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Abstract

metal ion imbalance-related oxidative stress.

Neurodegenerative diseases remain a significant unresolved societal burden afflicting millions of people worldwide.
Neurons in the brain are highly sensitive to oxidative stress, which can be induced by metal toxicity. In this paper, a
chronic aluminum overload-induced model of neurodegeneration was used to investigate whether metal ions

(Al, Fe, Mn, Cu and Zn)-related oxidative stress was involved in neurodegenerative mechanism and to identify the
protective action of meloxicam against rat hippocampal neuronal injury. The metal ion contents, activity of superoxide
dismutase (SOD), and content of malondialdehyde (MDA) were detected. The results showed that the spatial learning
and memory (SLM) function was significantly impaired in chronic aluminum overload rats. Considerable karyopycnosis
was observed in hippocampal neurons. The SOD activity was weakened and the MDA content increased both
significantly. In the hippocampus, Al, Fe, Mn, Cu, and Zn contents increased by 184.1%, 186.1%, 884.2%, 199.4%
and 149.2%, respectively. Meloxicam administration (without Al) had no effect compared with the control group,
while meloxicam treatment with aluminum exposure significantly protected rats from SLM function impairment,
neuron death, lower SOD activity, higher MDA content and brain metal ion imbalance. Our findings suggest that
the cerebral metal ion imbalance-related oxidative stress is involved in mechanism of cerebral injury and
neurodegeneration induced by chronic Al overload in rats, and that meloxicam protects neurons by reducing
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Introduction

Neurodegenerative diseases (NDDs), including Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s disease
(HD), Amyotrophic lateral sclerosis (ALS), Spinal muscular
atrophy (SMA) and related neurological and psychiatric
disorders, encompass a group of neurological disorders.
Neurodegeneration can be described as loss of neuronal
structure and function, and is manifested as loss of mem-
ory, cognition, movement or its control, and sensation [1].
For example, AD is characterized by memory loss and cog-
nitive impairment [2], PD can cause cognitive impairment,
including dementia and behavioral changes [3], and HD
is manifested with dementia, involuntary motor activity,
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personality changes and cognitive impairment [4]. Though
the current medical treatments have significantly im-
proved the quality and length of life for NDD patients,
NDDs remain a significant unresolved societal burden that
afflicts millions of people worldwide.

NDDs are progressive, with reflective of increased neuron
death. To date, the major mechanisms in pathogenic
processes of NDDs include oxidative stress, protein aggre-
gation, inflammation, blood brain barrier (BBB) disruption,
and mitochondrial dysfunction. Oxidative stress is one
major molecular mechanism responsible for the patho-
genesis and progression of several NDDs [5]. Oxidative
damage and mitochondrial dysfunction have been described
in patients with AD, PD, HD, and ALS [6,7]. The misfolding
and aggregation of specific proteins underlie many NDDs
[8], and otherwise, neurotoxicant exposure may play a role
in neurodegeneration [9]. Nevertheless, much research on

© 2014 Yu et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.


mailto:1370748729@qq.com
mailto:cqjqyang2004@aliyun.com
http://creativecommons.org/licenses/by/2.0

Yu et al. Behavioral and Brain Functions 2014, 10:6
http://www.behavioralandbrainfunctions.com/content/10/1/6

neurodegeneration is fragmentary, leaving the mecha-
nisms of NDDs unresolved.

The available treatments for NDDs are inadequate. The
mainstay of treatment for AD is agents that inhibit the
degradation of acetyl-choline in the synapse [10]. Current
treatment options for PD include deep brain stimulation
or increasing dopamine levels by providing a dopamine
precursor, L-dopa, or dopamine agonists [11-13]. However,
these treatments are effective at early stage in relieving
symptoms, but ineffectiveness and long-term side-effects
will gradually occur along with PD progression. Moreover,
boosting autophagy can reduce protein accumulation and
avoid toxicity due to protein aggregation in NDDs [14],
and the utilization of stem cells may attenuate neurode-
generation [15]. However, the treatments are generally
designed to alleviate symptoms, rather than reversing the
progression of neurodegeneration. Thereby, a concerted
inquiry is needed to decipher the mechanisms of NDDs,
and accelerate the discovery of efficacious therapies.

