
Jang et al. Behavioral and Brain Functions            (2024) 20:2  
https://doi.org/10.1186/s12993-024-00228-z

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Behavioral and
Brain Functions

Structural connectome alterations 
between individuals with autism 
and neurotypical controls using feature 
representation learning
Yurim Jang1, Hyoungshin Choi2,3, Seulki Yoo4, Hyunjin Park3,5 and Bo‑yong Park3,6* 

Abstract 

Autism spectrum disorder is one of the most common neurodevelopmental conditions associated with sensory 
and social communication impairments. Previous neuroimaging studies reported that atypical nodal‑ or network‑
level functional brain organization in individuals with autism was associated with autistic behaviors. Although 
dimensionality reduction techniques have the potential to uncover new biomarkers, the analysis of whole‑brain 
structural connectome abnormalities in a low‑dimensional latent space is underinvestigated. In this study, we 
utilized autoencoder‑based feature representation learning for diffusion magnetic resonance imaging‑based 
structural connectivity in 80 individuals with autism and 61 neurotypical controls that passed strict quality controls. 
We generated low‑dimensional latent features using the autoencoder model for each group and adopted 
an integrated gradient approach to assess the contribution of the input data for predicting latent features 
during the encoding process. Subsequently, we compared the integrated gradient values between individuals 
with autism and neurotypical controls and observed differences within the transmodal regions and between the 
sensory and limbic systems. Finally, we identified significant associations between integrated gradient values 
and communication abilities in individuals with autism. Our findings provide insights into the whole‑brain structural 
connectome in autism and may help identify potential biomarkers for autistic connectopathy.
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Introduction
Autism spectrum disorder is a pervasive condition that 
occurs during development. Individuals with autism show 
deficits in sensory processing and social communication 
skills [1, 2]. To identify the pathological and behavioral 
associations of autism, previous neuroscience studies 
have investigated alterations in large-scale functional 
brain networks [3–5] and abnormalities in microcircuit 
functions, such as excitation/inhibition imbalances [6–
10]. Studies have suggested that autism is associated with 
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altered macroscale functional brain organization, as well 
as atypical neural circuits and cognitive functions.

Recent neuroimaging studies based on magnetic 
resonance imaging (MRI) have adopted dimensionality 
reduction techniques to study high-dimensional 
connectome data with multiple low-dimensional 
eigenvectors [11, 12]. The core of these techniques 
is the generation of low-dimensional features that 
sufficiently represent whole-brain connectome data by 
estimating the principal axes of the brain. Functional and 
microstructural MRI studies have applied dimensionality 
reduction techniques to connectivity data and observed 
cortical hierarchical patterns expanding from low-
level sensory to higher-order default mode networks 
[12–14]. Moreover, these techniques have been adopted 
to investigate structural and functional connectome 
disorganization in individuals with autism, which 
consistently suggests altered connectivity in the sensory 
and default mode regions [3, 5]. In addition to these 
connectome manifold approaches, feature representation 
learning based on deep learning techniques is a notable 
method for generating representative latent features 
from the original data. In particular, an autoencoder 
reduces high-dimensional data through multiple 
nonlinear operations and generates latent vectors in a 
hidden bottleneck layer. These low-dimensional features 
are then used to reconstruct the original data [15, 16]. 
The generated latent features can be used to develop 
disease diagnosis models; for example, to classify healthy 
controls and patients with Alzheimer’s disease [17, 18] 
or schizophrenia [19, 20]. However, one challenge of the 
autoencoder is the interpretation of latent vectors. To 
address this issue, a recent study introduced an integrated 
gradient technique that computes the contribution of the 
input data to predict features in the hidden layer [21]. 
Thus, the extent to which the structural connectivity 
contributes to predicting the low-dimensional latent 
vectors can be calculated. Here, we hypothesized that 
the low-dimensional latent features derived from the 
autoencoder model might contribute differently to the 
reconstruction of the original connectome data between 
typically and atypically developing brains.

In this study, we investigated the structural network 
disorganization in individuals with autism using 
autoencoder-based feature representation learning. 
First, we constructed autoencoders to reconstruct the 
structural connectivity of neurotypical controls and 
individuals with autism, and generated low-dimensional 
latent features for each group. Next, the integrated 
gradient approach was used to assess the contribution 
of the features in reconstructing the original data, 
and the integrated gradient values of the control and 
autism groups were compared. Finally, we evaluated the 

associations between the symptom severity of autism, 
measured using the Autism Diagnostic Observation 
Schedule (ADOS), and the integrated gradient values.

