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Abstract 

Background Visual-motor integration (VMI) is an essential skill in daily life. The present study aimed to use functional 
near-infrared spectroscopy (fNIRS) technology to explore the effective connectivity (EC) changes among brain regions 
during VMI activities of varying difficulty levels.

Methods A total of 17 healthy participants were recruited for the study. Continuous Performance Test (CPT), Behavior 
Rating Inventory of Executive Function-Adult Version (BRIEF-A), and Beery VMI test were used to evaluate attention 
performance, executive function, and VMI performance. Granger causality analysis was performed for the VMI task 
data to obtain the EC matrix for all participants. One-way ANOVA analysis was used to identify VMI load-dependent 
EC values among different task difficulty levels from brain network and channel perspectives, and partial correlation 
analysis was used to explore the relationship between VMI load-dependent EC values and behavioral performance.

Results We found that the EC values of dorsal attention network (DAN) → default mode network (DMN), DAN → ven-
tral attention network (VAN), DAN → frontoparietal network (FPN), and DAN → somatomotor network (SMN) 
in the complex condition were higher than those in the simple and moderate conditions. Further channel analyses 
indicated that the EC values of the right superior parietal lobule (SPL) → right superior frontal gyrus (SFG), right mid-
dle occipital gyrus (MOG) → left SFG, and right MOG → right postcentral gyrus (PCG) in the complex condition were 
higher than those in the simple and moderate conditions. Subsequent partial correlation analysis revealed that the EC 
values from DAN to DMN, VAN, and SMN were positively correlated with executive function and VMI performance. 
Furthermore, the EC values of right MOG → left SFG and right MOG → right PCG were positively correlated with atten-
tion performance.

Conclusions The DAN is actively involved during the VMI task and thus may play a critical role in VMI processes, 
in which two key brain regions (right SPL, right MOG) may contribute to the EC changes in response to increasing VMI 
load. Meanwhile, bilateral SFG and right PCG may also be closely related to the VMI performance.
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Background
Over the past few decades, there has been increasing 
interest in studying how the brain links sensory percep-
tion to movement [1], such as the integration of visual 
perception and motor control [2]. Visual-motor integra-
tion (VMI) refers to the mutual coordination ability to 
coordinate visual perception and motor output during 
the purposeful activities of individuals [3]. VMI skills 
involve hand–eye coordination, visual perception skills, 
and fine motor coordination. Visually guided motor 
movements are essential for many aspects of daily life, 
work, and learning (e.g., throwing a ball, handwriting, 
copying a shape, or drawing a figure) [4]. The VMI dif-
ficulties were characterized by impaired handwriting and 
sloppy figure copying [5].

The VMI is an important internal factor that affects 
individual fine motor skills and reflects the development 
and maturity of the brain to a certain degree. In the pro-
cess of visual information transmission, there are two 
main transmission pathways: the ventral pathway and the 
dorsal pathway [6]. The dorsal pathway transmits visual 
information from the primary visual cortex (V1) to the 
parietal and frontal lobes, which use visual information 
to understand motion and spatial layout, translating this 
information into movement control [7]. According to 
previous studies, the dorsal pathway is closely associated 
with VMI function [8, 9]. The VMI deficit in develop-
mental disorders such as attention-deficit/hyperactivity 
disorder (ADHD) and autism spectrum disorder (ASD) 
may be related to the atypical development of the dorsal 
pathway, called ‘Dorsal Stream Vulnerability’ [10, 11].

Based on resting-state and task-state (finger tapping 
task) fMRI, Bueichekú et al. characterized the functional 
network of the VMI system in healthy individuals. It was 
found that the medial occipital region, intraparietal sul-
cus, motor cortex, and parietal insula may be related to 
the integration of the visual and motor systems [12]. Sim-
ilarly, using the stepwise functional connectivity analysis 
of resting-state fMRI study, Sepulcre found that the supe-
rior parietal lobule (SPL), the parietal insula, the anterior 
insula/ventral premotor area, may be associated with the 
ability to visuomotor integrate [13]. A fNIRS-based study 
showed that adaptive visuomotor task with high eco-
logical validity can enhance effective connectivity (EC) 
between the prefrontal and sensorimotor areas [14].