Neurons in the brain are highly sensitive to oxidative
stress, which can be induced by metal toxicity [16].
Previous experiments show that Al overload caused
mouse brain damage and an increased expression of
cyclooxygenase2 (COX2) [17]. Meloxicam as a selective
COX2 inhibitor significantly protected mice from the Al-
overload-caused brain damage [17]. In the present study,
we established the neurodegeneration models of Wistar
rats by long-term intragastric administration of aluminum
gluconate [18,19], and investigated the changes of metal
ion contents (Al, Fe, Mn, Cu, Zn), superoxide dismutase
(SOD, an antioxidant enzyme) activity, and malondialde-
hyde (MDA, an oxidative stress biomarker) content. The
aim of this study is to reveal whether the protective
mechanism of meloxicam against rat hippocampal neuronal
injury involves the reduction of the metal ion imbalance
and oxidative stress.

Materials and methods

Animals

Experiments were approved by the Animal Laboratory Ad-
ministrative Center and the Institutional Ethics Committee
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at Chonggqing Medical University. Sixty male adult Wistar
rats (obtained from Animal Laboratory Center of the
University), weighing 200-250 g, were randomly and
equally divided into 6 groups (n = 10): a control group, a
model group, M-1 group, M-3 group, Al + M-1 group, and
Al+M-3 group (M-1 and M-3 mean 1 and 3 mg-kg™
meloxicam respectively).

Chemicals

AlCl3 - 6H,0 (Sinopharm Chemical Reagent Co., Ltd.,
China) and sodium gluconate (Beijing Qing Sheng Da
Chemical Technology Co., Ltd., China) were of analytical
grade. Meloxicam was purchased from Kunshan Rotam
Reddy Pharmaceutical Co., Ltd (China). Aluminum gluco-
nate solution (20 mg AI** . ml™) was prepared on the day
of experiments by adding 17.9 g of AlCl;-6H,O and 9.9 g
of sodium gluconate into 100 ml of double distilled water
(ddH,0) and then adjusted to about pH 6.0 [18,19].

Establishment of animal models

The experiments were initiated after 3 days of acclima-
tization. The rats were treated by intragastric adminis-
tration once a day, 5 d a week for 20 weeks as follows:
the model group with 1 ml/100 g aluminum gluconate
solution; the control group with the same volume of
sodium gluconate solution; M-1 group and M-3 group
with 1 and 3 mgkg™" meloxicam, respectively; Al + M-1
group and Al + M-3 group with 1 and 3 mgkg™' meloxi-
cam respectively 30 min after administration of aluminum
gluconate.

Morris water maze test

At the second day after stopping aluminum gluconate
administration, the spatial learning and memory (SLM)
function was evaluated in a Morris water maze, follow-
ing a reported method [20]. The water maintained at
24-25°C. In the learning stages, rats received 4 trials on
each of 4 days. In each trial, a rat was placed into the
water facing the pool wall, randomly from each of four
starting positions. The trial was terminated and the
latency was recorded when the rat found the platform

Table 1 Changes of spatial learning and memory function of chronic aluminum overload rats (mean + SD, n = 10)

Group Latency (s)

Day 1 Day 2 Day 3 Day 4 Day 5
Control group 10021 £9.38 7532951 42.16+7.24 20.31+4.88 14.24 +3.38
M-3 group 96.28+ 8,51 6537 +7.32 3346+627 1934 +408 1204 +3.22
M-1 group 10436 + 12.14 7252+9.11 4066+7.16 23.11+425 1543 £4.39
Model group 15842+ 24.03" 10256+ 11.36" 7053 +758" 5316+624" 4514+613"
Al +M-3 group 99.33+9.18" 69.51 +817" 3869+5.11% 2014+ 422" 16.14 + 4.10"
Al+M-1 group 11418 + 868" 7933 941" 53.18 +7.59" 36.17 + 456" 2423 +362"

“P <0.01, vs. control group; *P < 0.05, *P < 0.01, vs. model group; ®P < 0.05, vs. Al + M-1 group; M-3 group: meloxicam 3 mg-kg™' group; M-1 group: meloxicam
1 mg-kg~" group; Al + M-3 group: Al + meloxicam 3 mg-kg ™' group; Al + M-1 group: Al + meloxicam 1 mg-kg™" group.
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within 180 s. Otherwise, the trial was terminated and
the rat was led to the platform. On the fifth day, the
rats received a probe trial in which the platform was
removed. The rat was placed into the water as before
to test its memory about the previous position of the
platform.
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Histology

