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Abstract
Background: Calcyon is a single transmembrane protein predominantly expressed in the brain.
Very recently, calcyon has been implicated in clathrin mediated endocytosis, a critical component
of synaptic plasticity. At the genetic level, preliminary evidence supports an association between
attention-deficit/hyperactivity disorder (ADHD) and polymorphisms in the calcyon gene. As little
is known about the potential role of calcyon in ADHD, animal models may provide important
insights into this issue.

Methods: We examined calcyon mRNA expression in the frontal-striatal circuitry of three-, five-
, and ten-week-old Spontaneously Hypertensive Rats (SHR), the most commonly used animal
model of ADHD, and Wistar-Kyoto (WKY; the strain from which SHR were derived). As a
complement, we performed a co-expression network analysis using a database of mRNA gene
expression profiles of multiple brain regions in order to explore potential functional links of calcyon
to other genes.

Results: In all age groups, SHR expressed significantly more calcyon mRNA in the medial
prefrontal and orbital frontal cortices than WKY rats. In contrast, in the motor cortex, dorsal
striatum and nucleus accumbens, calcyon mRNA expression was only significantly elevated in SHR
in younger animals. In both strains, calcyon mRNA levels decreased significantly with age in all
regions studied. In the co-expression network analysis, we found a cluster of genes (many of them
poorly studied so far) strongly connected to calcyon, which may help elucidate its role in the brain.
The pair-wise relations of calcyon with other genes support its involvement in clathrin mediated
endocytosis and, potentially, some other membrane/vesicular processes. Interestingly, no link was
found between calcyon and the dopamine D1 receptor, which was previously shown to interact
with the C-terminal of calcyon.

Conclusion: The results indicate an alteration in calcyon expression within the frontal-striatal
circuitry of SHR, especially in areas involved in cognitive processes. These findings extend our
understanding of the molecular alterations in SHR, a heuristically useful model of ADHD.

Published: 10 July 2007

Behavioral and Brain Functions 2007, 3:33 doi:10.1186/1744-9081-3-33

Received: 5 February 2007
Accepted: 10 July 2007

This article is available from: http://www.behavioralandbrainfunctions.com/content/3/1/33

© 2007 Heijtz et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17623072
http://www.behavioralandbrainfunctions.com/content/3/1/33
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Behavioral and Brain Functions 2007, 3:33 http://www.behavioralandbrainfunctions.com/content/3/1/33
Background
Attention-deficit/hyperactivity disorder (ADHD) is a com-
mon neurobehavioral disorder of childhood onset that
can include elements of inattention, hyperactivity and
impulsive behavior [1]. The specific aetiology of ADHD is
unknown, but family-genetic, twin, adoption, and segre-
gation analyses demonstrate that it is a highly heritable
condition [2]. The neurobiology of ADHD is not well
understood, but there is converging evidence implicating
the catecholamine rich frontal-striatal circuitry [1]. Molec-
ular genetic studies have also focused on hypothesized
associations between various catecholamine related genes
and ADHD. Several candidate genes have been implicated
in ADHD, including genes involved in the dopamine
pathway (e.g. DAT1 and dopamine receptors DRD4 and
DRD5) [3]. However, the odds ratios for the associations
of these genes with ADHD are small (ranging from 1.18 to
1.46), which is consistent with the notion that the genetic
vulnerability to ADHD is mediated by multiple genes of
small effect.

Recently, an association has been reported between
ADHD and a haplotype in the calcyon gene [4]. Calcyon
is a single transmembrane protein predominantly
expressed in the brain and localized to membranous
intracellular compartments within neuronal dendrites
and dendritic spines [5]. Studies in non-human primates
and rodents have demonstrated that calcyon is highly
expressed in multiple brain regions [5-9], including the
prefrontal cortex, which mediates cognitive-executive
functions (e.g. spatial attention, set-shifting, working
memory, and decision-making) [10]. In contrast, in the
caudate-putamen (striatum in rodents), calcyon expres-
sion is relatively low. Calcyon has been implicated in
clathrin mediated endocytosis, a critical component of
synaptic plasticity [11]. However, there is limited infor-
mation about the potential role of the calcyon gene in
ADHD. Accordingly, we investigated potential alterations
in the expression of calcyon mRNA in the frontal-striatal
circuitry of Spontaneously Hypertensive Rats (SHR), the
most commonly used animal model of ADHD, and the
normotensive Wistar-Kyoto strain (WKY; from which SHR
were derived). SHR is the only current animal model that
displays all of the behavioural features of ADHD [12,13].
It is relevant to note that hypertension is not present in
young SHR but develops gradually from four to twelve
weeks of age [14,15]. In order to take into account poten-
tial developmental changes, we investigated calcyon
mRNA expression at three-, five-, and ten-weeks of age.
These ages were selected because they correspond to the
prepubertal, adolescent, and adulthood period in humans
[16,17]. In addition, we used bioinformatics tools to
explore potential calcyon functional connections to other
genes.