Completing VMI movements involves not only coor-
dination between hand movement control and the eyes, 
but also complex cognitive processes such as plan-
ning, task flexibility, goal orientation, response inhibi-
tion, and maintaining attention throughout the task 
[15, 16]. Hence, the executive function (EF) may be 
closely related to VMI [17]. Notably, the association 
between EF and VMI performance still requires further 

clarification. It was also found that the brain regions 
through which visual information is transmitted in the 
dorsal pathway overlap with attentional control regions 
[7]. Barton et  al. found a significant increase in func-
tional connectivity between SPL/anterior intraparietal 
sulcus and primary motor cortex, during letter writ-
ing compared to a simple dot-writing task, the results 
suggested that the increased functional connectivity 
may related to the difficulty of the writing task and the 
increase in motor attention demands [18]. Therefore, 
attention control may have an important role in the 
VMI process.

The Beery-Buktenica Developmental Test of Visual-
Motor Integration (Beery VMI) is one of the most used 
standardized measures of VMI function [19]. However, 
traditional VMI tests have mainly focused on assessing 
the results of paper-and-pencil tests; computer-based 
and digital technologies have facilitated the development 
of evaluation innovations. Current computerized assess-
ment methods for these VMI are limited to observations 
and descriptions of behavioral performance. Based on the 
Beery VMI test, Wee et al. proposed a 4D dynamic analy-
sis system that implements VMI testing in a 3D virtual 
space and obtains time-series data of hand joints and tra-
jectories [20]. Nicholas et al. used eye-tracking technol-
ogy to observe the eye movements of children during the 
Beery VMI test, providing a new method for assessing 
visual-motor integration in real time [21]. However, cur-
rently, there is no research that synchronously observed 
changes in functional brain activity during the Beery 
VMI task. Understanding the neural mechanisms under-
lying VMI can help provide interventions for individuals 
with VMI difficulties. In addition, previous studies sug-
gested that EC analysis can more accurately determine 
causal relationships between brain regions, and thus, 
measures how one brain region influences another in a 
specific direction, whereas unidirectional functional con-
nectivity analysis only provides information on the cor-
relation between brain regions [22].

Purpose of this study
Given the above, some significant questions still remain. 
During the Beery VMI test, do EC values between differ-
ent brain regions change with increasing task difficulty? 
Are these changes associated with behavioral perfor-
mance? Our present study attempted to use the func-
tional near-infrared spectroscopy (fNIRS) technology 
to evaluate VMI load-dependent EC values of the brain 
regions in healthy adults during the VMI tasks, and pre-
liminarily explore the relationship of these observed EC 
values with VMI performance attention performance and 
EFs.
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Methods
Participants
We recruited 23 healthy volunteers (mean age 
24.74 ± 3.00; 10 males) for our study. The inclusion cri-
teria for all participants were: (a) above 18 years; (b) 
full-scale intelligence quotient (FSIQ) score of ≥ 90; and 
(c) right-handed. The Structured Clinical Interview for 
Diagnostic and Statistical Manual of Mental Disorders 
IV Axis I disorders (SCID) [23], the Conner’s Adult 
ADHD Diagnostic Interview [24], the Hamilton Anxi-
ety Scale, and the Hamilton Depression Rating Scale 
[25] were used to determine the presence or absence of 
psychiatric disorders. The detailed demographic and 
clinical characteristics can be found in Additional file 1: 
Table S1. The protocol was approved by the Ethics Com-
mittee of Peking University Sixth Hospital/Institute of 
Mental Health. We obtained informed consent from all 
participants.

Assessment
VMI performance
The Beery VMI (Fourth edition) comprises 24 geometric 
designs that increase in difficulty. The participants were 
asked to copy geometric designs with paper and pencil. 
Scores are based on the accuracy with which the designs 
were copied. The higher scores indicate better VMI per-
formance [26, 27].

Attention performance
The Continuous Performance Test-Identical Pairs (CPT-
IP) is used to evaluate sustained attention, selective 
attention, and vigilance. During the test, participants 
are presented with a series of numbers on a screen for 
a brief period, composed of three conditions (2-digit, 
3-digit, and 4-digit). They must monitor the numbers and 
respond by pressing a key when two consecutive stimuli 
are identical. Meanwhile, the computer automatically 
records the response data of participants. Performance 
is measured using the detection index (d′ statistic), with 
higher d′ values indicating better performance for atten-
tion and vigilance [28].

Executive function (EF)
The Behavior Rating Inventory of Executive Function-
Adult Version (BRIEF-A) was adopted for the question-
naire-based scale. It is a self-rating scale (75 items) that 
assesses the ecological EF of adults. The scale generates 
two broad indices (nine factors): the Metacognition Index 
(MI, including Working memory, Initiate, Plan/Organize, 
Organization of Materials, and Task Monitor subscales) 
and the Behavioral regulation index (BRI, including Inhi-
bition, Shift, Emotional Control and Self-Monitor sub-
scales) [29]. The Chinese version of the BRIEF-A had 

adequate criterion validity (r = 0.39–0.78) and test–retest 
reliability (r = 0.61–0.76) [30]. Higher scores indicate 
more severe EF impairment.