After the Morris water maze test, 3 rats from each group
were perfused with heparinized saline (100 ml) to remove
blood from the vasculature, and then with 4% paraformal-
dehyde in phosphate buffered saline (200 ml). The whole
brain was then removed and stored in the same fixative.
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Figure 1 Changes of neuronal pathomorphology in chronic aluminum overload rat hippocampus. a. Neuronal pathomorphology in
chronic aluminum overload rat hippocampus (HE x 400). A: Control group; B: Meloxicam 3 mg kg~ group; C: Meloxicam 1 mg kg™ group; D:
Model group; E: Al + Meloxicam 3 mg kg~ group; F: Al + Meloxicam 1 mg kg™" group. b. Group data showing the effect of meloxicam on the
cell death rate. *P < 0,01, vs. control group; **P < 0.01, vs. model group; P < 001, vs. Al + M-1 group; Al + M-3 group: Al + meloxicam 3 mg kg™
group; Al + M-1 group: Al + meloxicam 1 mg kg™' group (mean + SD, n = 3).
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After paraffin embedding, 5-pum sections were obtained
and stained with hematoxylin-eosin (H&E). Morphologic
changes of hippocampal neurons were examined using
light microscopy. For cell counting from H&E stained
sections, 9 consecutive high power fields were sampled
from the hippocampal CA1 subfield. Cells with a dis-
tinct nucleus and nucleolus were regarded as intact
neurons. Neurons were counted using a microscope at
400x magnification. The extent of cell death was esti-
mated by the count of intact cells divided by the total
cell count [21].

SOD activity assay

After Morris water maze test, 4 rat brains from each
group were harvested. The hippocampi were homogenized
with normal saline. Then SOD activity was detected using
0.05 ml of 1% homogenate (w/v) according to the manual
of SOD assay kit (Jiancheng Bioengineering Ltd, Nanjing,
China). The absorbance of samples at 550 nm was detected
with a spectrophotometer (722, Shanghai Jinghua Tech-
nology Instrument Co., Ltd). The protein content was
measured by the method of coomassie brilliant blue.

MDA content assay

Hippocampal MDA content was detected according to
the manual of the maleic dialdehyde assay kit (Jiancheng
Bioengineering Ltd.). After Morris water maze test, brains
were removed (n = 4). The hippocampi were homogenized
with normal saline. MDA content was detected using
0.2 ml of 10% homogenate (w/v). The absorbance at
532 nm was detected with the spectrophotometer. The
protein content was measured by the method of coomas-
sie brilliant blue.

Metal content detection

After Morris water maze test, 3 rat brains from each
group were harvested. Each hippocampus was dissected
and stored at —80°C until metal analysis. To detect metal
contents in the brain, the hippocampus was weighed and
homogenized in 2 ml of ddH,O. All homogenates were
digested in 8 ml-g™' wet brain of 25% tetraethyl ammo-
nium hydroxide solution at 80°C for 24 h, and the mixture
was then adjusted to a final volume of 10 ml with ddH,O
and diluted 5 times before analysis. The tested metals
were Al, Fe, Mn, Cu, and Zn and were analyzed by in-
ductively coupled plasma-atomic emission spectrometry
(ICP-AES). To avoid interference of metal ions, one-off
plastic test tubes were used during procedures.

Statistical analysis

The results were expressed as mean + standard deviation
(SD) and processed on SPSS 12.0 (SPSS Inc. Chicago, US).
Within-group variances were compared by Dunnett’s
t-test.
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Results

Changes of SLM function

The time taken to find the platform (latency) in the
model group was significantly longer compared with the
control group. The latency in both Al + M-1 and Al + M-3
groups was significantly shortened in a dose-dependent
manner compared with the model group. There was no
significant difference among the control, M-1 and M-3
groups (Table 1).

Changes of neuronal pathomorphology

The hippocampal neurons were in distinct and regular
structure, and arranged densely and clearly in the control,
M-1 and M-3 groups. In contrast, the model group re-
vealed significant injuries including remarkable cell loss
and karyopycnosis in hippocampal neurons. Dead and
dying cells in the injured hippocampi displayed necrosis,
karyopycnosis and irregular contours. The cell loss and
karyopycnosis were significantly diminished in the Al + M-3
group in particular and the Al+ M-1 group (Figure la).
Quantification of remaining, the Al + M-3 group (P < 0.01)
and the Al+M-1 group (P<0.01) exhibited 27.96% and
54.05% reduction in cell death, respectively compared with
the model group. There was significant difference between
the Al + M-3 group and the Al + M-1 group (P < 0.01), but
no significant difference among the control, M-1 and M-3
groups (Figure 1b).

