not possible to visualize all ROIs in a single plain)

Fig. 7 Volumetric MRI data of subcortical posterior gray matter structures. (Left) Statistical differences between groups in A, B Periaqueductal 
gray matter (PAG), C midbrain, and D parasubiculum (PaS). (Right) One sagittal plane (top left), one transverse plane (top right), one coronal plane 
(bottom right) and a 3D rendered representation (bottom left) of the selected regions of interest analyzed including: PAG is in green, midbrain 
in yellow and PaS in purple. Data are expressed as the means ± SEM. *p < 0.05; **p < 0.01 indicate significant differences between LD and HD rats. 
(note: for some 2D views is not possible to visualize all ROIs in a single plain)
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Cerebellum
Volume in percentage of cerebellum is shown in Fig.  8. 
T-test analysis revealed that HD animals showed 
increased volume in Cerebellum compared to LD ani-
mals (Fig. 8B; df = 22; T-test = − 2.37; p < 0.05; d = 0.99).

Discussion
The present study explored the possible alterations of 
the morphology in different brain areas on a compul-
sive phenotype of rats selected by SIP. The neuroimaging 
assessment has considered the whole-brain, the cortico-
striatal-thalamic-cortical pathway, as well as the asso-
ciated neurocircuitry that involves the limbic and the 
cerebellar network. Voxel-based morphometry revealed 
that compulsive HD rats showed a significantly increased 
volume of white matter structures (CC and AC), cortical 
structures (motor cortex and dl OFC), subcortical struc-
tures (striatum, amygdala, DG, STN, PAG, and midbrain) 
and cerebellum relative to LD animals. However, HD rats 
showed a decreased volume of mPFC compared to LD 
rats. No differences were observed between HD and LD 
groups either in the whole brain or in cerebrospinal fluid 
(CSF) volume. These results highlight and extend the 
knowledge about brain morphological alterations in the 
compulsive phenotype, which may underlie the behavio-
ral inhibition deficits observed.

Compulsivity and structural brain assessment: white 
matter structures
Compulsive HD rats showed an increased general WM 
volume and its related structures, such as CC and AC 
compared to LD rats. Different preclinical studies on 

inhibitory control deficit have also revealed WM altera-
tions. An abnormal increase of WM maturation was 
observed in an adolescent model of compulsive check-
ing behavior [76], in selectively bred ASD/ADHD-
like behavior rats [77], and in animals with repetitive 
traumatic brain injury (TBI) that showed impulsivity 
[78]. In line with our result, some studies have shown 
an increase in CC in an adolescent model of compul-
sive checking behavior [76], in selectively bred ASD/
ADHD-like behavior rats [77], and in a female rat 
model of Fragile X syndrome characterized by autis-
tic behaviors [79]. Moreover, OCD-like behavior mice 
exhibited increased c-fos expression in the AC ([80]. In 
contrast, in a previous study in our laboratory we found 
that HD rats selected by SIP showed reduced myelin 
basic protein (MBP) in the CC [61], as well as in a pre-
clinical model of ASD [81, 82].

In line with our current findings, abnormal WM and 
myelin development have been proposed that may 
underlie several neuropsychiatric disorders [83]. Clinical 
studies using MRI observed increased WM in patients 
with OCD [84] and ASD [85–87], and WM volume was 
positively correlated with the severity of ritualistic/com-
pulsive behaviors in adults and adolescents with anorexia 
nervosa [88]. However, the relationship between CC 
and AC and compulsive symptomatology is unclear. An 
increased CC volume has been linked to doubt-checking 
subclinical OC symptoms in healthy children [89], in 
ASD [90] and in pediatric OCD patients [91]. Moreover, 
the stereotaxic coordinates for DBS treatment for OCD 
are close to the AC [92]. However, a decreased volume 
of CC has also been associated with pediatric OCD [93], 
adult OCD [94], and ASD children [95].

Fig. 8 Volumetric MRI data of Cerebellum. (Left) Statistical differences between groups. (Right) One sagittal plane (top left), one transverse plane 
(top right), one coronal plane (bottom right) and a 3D rendered representation (bottom left) of the selected regions of interest analyzed including: 
Gray matter in green and white matter tracks in purple. Data are expressed as the means ± SEM. *p < 0.05; **p < 0.01 indicate significant differences 
between LD and HD rats
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Compulsivity and structural brain assessment: 
cortico‑striatal circuit
The neurocircuitry traditionally involved in habit learn-
ing and compulsive behaviors includes the striatum and 
its connections with frontal cortex regions [24, 96–98].