Tasks and procedures
Experimental setup
Visual-Motor Integration (VMI) Tasks: all pictures of the 
VMI task were adopted from the Beery VMI test (paper 
and pencil test), and the task pictures (Picture  1–Pic-
ture  24) were presented in Fig.  1a. Based on previous 
research [21], our study divided the 24 pictures into three 
difficulty levels: simple, moderate, and complex. The pic-
tures were presented in order of difficulty from simple 
to moderate and then to complex. The traces of drawing 
pictures were recorded on a digitizing tablet connected 
to a desktop computer (a resolution of 1280 × 1024 pixels 
and a 60 Hz refresh rate). They were saved as image files 
(with.png file format). The square size on the computer 
screen was the same as the paper version of the Beery 
VMI test (6 cm × 6 cm). The active area of digitizing tablet 
is 21.6 cm × 21.6 cm, and the presentation of experimen-
tal geometric pictures and the recording of behavioral 
data were all performed by MATLAB (R2013b) scripts. 
We divided this task into two parts: practice session and 
testing session. In the practice session, all participants 
performed two practice pictures (different from the test-
ing pictures, see Additional file 1: Fig. S1) to familiarize 
the testing session of the VMI task. During the testing 
session, 24 different pictures appeared sequentially on 
the white square (left side of the computer screen); par-
ticipants were asked to draw the geometric pictures 
repeatedly into a gray square (right side of the screen) 
on a digitizing tablet (Wacom Intuos pro-PTH 860/K1-F, 
Japan) using an electronic pen. Once the electronic pen 
touched the digitizing tablet, the gray square disappeared 
and was replaced with a white square with a black border 
around it. A block design was used to ask the participants 
to perform the geometric pictures stimulation for 25  s 
followed by 20 s rest. Hence, the total length of the task 
was approximately 24  min. Detailed information of the 
experimental set up is presented in Fig. 1b.

Participants were reminded to draw the pictures as 
quickly and accurately as possible in the testing session. 
An independent investigator evaluated the accuracy of 
writing performance according to the standard scoring 
criteria of the Beery VMI test. All figures were presented 
for a duration of 25 s and were required to be completed 
at least once within this timeframe. For complex figures, 
if they could not be completed within the timeframe 
(25  s), the corresponding data were excluded from the 
data analysis. In addition, previous research [20] found 
that using the 4D system, healthy adults required an 
average of 50.72 ± 22.22 s and 51.16 ± 18.15 s to complete 
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Fig. 1 Experimental setup. a The task pictures of the VMI test. b Overview of experimental design set up. c Positions of f-NIRS channels. d Photo 
obtained from a participant during the VMI task. DMN default mode network, DAN dorsal attention network, VAN ventral attention network, FPN 
frontoparietal network, SMN somatomotor network, VN visual network
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Picture21 and Picture24, respectively. Thus, participants 
may not have been able to complete a single drawing 
within the 25  s. Consequently, data corresponding to 
these two figures were not used for the subsequent data 
processing. Observation time, total drawing number, and 
drawing speed was used to record the experimental pro-
cedure. Observation time (information-gathering phase) 
was defined as the time duration from the onset of the 
trial to the beginning of drawing [21]. The total drawing 
number was defined as the number of pictures drawn by 
the subject in each trial. The drawing speed was defined 
as the total travel distance on the tablet divided by the 
total time in each trial [31].

fNIRS data acquisition
During the VMI task, we used the multichannel near-
infrared optical imaging system (NirScan-6000A, Dan-
yang Huichuang Medical Equipment Co., Ltd., China) 
to acquire fNIRS data simultaneously. The system has 
52 optical poles, including 24 light sources (two wave-
lengths: 670 and 830 nm) and 28 detectors, with a sam-
pling rate of 17  Hz. The source-detector distance was 
fixed at 3 cm, and a total of 80 channels were generated, 
covering the parietal, frontal, temporal, and occipital lobe 
regions of the brain.