Changes of SOD activity

SOD activity in chronic aluminum overload rats distinctly
decreased compared with the control group. Meloxicam
administration significantly reversed the decrease of SOD
activity caused by aluminum overload, especially in the Al
+M-3 group. And there was no significant difference
among the control, M-1 and M-3 groups (Table 2).

Changes of MDA content

MDA content in the model group significantly increased
compared to the control group. Meloxicam adminis-
tration significantly blunted the increase of MDA content

Table 2 Changes of SOD activity of chronic aluminum
overload rat hippocampus (mean + SD, n=4)

Group SOD (U-mg™")
Control group 1084+ 1.75
meloxicam 3 mg - kg™ group 11.03+£154
meloxicam 1 mg kg™ group 1022 +£137
Model group 809+0.72"

Al +meloxicam 3 mg-kg™" group 1499 + 140"
Al +meloxicam 1 mg-kg~" group 981 +097"

"P < 0.05, vs. control group; *P <0.05, vs. model group; °P < 0.01, vs. Al + meloxicam
1 mg-kg™" group.

SOD: superoxide dismutase.

U-mg™": Unit per mg of protein.
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Table 3 Changes of MDA content of chronic aluminum
overload rat hippocampus (mean £+ SD, n =4)

Group MDA (nmol-mg™")
Control group 0.57 £0.07
meloxicam 3 mg-kg~' group 0.54 +0.08
meloxicam 1 mg-kg™' group 0.56 + 0.05

Model group 1324022

Al + meloxicam 3 mg-kg ™' group 041 +002%

Al + meloxicam 1 mg-kg™' group 0.60 + 0.06"

"P < 0.05, vs. control group; #P <0.05, vs. model group; 5p < 0.01, vs. Al + meloxicam
1 mg-kg™" group.

MDA: malondialdehyde.

nmol-mg™": nmol per mg of protein.

in chronic aluminum overload rats. There was no signifi-
cant difference among the control, M-1 and M-3 groups
(Table 3).

Changes of metal ion contents

Al

Al content in the model group was significantly increased
by 184.1% compared with the control group. There was
no significant difference among the control, M-1 and M-3
groups. Al content significantly decreased in the Al + M-3
group in particular and the Al+M-1 group compared
with the model group (Figure 2).

Fe

Fe content in the rat hippocampus was the highest
among the tested metals (Al, Fe, Mn, Cu and Zn) in the
control group. Fe contents of the M-1 and the M-3 groups
were equal to that of the control group. Fe content in the
model group was significantly increased by 186.1% com-
pared with the control group. Meloxicam administration
significantly decreased the Fe contents in the Al+M-3
and Al + M-1 groups, and there was significant difference
between the two groups (Figure 3).
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Mn

Mn content in the rat hippocampus was the lowest
among the tested metals. Mn content of the model
group increased by 884.2% compared with control group.
Considering the increasing ratio, Mn content increased
the most severely. There was no significant difference
among the control, M-1 and M-3 groups. Mn contents of
the Al+ M-3 group in particular and the Al + M-1 group
significantly decreased compared with the model group
(Figure 4).

Cu

Cu content of the model group significantly increased by
199.4% compared with the control group. Cu contents of
the M-1 and M-3 groups were equal to that of the
control group. Meloxicam administration significantly
decreased the Cu contents in the Al + M-3 and Al + M-1
groups, and there was significant difference between the
two groups (Figure 5).

Zn

Zn content of the model group significantly increased
by 149.2% compared with the control group. There was
no significant difference among the control, M-1 and
M-3 groups. Zn contents of the Al + M-3 group in par-
ticular and the Al+ M-1 group significantly decreased
(Figure 6).

Discussion

Metal ions are required for maintaining the functions of
many proteins and proper metal ion balance in the brain
is significant for normal cognitive function [22]. Thus,
metal ions have received exponentially increasing interest.
Growing evidence has been collected on the relationship
between metal ions and the development of neurological
disorders, such as metal-protein association inducing
protein aggregation and metal-catalyzed protein oxidation
inducing protein damage and/or generation of reactive
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Figure 2 Changes of aluminum content of chronic aluminum overload rat hippocampus (mean + SD, n = 3). #P <001, vs. control group;
*P <005, vs. model group; ?P < 0,05, vs. Al +M-1 group; M-3 group: meloxicam 3 mg-kg ™' group; M-1 group: meloxicam 1 mg-kg~' group; Al +M-3
group: Al + meloxicam 3 mg - kg™ group; Al + M-1 group: Al + meloxicam 1 mg-kg™' group. ug/g: ug per g of wet weight tissue.
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Figure 3 Changes of iron content of chronic aluminum overload rat hippocampus (mean + SD, n = 3). */P <0071, vs. control group;
“P < 0,05, vs. model group; °P < 0.05, vs. Al + M-1 group; M-3 group: meloxicam 3 mg - kg™ group; M-1 group: meloxicam 1 mg-kg™' group; Al + M-3
group: Al + meloxicam 3 mg - kg™ group; Al + M-1 group: Al +meloxicam 1 mg-kg ™' group. ug/g: ug per g of wet weight tissue.