Methods
Animals
Prepubertal (three-week-old), adolescent (five-week-old)
and young adult (ten-week-old) male SHR and WKY rats
(Charles River Laboratories, Germany) were used. The
animals arrived in the laboratory one week before the
experiment and were housed in groups of the same strain
in standard plastic cages (Type IV Makrolon®), under con-
trolled conditions of light: dark cycle (12:12 h, lights on
at 07:00 h). Food and water were available ad libitum. The
experiments were approved by the Animal Research Ethics
Committee of Stockholm and the National Institute of
Health Guide on Use of Laboratory Animals.

Breeding history of animals
SHR (SHR/NCrI) were developed by Okamoto and Aoki
at the Kyoto School of Medicine in 1963, from an outbred
WKY male with marked elevated blood pressure mated to
a female with slightly elevated blood pressure. Brother ×
sister matings with continued selection for spontaneous
hypertension were then transferred to NIH in 1966 from
Okamoto at F13, and to Charles River Laboratories from
NIH in 1973 at F32 and were caesarean rederived in 1973.
WKY (WKY/NCrI) rats originated from outbred Wistar
stock transferred from Kyoto School of Medicine to NIH
in 1971. This is the same stock from which the SHR strain
was developed. They were transferred to Charles River
Laboratories in 1974 from NIH, at F11 and caesarean red-
erived in 1974.

RNA probe synthesis
Antisense and sense cRNA probes for calcyon were pre-
pared from a 500 base pair Bgl II fragment of rat calcyon
cDNA cloned in vector pGEM7zf+ as previously described
[8]. The plasmid was linearized with Sac I or EcoRI and
then transcribed using T7 (antisense) and SP6 (sense)
RNA polymerases, respectively. In vitro transcription was
carried out using the MAXIscript™ SP6/T7 kit (Applied
Biosystems, Sweden) and [α35S]-UTP (SJ603, 20 mCi/ml;
GE Healthcare, Sweden) according to the manufacture's
instructions. The transcripts were purified using NucA-
way™ Spin Columns (Applied Biosystems, Sweden).

Hybridization
Expression of calcyon mRNA in the prefrontal cortex and
striatum was investigated using in situ hybridization tech-
nique. Brains were rapidly dissected and frozen on dry ice.
Coronal sections (14 μm) of the above areas were pre-
pared on a cryostat and stored at -80°C until use. The in
situ hybridization was performed as follows. The frozen
tissue sections were fixed in cold 4% paraformaldehyde in
0.1 M sodium phosphate buffer pH 7.4 (PBS) for 10 min.
After washing with PBS for 5 min, the sections were rinsed
in DEPC-H20 (5 min) and deproteinated with 0.1 M HCl
for 5 min. The sections were then rinsed twice with PBS (3
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min each) and placed into 0.25% acetic anhydride in 0.1
M triethanolamine (pH 8.0) for 20 min at room tempera-
ture; washed twice in PBS (3 min each) and dehydrated in
70%, 80% and 100% (2 min each). Sections were air dried
and prehybridized [50% deionized formamide (pH 5), 50
mM Tris-HCl, pH 7.6, 25 mM ethylene-diamine-tetraace-
tate (EDTA), pH 8.0, 20 mM NaCl, 0.25 mg/ml yeast
tRNA, 2.5 × Denhardt's solution] for 4 h at 55°C. After
draining off the prehybridization buffer, sections were
hybridized overnight (14–16 h) in a humidified chamber
at 55°C. For hybridization, labeled probes were diluted to
a final concentration of 1.0 × 106 c.p.m./200 μL in a solu-
tion containing 50% deionized formamide (pH 5), 0.3 M
NaCl, 20 mM Tris-HCl (pH 7.6), 5 mM EDTA (pH 8.0),
10 mM PBS, 0.2 mM dithiothreitol, 0.5 mg/ml yeast
tRNA, 0.1 mg/ml poly-A-RNA, 10% dextran sulfate, and
1× Denhardt's solution. After hybridization, the slides
were rinsed in 1 × standard saline citrate (SSC), 0.01%
SDS (15 min); 1 × SSC, 0.01% SDS (30 min); 50% forma-
mide/0.5 × SSC (1 h); 1 × SSC, and 0.01% SDS (15 min)
at 55°C with continuous shaking. The sections were then
treated with 1 μg/mL RNase A (Roche, Sweden) in RNase
buffer (0.5 M NaCl, 10 mM Tris-HCl, 5 mM EDTA, ph 8.0)
for 1 h at 37°C. After two additional washes in 1 × SSC,
0.01% SDS for 30 min, the sections were dehydrated in
ascending alcohol series and air dried. Sections were
placed against β-Max film (VWR, Sweden) and stored at
room temperature for 3 to 5 days. Films were developed
in D19 developer for 2 min and in 1:5 dilution of Amfix
fixative for 5 min. Non-specific hybridization was deter-
mined by incubating sections with the respective 35S-UTP-
labelled sense cRNA probe for the above cDNA under
identical conditions to that of the antisense RNA probe.