MRI coregistration
To confirm the positions of each measurement channel, 
we randomly choose a participant for structural MRI 
scanning. We labeled all the source-detector positions 
of the fNIRS cap using the vitamin E capsules, and the 
participant was scanned on the 3T MRI Scanner (Discov-
ery 750) while wearing the fNIRS cap [32]. After obtain-
ing the spatial coordinates information of each channel, 
we divided the whole brain into six functional networks, 
including the frontoparietal network (FPN), dorsal atten-
tion network (DAN), ventral attention network (VAN), 
somatomotor network (SMN), visual network (VN), and 
default network (DMN), according to Yeo et al.’s network 
template [33]. The process of obtaining Montreal Neu-
rological Institute (MNI) coordinates, and the distribu-
tion of all NIRS channels in the six brain networks are 
presented in Fig.  1c, d and Additional file  1. A similar 
method of positioning was also used in previous studies 
[34].

fNIRS data preprocessing
The data preprocessing was performed by the MATLAB-
based toolbox–Homer2 [35]. The procedures were as 
follows: (a) the raw light intensity was converted to opti-
cal density (OD) signal; (b) the motion artifacts were 
detected by automatic artifact inspection (tMotion = 0.6, 
tMask = 1, STDEVthresh = 20, AMPthresh = 2); (c) 

Motion artifacts correction (hmrMotionCorrectSpline: 
p = 0.99); (d) Band-pass filter (hmrBandpassFilt: 0.01–
0.1Hz); (e) Convert OD signal to oxygenated hemoglobin 
(HbO) and deoxygenated hemoglobin (Hb) concentra-
tions using the Beer–Lambert law. However, we only 
considered HbO concentration for the statistical analyses 
because of its better signal-to-noise ratio compared to 
Hb concentration [36]; and (f ) Block average: we set [− 2, 
35] as the time window after the onset of the testing ses-
sion to calculate the mean concentration of HbO [37].

Data analysis
Behavioral data analysis
The demographic characteristics of participants were 
summarized using descriptive analyses, such as means, 
standard deviations, and frequencies. Behavioral data 
(observation time, total drawing number, and drawing 
speed) were analyzed by one-way ANOVA and corrected 
for the post-host test with the Bonferroni correction. All 
behavioral data analyses were performed by IBM SPSS 
25.0. The significance level was set at P < 0.05.

fNIRS data analysis
EC: was measured using G-causality analysis, which is 
considered to apply to time-series data and can reflect 
the direction of information flow between different 
brain regions during task performance [38]. In our study, 
G-causality analysis was processed by the Hermes Tool-
box [39], which was implemented in MATLAB. A vector 
auto-regressive model was established to calculate EC 
values, and the best model order ‘p’ was identified using 
the Akaike [40] and the Bayesian Information Criterion 
[41, 42]. For two continuous time series x(t) and y(t), if 
the accuracy of the model using the past information 
of y(t) and x(t) is higher than the model only using x(t), 
it can be considered that y(t) is assumed to cause x (t) 
(there is an information flow from y(t) → x(t)) [43].

Through the G-causality analysis, we obtained the EC 
values for each channel under three different conditions 
(from the perspective of brain regions). Based on the 
network template, the network EC values was obtained 
by average EC values across all channels within each net-
work (e.g., DAN including 8 channels, the network EC 
values of DAN is the average of the EC values of the 8 
channels), resulting in three 6*6 EC value matrices. The 
subsequent statistical analyses are based on the EC values 
for each network or brain region.

In our present study, we have conducted ANCOVA 
analyses at the network level and channel level subse-
quently. Firstly, we intended to find the difference EC 
values among the three conditions at the network level, 
with gender, age, and total IQ as covariates (ANCOVA 
analysis); and then, based on the network difference, 
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we further performed ANCOVA analysis to explore 
the difference at the channel level which may help us to 
elucidate the specifically involved brain regions. Then, 
partial correlation analysis between EC values and 
behavioral data were performed from the network per-
spective and the channel perspective respectively. False 
discovery rate (FDR) correction was used to minimize 
the multiple comparison problems. Partial correlation 
analysis was performed to investigate the correlation of 
the EF, VMI performance, and EC values with sex, age, 
and FSIQ as covariates. The flow chart for the GC anal-
yses is presented in Additional file 1: Fig. S2.

All statistical analyses for fNIRS data were conducted 
by MATLAB script and SPSS 25.0, and all 3-D brain fig-
ures were visualized using the BrainNet Viewer Tool-
box [44].

Results
Behaviors data
In order to guarantee the validity of the results, only 
those subjects who drew the pictures accurately at least 
once were selected for analysis. Data from 17 subjects 
were finally included for the analyses. However, in all 
these subjects, the drawing of Picture 21 and Picture 24 
could not be completed within the time limit. Conse-
quently, we removed these two pictures from the analy-
sis, and the remaining 22 pictures were included in the 
subsequent behavioral and fNIRS data analysis. The 
results of the inaccurate drawing parts (Picture 21 and 
Picture 24) were presented in Additional file 1: Fig. S3.