Method
Study participants
We obtained T1-weighted and diffusion MRI data from 
three independent sites (New York University Langone 
Medical Center [NYU], Trinity College Dublin [TCD], 
and San Diego State University [SDSU]) of the Autism 
Brain Imaging Data Exchange-II (ABIDE-II) database 
[22]. We included the sites that (i) included children and 
adults with autism and neurotypical controls, with ≥ 10 
individuals per group, (ii) who had T1-weighted and 
diffusion MRI available, (iii) sufficient MRI data quality 
(i.e., scanned with 3 T scanner). Of the 178 participants, 
141 participants, including 61 neurotypical controls 
(mean ± standard deviation [SD] age = 13.2 ± 4.0  years) 
and 80 individuals with autism (12.1 ± 4.9  years), 
were included in the study (Table  1). Individuals with 
autism were diagnosed with ADOS [23] and/or Autism 
Diagnostic Interview-Revised [24], and the neurotypical 
controls did not have any history of mental illness. 
ABIDE data collection was performed in accordance 
with the local Institutional Review Board guidelines. 
In accordance with the Health Insurance Portability 
and Accountability Act (HIPAA) guidelines and 1000 
Functional Connectomes Project/INDI protocols, 
all ABIDE datasets were fully anonymized, with no 
protected health information included.

MRI data acquisition
T1-weighted and diffusion MRI from three independ-
ent sites, NYU, TCD, and SDSU, were scanned with 
3  T Siemens Allegra, 3  T Philips Achieva, and 3  T 
GE MR7550 scanners, respectively. At the NYU site, 
T1-weighted images were acquired using a 3D mag-
netization-prepared rapid acquisition gradient echo 
(MPRAGE) sequence (repetition time [TR] = 2530  ms; 
echo time [TE] = 3.25 ms; inversion time [TI] = 1,100 ms; 
flip angle [FA] = 7˚; matrix size = 256 × 192; and voxel 
size = 1.3 × 1.0 × 1.3  mm3). Diffusion MRI data were 
obtained using a 2D spin-echo echo-planar imaging 
(SE-EPI) sequence (TR = 5200  ms; TE = 78  ms; matrix 
size = 64 × 64; voxel size = 3  mm3 isotropic; 64 directions; 
b-value = 1000 s/mm2; and 1 b0 image). At the TCD site, 
T1-weighted data were obtained using a 3D MPRAGE 
sequence (TR = 8,400  ms; TE = 3.90  ms; TI = 1,150  ms; 
FA = 8˚; matrix = 256 × 256; and voxel size = 0.9  mm3 
isotropic). The diffusion MRI data were acquired using 
a 2D SE-EPI (TR = 20,244  ms; TE = 7.9  ms; matrix 
size = 124 × 124; voxel size = 1.94 × 1.94 × 2  mm3; 61 
directions; b-value = 1,500  s/mm2; and 1 b0 image). At 
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the SDSU site, the T1-weighted images were acquired 
using a 3D standard fast spoiled gradient echo (SPGR) 
sequence (TR = 8.136  ms; TE = 3.172  ms; TI = 600  ms; 
FA = 8˚; matrix size = 256 × 192; and voxel size = 1  mm3 
isotropic). Diffusion MRI data were obtained using a 2D 
SE-EPI sequence (TR = 8,500  ms; TE = 84.9  ms; matrix 
size = 128 × 128; voxel size = 1.875 × 1.875 × 2  mm3; 61 
directions; b-value = 1000 s/mm2; and 1 b0 image).

MRI data preprocessing and structural connectivity 
construction
T1-weighted MRI data were preprocessed using a con-
ventional recon-all process in FreeSurfer [25]. The 
process included gradient non-uniformity correction, 
non-brain tissue removal, intensity normalization, tis-
sue segmentation, and surface reconstruction. The cor-
tical surfaces were then topology corrected and inflated. 
Subsequently, a spherical registration to the fsaver-
age template space was performed. Diffusion MRI data 
were preprocessed using MRtrix3 [26], which corrected 
for susceptibility distortions, head motion, and eddy 
currents. Based on probabilistic tractography, we con-
structed structural connectomes from the preprocessed 
diffusion MRI data. Different tissue types, including 
cortical and subcortical gray matter, white matter, and 
cerebrospinal fluid, were defined from the T1-weighted 
data using anatomically-constrained tractography [27] 
and registered onto the native diffusion MRI space with 
boundary-based registration. Multishell and multitissue 
response functions were estimated [28], and constrained 
spherical deconvolution and intensity normalization 
were performed [29]. A tractogram was generated with 
40 million streamlines, with a maximum tract length 
of 250, and a fractional anisotropy cutoff of 0.06. Then, 