oxygen species (ROS) [23,24]. Metals such as Al, Fe, Cu,
and Zn were dysregulated in AD brain tissue to create a
pro-oxidative environment [25-29]. In the frontal cortex
of young and aged rats fed with AICl;, the Al, Fe and Zn
contents significantly increased and Al may be linked with
alteration in neurobehavioral activity [30]. The multifunc-
tional metal-ion chelators as a potential treatment for
metal-promoted neurodegenerative diseases (MpND) has
attracted much attention and showed promise of disease-
modifying [31-34].

Al as an important neurotoxin has been investigated
extensively both in vitro and in vivo, and is associated
with cognitive dysfunction and various mental diseases.
Recent neuropathological, biochemical, and epidemiological
studies suggest that Al contributes to the progression of
several NDDs, including AD, and PD, but the precise
mechanism has not been clarified yet [30,35-37]. Intra-
cerebroventricular (icv) injection of trace AlCl; into mice
will result in neurodegeneration and learning/memory
disorders [38]. However, oral ingestion is the main form of
Al exposure in clinic. Because the icv animal models do
not much resemble that from oral ingestion of Al, several

scientists hold that the icv AICl; injection model does not
strictly speak a neurodegeneration model. In the present
study, we established neurodegenerative models by intra-
gastric administration of aluminum gluconate (200 mg
APP*.Kg™', once a day, 5 d a week, for 20 weeks) [18,19].
The results showed that the SLM function was significantly
impaired and significant karyopycnosis of hippocampal
neurons was observed in the model group compared with
the control group.

Al neurotoxicity may be related to the integrity and
permeability of BBB [39]. Al can induce apoptosis in rat
hippocampal cells through the down-regulation of bcl-2
mRNA expression and the up-regulation of bax mRNA
expression [40]. Al may also be involved in the aggregation
of AP peptides, inducing AP peptides into the [B-sheet
structure and facilitating iron-mediated oxidative reactions
[41]. Neurodegeneration caused by aluminum overload was
associated with an imbalance in metal ion levels in the
brain. Metal dyshomeostasis is linked in protein misfolding
and may contribute to oxidative stress and neuronal
damage. The presence of Al might change the contents
of endogenous trace metals [42].
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Figure 4 Changes of manganese content of chronic aluminum overload rat hippocampus (mean + SD, n = 3). #P <001, vs. control group;
**P <001, vs. model group; M-3 group: meloxicam 3 mg-kg ™' group; M-1 group: meloxicam 1 mg-kg™' group; Al + M-3 group: Al + meloxicam
3 mg-kg~' group; Al + M-1 group: Al + meloxicam 1 mg-kg™" group. ug/g: ug per g of wet weight tissue.
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Figure 5 Changes of copper content of chronic aluminum overload rat hippocampus (mean + SD,n = 3). **P < 001, vs. control group;
*P < 0.05, **P < 001, vs. model group; M-3 group: meloxicam 3 mg-kg~' group; M-1 group: meloxicam 1 mg - kg™ group; Al + M-3 group:

Al + meloxicam 3 mg-kg~' group; Al +M-1 group: Al + meloxicam 1 mg-kg™' group. ug/g: ug per g of wet weight tissue.

Iron as an important trace element is essential for
neuron development since it is required for various
physiological events, including mitochondrial respiration,
oxygen transport and DNA synthesis [43]. However, iron
contributes to oxidative stress through Fenton reaction,
leading to damages in DNA, proteins and membrane
[44,45]. Iron imbalance is a precursor to the neurodegen-
erative processes leading to AD [46], and quantification of
brain iron content can be an effective marker for early
diagnosis of AD [47]. Iron accumulation may contribute
to protein aggregation and neuronal death in PD patients
[48]. Excessive iron would induce cell injury by reacting
with H,O, to produce hydroxyl radical (OH™), superoxide
anions (O, "), and ROS [49]. Another hypothesis states that
iron-mediated free radical production contributes to BBB
opening to cause neuronal damage [50]. In our study, the
iron content in the model group was significantly higher
compared with the control group, and iron content was
the highest among the tested metals, implying that iron
overload in hippocampus may play an important role in
the occurrence of neuron damage.