Quantification
Films were scanned with an Epson Perfection 1250 scan-
ner as gray scale film, using 300 pixels and saved as high
quality JPEG files. Optical density values were quantified
using appropriate software (NIH Image J version 1.29,
U.S. National Institutes of Health). A 14C step standard
(GE Healthcare, Sweden) was included to calibrate optical
density readings and convert measured values into nCi/g.
Optical density measurements were averaged from two
adjacent sections per animal and region of interest for sta-
tistical analyses. All comparisons between groups were
made on sections hybridized together, under identical
conditions and exposed for the same periods of time to β-
Max film (VWR, Sweden).

Criteria used for evaluation of brain regions
Anatomical regions were identified and subdivided for
densitometric analysis according to the stereotaxic atlas of
Paxinos and Watson [18]. The rat prefrontal cortex con-
sists of two spatially separated areas; namely, the medial
and orbital regions [19]. The medial prefrontal cortex can

be divided into infralimbic (IL), prelimbic (PrL), dorsal
and ventral anterior cingulate, and medial precentral cor-
tical area (PrCm). The orbital frontal cortex can be divided
into medial, ventral and lateral orbital cortices, and agran-
ular insular cortex. Our measurements of the orbital fron-
tal cortex contained both the ventral and lateral orbital
cortices, and for the medial prefrontal cortex contained
the IL, PrL and cingulate (approximately + 2.6 mm poste-
rior to bregma). The measurements of the motor cortex
were taken from primary motor cortex (M1) (approxi-
mately +1.6 mm posterior to bregma). The measurements
of the nucleus accumbens were taken from the shell
region (approximately +1.6 mm posterior to bregma). The
measurements from the rostral, middle, and caudal stria-
tum were taken at approximately +1.6, +0.7, and -0.4 mm
posterior to bregma, respectively. For further details see
[20].

Statistical analysis of calcyon mRNA expression
Statistical analysis of mRNA expression was performed
using factorial ANOVA (STRAIN and AGE as main factors;
each STRAIN × AGE group contained 5 animals as repli-
cates) for each brain region. The pair-wise post-hoc com-
parisons were made using the Bonferroni/Dunn test. For
all analyses, significance was assigned at the P < 0.05 level.
All data are presented as means ± S.E.M.

Co-expression network analysis
The dataset from the Mouse Atlas of Gene Expression [21]
was downloaded from Gene Expression Omnibus as GEO
Series #4726. For each gene (a total of 11,328 genes from
ENSEMBL mouse genome version) in each sample, its rel-
ative expression level was used, i.e. a log-transformed
ratio of the SAGE tag abundance in the sample to its aver-
age abundance across all the samples. This normalization
was needed to compute Pearson linear correlation coeffi-
cients. The correlation coefficients between mRNA expres-
sion profiles were computed across developing and adult
brain tissue samples (missing observations excluded pair-
wise). For comparison, alternative co-expression values
were calculated identically across all the tissues of the
Atlas. Pearson coefficients exceeding r > 0.55 (P < 0.001)
for mRNA expression correlations were used to link genes
with the tightest connections to each other or to calcyon.
However, any two given genes may not show direct links
in such a network. Indeed, even if A <-> B and B <-> C
pairs are strongly correlated, A <-> C may be more weakly
correlated and thus not discernable. Correlations between
calcyon and genes of particular interest were calculated for
each of the Mouse Atlas genes. The genes represented as
color-marked nodes (see results section) are: dopamine
receptors, clathrin chains, ADHD-associated genes from
OMIM database, and a group of genes we found co-
expressed with calcyon as human orthologs (found at
InParanoid resource, [22]) in the Human Tissue Atlas
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([23]; correlation values not shown). In total, more than
900,000 gene pairs were analyzed for functional linkage.
Hence, even if a direct connection were not visible, it
could be discovered via neighbors that share genes in the
network.