spherical-deconvolution informed filtering of tracto-
grams (SIFT2) was applied to reconstruct whole-brain 
streamlines weighted by cross-section multipliers [30]. 
The streamlines were mapped onto the Schaefer atlas 
with 200 parcels [31] and log-transformed to generate a 
structural connectivity matrix.

Feature representation learning based on autoencoder
We selected an autoencoder model to generate low-
dimensional latent features from the input structural 
connectivity matrix [15, 16]. We controlled for age, sex, 
and site from the structural connectivity matrix using a 
linear regression model and entered the controlled data 
into the autoencoder by considering the left and right 
hemispheres separately. The autoencoder reconstructs 
the original data via encoding and decoding processes as 
follows:

where E is the encoder that generates the latent fea-
ture z from the input data x , with weight W  and bias b . 
Then, the latent feature z is entered into the decoder D 
to reconstruct the input data and generate y . L

(
x, y

)
 is 

the loss function defined by the sum of the mean square 
errors between the input x and output y , and the model is 
trained to minimize the L

(
x, y

)
 . Our autoencoder model 

consists of four encoder layers, one bottleneck layer, and 
four decoder layers (Fig.  1A). The layers of the encoder 

(1)z = E(x) = tanh(Wx + b)

(2)y = D(z) = tanh(Wz + b) = D(E(x))

(3)L
(
x, y

)
=

∑ ∣∣x − y
∣∣2

n
=

∑ |x − D(E(x))|2

n

Table 1 Demographic information of study participants

Mean and standard deviation are reported

NYU New York University Langone Medical Center, TCD Trinity College Dublin, SDSU San Diego State University, ADOS Autism Diagnostic Observation Schedule
a Chi-square test
b The p-values were reported for the lowest value among three possible combinations from three groups

Information NYU TCD SDSU p-valueb

Number
(Autism/Control)

29/18 18/19 33/24 0.475a

Age Autism 9.61 ± 6.16 p = 0.807 14.46 ± 3.30 p = 0.209 12.89 ± 3.23 p = 0.559 0.004

Control 10.01 ± 3.95 15.83 ± 3.21 13.39 ± 2.96 0.003

Sex
(male:female)

Autism 24:5 p = 0.243a 18:0 p =  1a 26:7 p = 0.343a 0.117a

Control 17:1 19:0 22:2 0.450a

ADOS – Total 10.00 ± 3.36 8.72 ± 2.44 – 0.192

ADOS – Social cognition 7.50 ± 2.09 5.78 ± 2.37 – 0.023

ADOS – Communication 2.5 ± 1.70 2.94 ± 0.87 – 0.326

ADOS – Repeated behavior/interest 1.40 ± 1.27 0.22 ± 0.55 –  < 0.001
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and decoder had 7700; 5500; 2930; and 900 units, respec-
tively, and the bottleneck layer contained 200 units. A 
dropout rate of 0.3 was applied to the input layer, and the 
hypertangent activation function was used for all layers. 
An average stochastic gradient descent optimizer [32] 
with a learning rate of 0.00008 was used. We constructed 
an autoencoder model for autism and neurotypical con-
trol groups, respectively. The data were randomly divided 
into the training (autism/control = 45 /33), validation 
(n = 20/16), and test (n = 15/12) datasets. Among the 

500 epochs, we selected the weights that exhibited the 
minimum loss in the training and validation datasets and 
applied them to the test dataset. The performance of the 
model was assessed using the test dataset by calculating 
Pearson’s correlation between the original and recon-
structed structural connectivity matrices. We repeated 
this process 100 times with different training, valida-
tion, and test datasets to minimize the subject selection 
bias. As the sensitivity analysis, we assessed the recon-
struction performance of the autoencoder by changing 