Using the One-way ANOVA, we found a significant 
difference in the total drawing number (P = 5.799E−9) 
and drawing speed (P = 0.016) among the three condi-
tions. No significant difference was found in the obser-
vation time among the three conditions (P = 0.290).

Post hoc tests revealed that the total drawing num-
ber of simple conditions was significantly higher than 
moderate conditions (P = 2.662E−7) and complex con-
ditions (P = 3.907E−8), respectively. Concerning the 
drawing speed, after the post hoc test, the drawing 
speed of simple pictures was significantly higher than 
that of complex conditions (P = 3.907E−8) (Table 1).

G‑causality analysis
Through data preprocessing analysis, we obtained the 
blood oxygen concentrations of HbO and HbR and per-
formed G-causality analysis only on the basis of HbO 
concentration. The group level of time course of the 
fNIRS response (both Hbo and HbR) is presented in 
Additional file 1: Fig. S4.

The EC values between the three conditions in brain 
networks
Using the G-causality analysis, we obtained the aver-
aged EC values matrix of six brain networks (Fig. 2a–c). 
To examine whether there were significant differences 
in the network EC values among the three conditions, 
ANCOVA was performed to compare the EC values of 
each network metrics among the three conditions, with 
controlling for sex, age, and FSIQ. We found that there 
were significant differences in the averaged EC values 
of the DAN → DMN (PFDR = 0.002), the DAN → VAN 
(PFDR = 0.003), the DAN → FPN (PFDR = 0.004), the 
DAN → SMN (PFDR = 0.003) (Fig.  2d, the blue squares 
represent the significant differences). The detailed infor-
mation is presented in Additional file 1: Table S3.

Based on the results of ANCOVA, the post hoc 
test found that the EC values of the DAN → DMN, 
DAN → VAN, DAN → FPN, DAN → SMN in the com-
plex condition were higher than that in the simple and 
moderate conditions, which represented that there was 
an increase in the EC values from DAN to DMN, from 
DAN to VAN, from DAN to FPN, and from DAN to 
SMN with the increase of the task load. However, the 
post hoc test found no significantly different EC values 
between simple and moderate conditions (see Additional 
file 1: Fig. S5).

The EC values between the three conditions in channels
In the results of network analysis, we found that there 
were five significant different network EC values (the 
DAN → DMN, the DAN → VAN, the DAN → FPN, the 
DAN → SMN) among three conditions; And then we fur-
ther obtained the EC values matrix for each channel of 
the five significant different network values matrix (see 
Additional file 1: Fig. S6).

Table 1 The mean scores of the behavior performance in three conditions

Mean scores Simple Moderate Complex t P Post hoc 
(Bonferroni)

Observation time (s) 1.834 ± 0.397 1.758 ± 0.413 1.991 ± .490 1.113 0.290 –

Total drawing number 10.569 ± 4.515 4.530 ± 1.511 4.009 ± 0.895 38.962 5.799E−9 1 > 2, 3

Drawing speed (cm/s) 5.225 ± 2.983 4.255 ± 1.81 3.056 ± 1.047 6.648 0.016 1 > 2
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ANCOVA was conducted on the specific channel of 
the networks EC values with significant differences, with 
controlling for sex, age, and FSIQ. The results showed 
that after the FDR correction, only the connectivity of the 
C48 → C47 (PFDR = 0.001), the C54 → C27 (PFDR = 0.003), 
and the C54 → C49 (PFDR = 2.499E−05) were significantly 
different between the three conditions (Fig. 2e).

Based on the results of FDR correction, the post 
hoc test found that the EC values of the C48 → C47, 
C54 → C27, and C54 → C49 in the complex condition 
were higher than in the simple condition and moderate 
condition. No significantly different EC values of chan-
nels were found between simple and moderate condi-
tions (Fig.  2f ). The detailed information is presented in 
Additional file 1: Table S4.

The correlation of EF and attention performance with EC 
values
Based on the post hoc test results, we found no signifi-
cant differences in the EC values of the different net-
works at the simple and moderate conditions. Hence, we 
merged the simple and moderate conditions, and used 
the mean values of the simple and moderate conditions 
for partial correlation analysis.