HD compulsive animals showed increased volume of 
striatum and dlOFC, but reduced volume of mPFC com-
pared to LD rats. In accordance to our findings, a previ-
ous study showed that SIP acquisition in rats induced 
structural plasticity changes by an increase in dendritic 
spine density in dorsolateral striatum compared to con-
trol rats exposed to a mass feeding condition [99]. More-
over, previous studies on SIP have revealed an alteration 
in the OFC, such as increased c-fos activity in the lOFC 
in rats with SIP acquisition [58] and in high compulsive 
rats selected by SIP [100]. Although our result in mPFC 
contrasts with previous data in our laboratory, where no 
differences were observed in the PrL cortex and IL cortex 
volume between HD and LD rats [101], different studies 
have shown a reduction in mPFC volume in RHA ani-
mals characterized by impulsive and compulsive behav-
iors [102], and in a model of ADHD, the juvenile SHRs 
rats [103].

In clinical studies, comparable structural abnormalities 
in these brain areas have been reported. Neuroimaging 
studies showed increased GM volumes of striatum and 
its subregions in OCD [104, 105] and in ASD [106, 107]. 
Striatum volume also showed a positive association with 
compulsivity scores in subclinical adolescent popula-
tion [108] and with the severity of restricted and repeti-
tive behaviors in ASD [109]. Moreover, clinical studies 
in OCD patients have also shown an increased volume 
of OFC [104]. Finally, in accordance with our findings, 
some clinical studies have also reported a reduction of 
mPFC in inhibitory control disorders such as in subjects 
with online game addiction [110] and in individuals with 
heavy drinking profile [111]. Indeed, symptom improve-
ment in OCD patients by the cognitive-behavioral ther-
apy correlated with larger volume within the right mPFC 
[112].

Compulsivity and structural brain assessment: 
cortico‑striatal‑thalamic‑cortical circuit
In the assessment of the brain neurocircuitry implicated 
in compulsive behaviors, many authors also consider an 
extended network that involves other midbrain, thalamic 
and cortical areas [113].

In this sense, HD animals also presented an increased 
volume of motor cortex, STN and midbrain. As far as we 
know, motor cortex volume has not been fully studied 
in animal models of inhibitory control deficit. However, 
the different subregions of the motor cortex might have 
an encompassing role with the cortico-striatal network 

in a motor inhibition task [114] and in learning of sim-
ple sequences [115]. Moreover, when drug seeking is well 
established, it is under the dominant control of the dor-
solateral striatum, which receives its major cortical affer-
ents from the motor cortex [116]. Regarding the role of 
STN on compulsive behavior, stimulation or inactivation 
of STN have revealed to ameliorate the inhibitory con-
trol deficit in animal models of OCD [117, 118], of com-
pulsive heroin taking [119], and of risk-preferring [120]. 
Finally, data similar to ours have been found in areas that 
compose the midbrain, such as increased volume of VTA 
in models of stress as maternally deprived animals [121], 
and correlation between maintained drug use despite 
negative consequences with PAG volume in a rat model 
of cocaine addiction [122].

Related to clinical studies, OCD patients had greater 
activation of the SMA during high- vs low-conflict tri-
als in the multi-source interference Task [123] and a dis-
ruption in higher-order motor networks has been found 
in compulsive behavior such as skin-picking symptoms 
[124]. Moreover, in the clinical context, the bilateral DBS 
in the STN is a recommended treatment for refractory 
OCD [125]. Finally, an increase of midbrain [126] have 
been shown in OCD patients.

Compulsivity and structural brain assessment: the role 
of limbic and cerebellar areas
Moreover, other relevant brain structures of the limbic 
network associated with compulsivity are hippocam-
pus and amygdala. The present study found increased 
volume of the DG of the hippocampus and amygdala in 
HD rats compared to LD rats. Our data in DG contrasts 
with previous findings in our lab, where HD group had 
a reduced dorsal hippocampus volume compared to LD 
group measured by stereology [101]. However, a classi-
cal study showed that hippocampal lesions were followed 
by a rapid and stable SIP acquisition [127]. Regarding 
increased amygdala, similar data was found in HD ani-
mals [101] and in the high-avoidance Hatano rats [128] 
that showed increased BLA volume.

Clinical studies have linked hippocampal and amyg-
dalar abnormalities to compulsive symptomatology. 
An increased volume of hippocampus have been found 
in OCD patients [33, 104] and in internet GD patients, 
where the hippocampus volume correlated with symp-
tom severity [129]. Moreover, the association between 
different subregions of amygdala and compulsive trait 
have been found in OCD [130, 131], in a sub-clinical pop-
ulation [34], in subjects with compulsive sexual behavior 
[36] and in individuals with internet GD [129].