Fig. 1 The autoencoder model of neurotypical controls and individuals with autism. A A schematic of the autoencoder model consisting of four 
encoder, one bottleneck, and four decoder layers. The diffusion tractography‑based structural connectivity (SC) is entered into the autoencoder. 
B The upper panels show the loss graphs of training and validation datasets according to epochs for neurotypical controls (left) and individuals 
with autism (right). The scatter plots on the bottom represent correlations between the actual and reconstructed structural connectivity of the test 
data
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the hyperparameters of the network architecture. First, 
we changed the number of units to (i) 7000; 5000; 2930; 
and 900, and (ii) 8000; 5000; 1000; and 500. Second, we 
changed the dropout rate to 0.1 and 0.5. Third, we con-
structed the architecture using five layers by including 
one additional layer with 4,400 units between layers 2 
and 3. In addition, we constructed the architecture with 
three layers by removing layer 4. Lastly, we varied the 
learning rate to 0.0001 and 0.001.

Contribution of latent features and between-group 
differences
We hypothesized that individuals with autism 
and neurotypical controls might show different 
reconstruction performances and that these differences 
may be associated with altered connectivity among 
different brain regions. We quantitatively assessed the 
extent of the contribution of structural connectivity while 
reconstructing the original data using the integrated 
gradient technique [21]. Briefly, it computes the 
attribution of each element of the structural connectivity 
matrix to predict the latent features of the bottleneck 
layer by progressively increasing the intensity of the input 
values from a zero-information baseline to a particular 
intact input level and averaging the attributions. The 
integrated gradient from ith neuron is defined as follows:

 where x is the input, m is the baseline, and α the 
interpolation constant. This can be represented by a 
summation using the Riemann approximation of the 
integral as follows:

 where m and M are the number of steps in the scaled 
feature perturbation constant and the approximation of 
the integral, respectively. Thus, it provides information on 
how each element of the connectivity matrix contributes 
significantly to the encoding processes. We compared 
the integrated gradient values of each individual between 
individuals with autism and neurotypical controls after 
the z-normalization of these values. Between-group 
differences were assessed using two-sample t-tests with 
1000 permutation tests by randomly assigning group 
indices. A null distribution was constructed, and if 
the real t-statistic did not belong to the 5% of the null 

(4)

Integrated Gradienti(x)

= (xi −mi)×

1∫

α=0

δf (m+ α(x −m))

δxi
dα,

(5)

Integrated Gradienti(x)

= (xi −mi)×
1

M

∑M

k=1

δf
(
m+ k

M (x −m)

)

δxi
,

distribution, it was considered significant. The p-values 
were corrected using a false discovery rate (FDR) < 0.05 
[33]. To assess network-level differences, we summarized 
the t-statistic values based on seven intrinsic functional 
communities as follows: visual, somatomotor, dorsal 
attention, ventral attention, limbic, frontoparietal, and 
default mode networks [34]. We additionally assessed the 
effects of between-group differences using the structural 
connectivity instead of the integrated gradient values 
between neurotypical controls and individuals with 
autism.

Symptom severity associations
To determine whether the integrated gradient values were 
associated with the symptom severity of autism measured 
by the ADOS, which included the social cognition, 
communication, and repeated behavior/interest sub-
scores, as well as the total score [3], we adopted canonical 
correlation analysis (CCA) [35]. CCA finds a canonical 
coordinate space that maximizes the correlations between 
the projections of different datasets onto the space [36]. 
Here, we projected the integrated gradient values (X) and 
ADOS scores (Y) onto each dimension of the canonical 
space and obtained the canonical components u and v 
such that these components had maximum correlations. 
The optimal number of canonical components was 
determined using a five-fold cross-validation. For each 
cross-validation, we selected components that showed 
significant (FDR < 0.05) correlations between u and v. The 
explained variance assesses how much of the variance of 
the data is explained by each component and is defined as 
follows:

 where x is the original data, and x̂ is the predicted data.
Additionally, we estimated the explained variance 

of each component and summarized the explained 
variance of the integrated gradients within and between 
the networks using seven functional communities [34]. 
Furthermore, we assessed the multivariate associations 
between the ADOS scores and structural connectivity 
data or the latent vectors extracted from the bottleneck 
layer of the autoencoder to evaluate which feature is 
more useful for explaining the symptoms of autism. The 
symptom severity association analysis was performed 
using the data from NYU and TCD sites because the 
SDSU site did not provide the ADOS score.