In the BRIEF scales, the EC values from DAN to other 
networks were positively correlated with Emotional con-
trol, Task Monitor, and Organization of Materials fac-
tors, respectively. In detail, the EC values of DAN → VAN 
were positively correlated with the Emotional control 
(r = 0.598, P = 0.024) and MI (r = 0.556, P = 0.039) in 
the simple + moderate conditions. Meanwhile, in com-
plex conditions, the EC values between DAN → DMN 
(r = 0.544, P = 0.044) and DAN → SMN (r = 0.538, 
P = 0.047) were positively correlated with the Organiza-
tion of Materials (Table 2). From the perspective of chan-
nels, no significant correlation was found between the 
subscales of BRIEF and EC value changes.

In the CPT test, the attention performance was posi-
tively correlated with the EC values of channels of 
DAN → VAN and DAN → SMN, respectively. We found 
that the EC value between C54 → C27 was positively cor-
related with the 3-digit d′ values (r = 0.585, P = 0.028) in 
the simple + moderate conditions. the EC value between 
C54 → C49 was positively correlated with the 4-digit d′ 
values (r = 0.577, P = 0.039) in the complex conditions. 
From the perspective of networks, no significant correla-
tion was found between the score of CPT and EC value 
changes (Table 2).

Fig. 2 Effective connectivity changes of brain networks and channels in three conditions. a EC matrix of all brain networks in simple condition; b 
EC matrix of all brain networks in moderate condition; c EC matrix of all brain networks in complex condition; d P-value matrix of brain networks 
among the three conditions (the white square in the P-value matrix represents no statistical differences in results, while the blue one represents 
significant differences); e, f significantly different EC values of channels among the three conditions. *Significant differences survived FDR 
correction for multiple testing (*P < 0.05, **P < 0.01). DMN default mode network, DAN dorsal attention network, VAN ventral attention network, FPN 
frontoparietal network, SMN somatomotor network, VN visual network
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The correlation of EC values with VMI performance
We found that the VMI performance was related to the 
EC values from DAN to other networks. The EC val-
ues between DAN → DMN (r = 0.654, P = 0.040) and 
DAN → VAN (r = 0.732, P = 0.016) were positively cor-
related with the score of Beery VMI in complex condi-
tions. In contrast, no significant correlations were found 
between the simple + moderate conditions and VMI per-
formance (Table 3). No significant correlation was found 
between the VMI performance and the EC values of 
channels.

Discussion
Our study explored the VMI load-dependent EC values 
among brain regions during the VMI task and their rela-
tionship with VMI performance, attention performance, 
and EF. Using G-causality analysis, we observed that 
mean EC values of the DAN → DMN, the DAN → VAN, 
the DAN → FPN, and the DAN → SMN significantly 
increased occurring with increasing task difficulty. Spe-
cifically, from the perspective of channels, we also found 
that two brain regions in DAN (right SPL and right mid-
dle occipital gyrus), bilateral superior frontal gyrus (SFG) 
and right postcentral gyrus (PCG) may be related to the 
VMI activity. Our present findings strongly suggested 
that the DAN might play an essential role in the pro-
cesses of visual-motor integration task.

EC value changes in DAN
According to recent research, the DAN plays a crucial 
role in top-down spatial attention processing and goal-
driven motor planning [45]. Eryurek et  al. found that 
DAN exhibits a high contribution during visuomotor 
sequence learning tasks, potentially due to the atten-
tion demands involved in motor sequence automatiza-
tion [46]. These findings are consistent with our research 
results. We found that as the VMI load increased, the 
EC values between DAN and the DMN, VAN, FPN, and 
SMN increased. This provides further evidence of the 
potential involvement of DAN in VMI activities.

The SPL are considered key regions of the DAN and 
integrates information from visual and somatosensory 
cortical areas for the execution of reaching and grasp-
ing movements [47]. In addition, abnormal activation 
of SPL has been linked to difficulties with VMI skills. 
Studies have shown that compared with healthy con-
trols, patients with ASD have abnormal activation of 
the bilateral SPL and supplementary motor area during 
visuomotor tasks; the activation abnormalities of these 
brain regions are thought to be related to less precise 
visuomotor behavior in ASD [48]. The MOG may also 
plays a crucial role in the VMI system by integrating 
visual information for motion control and facilitating the 

allocation of attentional resources [49, 50]. Sripada et al. 
found that poor VMI performance showed significant 
positive relationships with thinner cortical surface area in 
medial occipital lobe in the very low birth weight young 
adult patients (19.7 ± 0.9 years old) [51]. In our results, it 
was found that as the VMI load increased, there is also 
an increase in the EC between C48 (located in the SPL), 
C54 (located in the MOG), and other network channels. 
It suggested that the DAN coordinates with other brain 
regions to facilitate the selection and processing of rele-
vant visual information, which is crucial for efficient cog-
nitive and motor functioning.