Other transitional metals such as Mn, Cu, and Zn are
essential enzyme cofactors required for numerous cellular

processes, but their abnormal accumulation in the brain
will lead to neurotoxicity [22]. Mn has long been known
to cause neurological disorders similar to PD. Mn might
result in movement abnormalities in PD patients [51]. The
present study revealed that Mn content in hippocampus
of the model group was 8.8 times (the highest ratio)
higher compared with the control group. The mechanism
of Mn-induced neurotoxicity has not been fully eluci-
dated, but an established mechanism is correlated with
attenuated uptake of glutamate (GSH) [52]. Mn can reduce
brain glutathione level, likely reflecting oxidative stress [53],
and might lead to mitochondrial dysfunction and trigger
apoptotic-like neuronal death [54]. These studies indicate
that the obvious increase of Mn content in hippocampus
may play a key role in the mechanism of chronic Al-
induced brain damage and neural degeneration.

Cu which is released at the synaptic cleft is an important
structural cofactor in a series of biochemical processes
with a narrow-range of optimal content [55]. The know-
ledge of Cu homeostasis has become increasingly important
in clinical medicine, as it can be involved in the patho-
genesis of NDDs such as AD [56-59]. The mechanism
may be that Cu affects the degradation and aggregation
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Figure 6 Changes of zinc content of chronic aluminum overload rat hippocampus (mean + SD, n = 3). “P < 0,01, vs. control group;

*P < 0,05, **P < 0.01, vs. model group; °P < 0.05, vs. Al + M-1 group; M-3 group: meloxicam 3 mg-kg ™' group; M-1 group: meloxicam 1 mg-kg ™'
group; Al + M-3 group: Al + meloxicam 3 mg-kg™" group; Al + M-1 group: Al + meloxicam 1 mg-kg™' group. pg/g: ug per g of wet
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of A in AD [60,61]. We found that Cu content signifi-
cantly increased after 20-week administration of aluminum
gluconate, and this may be a reason for the SLM function
impairment and neuron death.

Zn, essential for human health in trace amounts, is
co-released with GSH and the significance of Zn signaling
is gradually recognized [62]. Hippocampal pyramidal neu-
rons are vulnerable to brain injury, while Zn entry may
enhance this vulnerability [63]. Zn has been implicated in
AD and PD. Excessive Zn translocation might be a mo-
lecular trigger of the cellular apoptosis [64,65]. In our
experiments, the hippocampus of model rats showed Zn
accumulation, and we thought that Zn is also involved
in the occurrence of brain injury.

Neurons in brain are highly sensitive to oxidative stress.
Metal toxicity is a problem leading to oxidative stress.
Superoxide radicals can also create further oxidative stress
by metal-catalyzed reactions [16]. SOD converts super-
oxide to H,O, and oxygen. SODs are the most important
antioxidant enzymes in the antioxidant defense system
[66]. MDA is an end-product of lipid peroxidation and an
excellent marker for degeneration of neurons [67]. Be-
sides, metal ion contents in hippocampus of the model
group significantly increased compared with the control
group. The hippocampal SOD activity was weakened and
MDA content increased both significantly in the model
group. The results might further confirm the hypothesis
that imbalance of cerebral metal ion is involved in occur-
rence of oxidative stress.

Moreover, meloxicam could significantly suppress metal
ion elevation and prevent hippocampal neuron injury in
aluminum overload rats. Reportedly, COX-2-induced syn-
thesis of prostaglandins (PGs) was associated with chronic
inflammation [68,69], causing oxidative stress. Our previous
study showed that chronic aluminum overload significantly
elevated COX2 mRNA and protein expressions [18]. These
results suggest that as a selective COX2 inhibitor, meloxi-
cam might alleviate oxidative stress damage to the brain
by inhibiting COX2 activity, relieving inflammation and
reducing metal ion imbalance. It may be involved in the
neuroprotective mechanism of meloxicam against rat
hippocampal neuronal injury following chronic aluminum
overload.

In conclusion, we provide evidence that metal ion
imbalance may contribute significantly to hippocampal
injury caused by exposure to aluminum. Meloxicam
was neuroprotective by decreasing COX2 expression
and was associated with inhibition of oxidative stress.
Clearly, further studies are necessary to clarify the neu-
roprotective mechanisms of meloxicam after exposure
to aluminum.
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