Result
The autoencoder model and reconstruction performance
The structural connectivity matrix was entered into an 
autoencoder and trained to reconstruct the original data 

Explained Variance(x) =
Var{x} − Var{x − x̂}

Var{x}
,
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(Fig. 1A). We observed decreasing loss values in both the 
training and validation datasets across epochs (Fig. 1B). 
The weights of the latest epoch that exhibited the best 
performance were applied to the test dataset. The 
reconstruction performance based on the correlations 
between the original and reconstructed connectivity 
matrix was significant for control (mean ± SD across 
individuals and 100 bootstraps, r = 0.427 ± 0.165, 
p < 0.001) and autism groups (autism: r = 0.271 ± 0.133, 
p = 0.023; Fig.  1B). When we tested the reconstruction 
performance with different settings of hyperparameters, 
the performances were lower than our model (Additional 
file 1: Table S1).

Between-group differences in the integrated gradients
The integrated gradient method was applied to assess 
the contribution of the structural connectivity to predict 

latent features of the hidden layer (Fig.  2A). We found 
that within the visual network and between the lim-
bic and frontoparietal networks showed particularly 
large attributions in neurotypical controls, while within 
the limbic network and between the limbic and fron-
toparietal networks showed large effects in individu-
als with autism. We assessed between-group differences 
in the integrated gradient values and summarized the 
t-statistic values of the connections that showed signifi-
cant between-group differences according to the seven 
functional communities [34]. We observed high effects 
within the default mode and frontoparietal networks, and 
between the visual and frontoparietal/ventral attention 
networks as well as between the somatomotor and lim-
bic networks (Fig.  2B). The small effects were observed 
within the visual network and between the somatomo-
tor and dorsal attention networks. Furthermore, we 

Fig. 2 Between‑group differences in the integrated gradient values. A Shown is the schema of the integrated gradient technique (left). We 
summarized the integrated gradient values of neurotypical controls and individuals with autism based on seven functional communities (right). 
B We compared the integrated gradient values between individual with autism and neurotypical controls after the z‑normalization. We assessed 
two‑sample t‑tests with 1000 permutation tests by shuffling group indices. We then applied a false discovery rate (FDR) < 0.05. The t‑statistics 
of the between‑group differences are shown (left). Within‑ and between‑network effects are plotted based on the t‑statistics of the between‑group 
differences (right). The highest effects of between‑network were shown in red lines. The high effects were observed within the default mode 
and frontoparietal networks, and between the visual and frontoparietal/ventral attention networks as well as between the somatomotor and limbic 
networks
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examined between-group differences in the structural 
connectivity between neurotypical controls and individu-
als with autism, and only two elements (visual-default 
mode and frontoparietal-default mode networks) showed 
significant effects, suggesting lower sensitivity of the 
structural connectivity in assessing connectome distor-
tions in individuals with autism than integrated gradient 
values.

Associations between symptom severity 
and the integrated gradients
We assessed the associations between the integrated 
gradient values and symptom severity of autism meas-
ured by the ADOS [23] using CCA [35]. Five-fold 
cross-validation showed that the optimal number of 
canonical components was three. Each canonical com-
ponent showed significant correlations (1st: r = 0.726, 
p < 0.001; 2nd: r = 0.732, p < 0.001; 3rd: r = 0.647, 
p < 0.001; Fig. 3). When we estimated the explained var-
iance, the ADOS communication sub-score was asso-
ciated with the integrated gradient values within the 

default mode network and between the somatomotor-
visual/limbic/frontoparietal networks. These findings 
suggest that sensory and transmodal (i.e., default mode 
and frontoparietal) regions may be critically associated 
with communication skills in autism. When we con-
ducted CCA using structural connectivity, the corre-
lations between the canonical components and ADOS 
scores showed lower performance than when we used 
the integrated gradient values. In addition, the correla-
tions based on the latent vectors did not show signifi-
cant associations (Additional file 1: Table S2). Together, 
the findings indicate that the CCA analysis based on 
the integrated gradient values is more beneficial than 
using structural connectivity or latent vectors.