Effective connectivity between DAN and VAN
The VAN is involved in detecting and processing task-
relevant stimuli, and stimulus-driven attentional control 
[52, 53]. The results of our study indicated that as the task 
difficulty increased, the EC from the DAN to the VAN 
was significantly increased. It can be inferred that when 
the task difficulty increased, the demands for attention 
and VMI also increased, resulting in increased EC values 
from the DAN to the VAN. Therefore, the two attention 
control networks integrate more strongly to support this 
task more efficiently. These results also provide converg-
ing evidence for the theory that the DAN and VAN are 
not isolated in the process of controlling attention but 
interact to achieve dynamic control of attention [45, 54].

Specifically, in our study, the C48 → C47 (right 
SPL → right SFG) and the C54 → C27 (right MOG → left 
SFG) were all located in the DAN → VAN. From the per-
spective of channels, we found that the EC values from 
the right SPL to right SFG, and from the right MOG to 
left SFG were significantly increased during the more 
challenging tasks. Previous research has found that the 
right SPL [13, 55], bilateral SFG [56], and right MOG [12] 
were all found to be associated with VMI.

The involvement of the SFG in self-awareness, plan-
ning, execution of motor control, and attention control 
has been reported in previous studies [57]. In addition, 
the SFG has been found to be associated with senso-
rimotor regions, suggesting its role in the integration 
of sensory and motor information [58, 59]. Zheng et  al. 
founded that adaptive visuomotor task can enhance EC 
between the prefrontal and sensorimotor areas [14]. 
The SPL and SFG have also been implicated in attention 
control and VMI. Thus, it is reasonable to speculate that 
when task difficulty increases, the demands for atten-
tion and sensorimotor integration also increase, resulting 
in an increase in EC from the SPL to the SFG. Similarly, 
Barton et al. found that the increased functional connec-
tivity is related to the difficulty of the writing task and the 
increase in motor attention demands [18]. These findings 
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are consistent with our results, providing further evi-
dence for the involvement of the SPL and SFG in atten-
tion and VMI.

According to partial correlation analysis, we found that 
in the simple + moderate conditions, the MI of BRIEF and 
the 3-digit d’ values were positively correlated with EC 
from DAN → VAN, and in the complex conditions, the 
VMI behavioral performance was positively correlated 
with EC from DAN → VAN. Therefore, we speculate that 
the increased information flow between attention control 
networks was associated with stronger cognitive control 
and task monitoring ability during task performance. 
Attention control may be involved in cognitive control 
processes at the beginning of the VMI task. As the diffi-
culty increases, attention control may mainly participate 
in the task monitoring process [60]. In addition, the asso-
ciation between Beery VMI test performance and the EC 
from DAN to VAN suggested that there was a possible 
relationship between attention control and VMI perfor-
mances from the perspective of behavioral performances.

Effective connectivity between DAN and SMN
According to previous research, the SMN is responsible 
for controlling voluntary movements, including move-
ments of the arms, hands, and legs [61]. Our findings 
suggested that the EC values from the DAN to SMN 
increased during the VMI task. We speculated that more 
attention is required to perform the VMI task accurately, 
which leads to an increased effective connection between 
the DAN and SMN.

PCG, known as the primary somatosensory cortex, 
integrates visual information about the tool with soma-
tosensory feedback about the body movements. Accord-
ing to a previous study, significant activation of the PCG 
has been observed in a visuomotor control task, which is 
believed to be related to VMI [56]. The current findings 
indicated that EC from the C54 (right MOG, located in 
the DAN) to the C49 (right PCG, located in the SMN) 
increased as the task progressed. We hypothesized that 
EC between the MOG and PCG allows the brain to inte-
grate visual information with other sensory modalities to 
guide motor behavior. It also adjusts changes in the rela-
tionship between visual information and motor behavior 
caused by increased task difficulty. Furthermore, we also 
found that in complex conditions, the EC value between 
DAN → SMN was positively correlated with the Organi-
zation of Materials of BRIEF and 4-digit d′ values of CPT. 
Therefore, we speculated that as the VMI load increased, 
attention control may mainly participate in the task 
organization process.

It is believed that the increased activation of the DAN 
facilitates communication with the SMN, which is 
responsible for executing the motor commands necessary 

for the VMI task. Consequently, the EC between the two 
networks was increased, resulting in improved VMI 
performance.