In the present experiment, HD animals showed an 
increase in the volume of cerebellum, which is in line 
with different cerebellar alterations found in animal 



Page 10 of 15Martín‑González et al. Behavioral and Brain Functions           (2023) 19:19 

models of ASD/ADHD-like behaviors [77] of autism 
[132], of addiction [133], and in animals with repetitive 
jumping behavior [134].

In clinical studies, according with our results, a higher 
volume of different areas of cerebellum was found in 
ASD [106, 135, 136] and in OCD patients [104, 137–139]. 
Interestingly, cerebellar volume correlated with OC 
symptom severity in OCD patient [105] and with emo-
tional dysregulation severity in ADHD patients [140].

In summary, our findings reveal a collection of mor-
phological abnormalities implicated in the compulsive 
phenotype selected by SIP, that suggest a brain network 
that includes the traditional cortico-striatal-thalamic-
cortical circuit and other less studied brain areas of the 
limbic, and cerebellar circuit, which expand the knowl-
edge about brain areas that might be implicated in 
inhibitory control. The increased volume of several areas 
observed might not be attributable to a possible water 
increment in the brain, because no significant differences 
were found in the whole brain, ventricles, or CSF volume 
between groups. Possibly, specific and dissociable circuits 
within the compulsivity brain network might be associ-
ated with different dysfunctions, highlighting the hetero-
geneity of the plausible endophenotypes of OCD [141].

However, our study presents certain limitations. The 
volumetric assessment of the brain areas is a powerful 
analysis tool to identify abnormalities in the morphologi-
cal functioning of neurocircuits, but the current study 
is unable to determine the underlying mechanisms of 
the morphological differences observed. Presumably, 
the volumetric changes found suggest a possible aber-
rant plasticity in these brain areas linked to compulsive 
behavior. In this regard, it is known that variations in the 
volume of particular brain regions may reflect micro-
scopic alterations including changes in synaptogenesis, 
dendritic arborization, number of neurites, and neuronal 
and glial genesis, that might in turn, influence behavio-
ral responses [142–144]. Moreover, we have observed 
morphologic changes in large areas that includes a great 
diversity in their functional specialization according to 
each of its substructures. Further understanding of these 
alterations is necessary for future experiments, which 
must also be provided with female rats. Another limita-
tion of our study is the discrepancy between the findings 
in preclinical studies, which might be attributable to the 
wide variety of models used. This reinforces the transla-
tional validity of the neuroimaging studies, since in the 
clinical literature, this lack of concordance is also found, 
which might be due to heterogeneity within neurodevel-
opmental disorders, comorbidity, age onset and effect of 
psychopharmacology treatments.

The development of compulsive drinking by SIP expo-
sure might induce microstructural abnormalities in the 

cortico-striatal-thalamic-cortical circuit as well as in 
limbic and cerebellar areas in HD compulsive rats. These 
results suggest that SIP might potentially have a time-
dependent role in modulating the brain plasticity, spe-
cifically in high compulsive vulnerable rats, the HD group 
selected by SIP. This hypothesis is in consonance with 
previous data in our laboratory where a brain volumetric 
assessment did not reveal significant differences between 
HD and LD rats in basal conditions, but the re-exposure 
to SIP induced significant changes only in HD animals 
[101]. Finally, this pattern is also found in the clinical lit-
erature, when the potential brain differences in compul-
sive patients become evident during the exposition to the 
problem situation [15, 16, 19], supporting SIP as a valid 
and translational model for the study of compulsivity.

Conclusions
The present MRI study reveals a collection of morpho-
logical abnormalities and suggests the implication of 
frontostriatal circuit and its modulators, which might 
have different functions linked to compulsive behavior 
on SIP. HD animals presented increased general WM vol-
ume compared to LD animals without differences in GM 
or CSF volume. HD rats also showed increased volume in 
white matter structures such as CC and AC. Altered vol-
ume of cortical areas were found in HD rats: decreased 
volume in mPFC and increased volume of Motor Cor-
tex and dlOFC. Moreover, subcortical areas have been 
increased in HD phenotype: striatum, DG, amygdala, 
midbrain, PAG and STN. This pattern of alterations 
might be related to a vulnerability to develop compul-
sive behavior, which might be exacerbated by SIP expo-
sure, and point toward SIP as a suitable preclinical model 
for enhancing the knowledge about the vulnerability to 
OCRDs.
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