Discussion
Understanding whole-brain structural connectome 
disorganization in individuals with autism may 
complement previous functional findings; however, 
studies identifying principal markers related to autism 
pathophysiology are relatively underinvestigated owing 

Fig. 3 Canonical correlation analysis between symptom severity of autism and the integrated gradient values. Correlations between the canonical 
components u and v (left) are shown. Circle plots represent the explained variance of ADOS total, social cognition, communication, and repeated 
behavior/interest scores (middle). The size and color of the circles indicate the magnitude of the explained variance of each ADOS score. The 
explained variance of the integrated gradients of within‑ and between‑networks is shown with spider plots (right). The ADOS communication 
sub‑score, within the default mode network, and between the somatomotor‑visual/limbic/frontoparietal networks showed relatively high 
explained variance. Abbreviations: ADOS, Autism Diagnostic Observation Schedule; T, total; S, social cognition; C, communication; R, repeated 
behavior/interest
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to the lack of interpretability of deep learning techniques. 
In this study, we systematically investigated the structural 
connectome abnormalities in individuals with autism 
using feature representation learning combined with 
an integrated gradient approach. We observed that the 
low-dimensional features of structural connectivity 
within the transmodal regions, including the default 
mode and frontoparietal networks, and between the 
sensory and limbic systems, were altered in individuals 
with autism. Additionally, we found that these features 
were associated with the communication abilities 
of individuals with autism, suggesting their clinical 
implications. Our findings provide an understanding of 
the atypical structural connectivity in individuals with 
autism and its association with their clinical phenotypes.

The core of our study is feature representation learning, 
which generates low-dimensional latent features [15, 16]. 
In neuroscience, the gradient approach, which estimates 
low-dimensional eigenvectors from connectome 
data, is widely adopted to investigate the whole-brain 
connectome organization of brain structure and function 
[12, 37–43] and their relations [44–46]. However, these 
studies were primarily based on nodal-level analysis 
and did not consider the interconnected links between 
nodes. To fill this gap, we generated latent vectors from 
the connectivity matrix using an autoencoder model 
to assess edge-level effects. However, a crucial point 
to consider when using deep learning-based models is 
the uncertainty of interpretation. Here, we opted for 
the integrated gradient method, which calculates the 
contribution of the input features in predicting the latent 
vectors [21]. We found that feature contributions differed 
between individuals with autism and neurotypical 
controls, particularly in connectivity within the 
transmodal regions and between the sensory and limbic 
networks. Sensorimotor and default mode networks 
show connectome idiosyncrasies and a decrease in the 
number of neurotransmitter receptors in individuals 
with autism [3, 4, 47]. In addition, abnormal structural 
connectomes in these systems are associated with 
excitation/inhibition imbalances in autism [5]. Our work 
expands upon prior studies by providing insights into 
the understanding of low-dimensional representations of 
structural connectivity in autism.

To assess the behavioral associations of the low-
dimensional features of whole-brain structural 
connectivity in individuals with autism, we used a 
multivariate association technique called CCA. Unlike 
conventional association analyses based on linear 
correlations or regression analyses, CCA determines 
the canonical coordinate space that maximizes the 
correlation between independent and dependent 
variables. We found that the integrated gradient values 

within the default mode region and between the sensory 
and transmodal regions were highly associated with 
communication skills in individuals with autism. The 
sensory and transmodal regions are involved in the 
perception and processing of language and nonverbal 
information [48, 49]. Individuals with autism show 
decreased activation in the inferior frontal cortex 
[50], anterior insula, and premotor cortex [51], and 
these patterns are associated with alterations in social 
information integration [52]. Behavioral studies have 
also found that individuals with autism show lower 
verbal and nonverbal abilities than neurotypical 
controls [53, 54]. Together, these studies suggest that 
altered connectome organization in sensory and 
transmodal areas may be related to communication 
and social impairments in individuals with autism [55], 
and that the integrated gradient values derived from 
the autoencoder model could serve as an indicator for 
describing the symptom severity of autism.

In this study, we identified structural connectivity 
differences in individuals with autism using feature 
representation learning combined with integrated 
gradient techniques, which may provide potential 
biomarkers for the diagnosis of autism. However, this 
study has several limitations. First, our study had a small 
sample size owing to the nature of the ABIDE database 
and strict quality control procedures. In the future, 
additional data must be collected from independent 
databases to improve the reliability of our findings. 
Second, we used the integrated gradient method to 
interpret the internal operations of the autoencoder. 
In future studies, we need to link integrated gradient 
data to biologically plausible mechanisms for better 
neuroscientific insights. Finally, the estimated integrated 
gradient values may be variable according to the baseline. 
Although the zero-informed baseline is commonly used 
for the image data, it should be noted that the different 
baselines may yield varying results and thus need careful 
interpretation.
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