Effective connectivity between DAN and FPN, DMN
Based on our study, we found that as the VMI load 
increased, the EC from the DAN to the FPN and DMN 
increased. The FPN is a functional hub that influences 
brain-wide communication to meet task demands and is 
involved in executive control. It has extensive connectiv-
ity with both the DMN and attention control networks 
(DAN, VAN), supporting the potential to flexibly couple 
with either network, depending on task demands [62, 63]. 
According to our findings, we speculated that the exter-
nal stimuli lead to an increased need for cognitive func-
tions, resulting in increased information flow between 
DAN → FPN. This increased information flow then pro-
motes coordinating the completion of VMI activities.

Moreover, DAN is considered a “task-positive” network 
[64], which is supported by externally-directed attention 
[65]. In contrast, the DMN is considered a “task-nega-
tive” brain network, which is active during self-focused 
thinking and when it is free from external stimuli. When 
attention is increasingly focused on external stimuli (e.g., 
a task becomes more difficult or requires greater cogni-
tive effort), DMN activation decreases [66, 67]. However, 
our results found that when the task became more dif-
ficult, the information flow from the DAN to DMN was 
increased, which is inconsistent with previous research 
[68]. One possible explanation is that the increased 
demand for attention may lead to enhanced top-down 
control from the DAN to the DMN, which in turn to 
modulate DMN activity. Specifically, the DAN may sup-
press the activity of the DMN, allowing for greater cogni-
tive control and more efficient processing of task-relevant 
information [53]. Further research is needed to fully 
understand the relationship between the DAN and DMN 
during different levels of task difficulty. Hence, it can be 
speculated that the three networks are thought to work 
together to support VMI by coordinating visual percep-
tion and motor action to complete more difficult VMI 
tasks successfully.

Taken together with the abovementioned evidence of 
the EC value changes in the VMI task, our findings sug-
gested that attention control plays an important role in 
VMI activity. Previous studies have found that ADHD 
patients have significant attention problems and VMI dif-
ficulties. Therefore, it may be reasonable to expect that 
the VMI deficits in ADHD may be caused by attention 
problems. We will further explore this issue in subse-
quent studies.
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Limitation
Some limitations should be considered for our present 
study. Firstly, this study only explored the EC value 
changes of VMI task in healthy adults, which may not 
be comprehensive enough to explore the EC features 
related to VMI-related brain networks. Future research 
can be applied to neurodevelopmental disorders (such 
as ADHD and ASD) to discover the characteristics of 
brain network connectivity associated with VMI activ-
ity. Secondly, this was an exploratory study in nature, 
the correlation analysis between EF, attention per-
formance, and EC values were not corrected for mul-
tiple testing. Third, our research did not specifically 
focus on the impact of scalp blood flow signals and the 
impact of stress or concentration-related movements 
(e.g., teeth clenching, facial movements, tension, etc.). 
Some studies found that compared with non-short 
channel correction, short channel correction might 
potentially improve the signal quality and reduce spu-
rious correlations in connectivity measures [69, 70]. In 
future research, short-channel correction and monitor-
ing other physiological signals (such as heart rate, and 
electrodermal activity) should be considered to test 
the same protocol to effectively minimize signal inter-
ference and further improve the analyses; Fourth, our 
study tasks involve eyeball and body movements, such 
as hand, arm, and head movements. Future research 
may be able to combine eye tracking and optical sen-
sor technology to simultaneously track the movement 
information of eyeballs, hands, and heads to con-
duct more in-depth research on VMI tasks. Fifth, we 
noticed that the bandpass filtering methods may tend 
to introduce autocorrelation between time series and 
lead to missed causalities [71]. To verify our results, 
we performed the preprocessing without bandpass fil-
tering and spline correction again. We found that the 
main result hasn’t changed, the mean EC values of the 
DAN → DMN, the DAN → FPN, and the DAN → SMN 
significantly increased occurring with increasing task 
difficulty. This finding suggested the robustness of our 
current results. Future research should use a more 
comprehensive method to repeat the experiment. Last 
but not least, the number of participants in our study 
was relatively small, and studies with larger sample 
sizes could obtain more convincing results. Therefore, 
future research needs to repeat the experiment and 
increase the number of subjects to verify the results.

Conclusions
In general, our preliminary study showed that DAN 
may be played an important role in VMI activity. The 
two key brain regions (right SPL, right MOG) are 

actively involved the EC value changes of VMI task. 
Our findings provide a new perspective on the poten-
tial precise intervention methods for VMI difficulties in 
the clinical population.
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