A number of genes did not have valid data in the Mouse
Atlas (e.g., the two clathrin light chains and dopamine
receptors 3, 4, and 5). Some functional links may also
exist but did not exceed the threshold we selected (r >
0.55) for determining the presence of mRNA co-expres-
sion. As has been shown, one of a pair of interacting genes
can be expressed permanently but the joint activity can be
regulated by transient expression of the other gene [24].
Such protein pairs would not be detected in our co-expres-
sion network analyses. Finally, the absence of some genes
in sub-networks may be explained by low sensitivity (i.e.,
only a minority of functionally related gene pairs can usu-
ally be found by means of pure mRNA co-expression).

All mouse genes used in the co-expression network analy-
sis are spelled according to the Mouse Genome Informat-
ics (MGI) data base. For example, the mouse dopamine
D1 receptor is abbreviated as Drd1a, while the human or
rat dopamine D1 receptor is abbreviated as DRD1. Images
were prepared with the network visualization tool Medusa
[25].

Results
The specificity of the signals obtained with in situ hybrid-
ization was confirmed using a sense probe. Background
levels were very low in all sections analyzed (data not
shown).

Medial prefrontal cortex
All regional analyses consisted of two-way factorial ANO-
VAs with main factors STRAIN, DF = [1,24] and AGE, DF
= [2,24] and STRAIN × AGE, DF = [2,24]. ANOVA of the
medial prefrontal cortex revealed a significant main effect
of STRAIN [F = 130.3; P < 0.0001] and AGE [F = 32.9; P <
0.0001], but failed to reveal a STRAIN × AGE interaction.
Post-hoc analysis with the Bonferroni/Dunn test showed
that the three-, five- and ten-week old SHR expressed sig-
nificantly (P < 0.0001) higher levels of calcyon mRNA
when compared to WKY rats of the same age (see Figs. 1A
and 2). In both strain of rats, the three-, and five-week old
rats expressed significantly (P < 0.05) higher levels of cal-
cyon mRNA than the ten-week-old rats.

Orbital frontal cortex
ANOVA of the orbital cortex revealed a significant main
effect of STRAIN [F = 126.6; P < 0.0001] and AGE [F =
34.9; P < 0.0001], but failed to reveal a STRAIN × AGE
interaction. Similar to the medial prefrontal cortex, the
three-, five- and ten-week old SHR were found to express

significantly (P < 0.0001) higher levels of calcyon mRNA
when compared to WKY rats of the same age (see Figs. 1B
and 2). Moreover, in both strain of rats, calcyon mRNA
expression was significantly (P < 0.0001) higher in the
three-, and five-week-old rats than in the ten-week old
rats.

Motor cortex
ANOVA of the primary motor cortex revealed a significant
main effect of STRAIN [F = 10.0; P = 0.004] and AGE [F =
25.9; P < 0.0001], but failed to reveal a STRAIN × AGE
interaction. Post-hoc analysis showed that the three-, and
five-week-old SHR expressed a rather small but significant
(P < 0.05) increase in calcyon mRNA when compared to
the WKY rats of the same age (see Figs. 1C and 2). In both
strains of rats, the three-, and five-week-old rats expressed
significantly (P < 0.05) higher levels of calcyon mRNA
than the ten-week-old rats.

Striatum
ANOVA of the rostral, middle, and caudal striatum
revealed a significant main effect of STRAIN ([F = 8.2; P =
0.009], [F = 8.4; P = 0.008], and [F = 14.3; P = 0.001],
respectively) and AGE ([F = 9.5; P = 0.001], [F = 23.2; P <
0.0001], and [F = 21.4; P < 0.001], respectively), but failed
to reveal a STRAIN × AGE interaction. In both the rostral
and middle striatum, post-hoc analysis showed that the
five-week-old SHR expressed a rather small but significant
(P < 0.05) increase in calcyon mRNA when compared to
WKY rats of the same age (see Figs. 1D and 2). In addition,
in both strain of rats the three-week-old rats expressed sig-

Expression of calcyon mRNA in the frontal-striatal circuitry of SHR and WKY rats during various postnatal agesFigure 1
Expression of calcyon mRNA in the frontal-striatal circuitry 
of SHR and WKY rats during various postnatal ages. Values 
are shown as means ± S.E.M., n = 5 per each group. **P < 
0.0001; * P < 0.05 compared to WKY rats of the same age. 
For further details see the results section.
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nificantly (P < 0.05) higher calcyon mRNA levels than the
ten-week-old rats. In the caudal striatum, post-hoc analy-
sis showed that the three-, and five-week-old SHR
expressed a rather small but significant (P < 0.05) increase
in calcyon mRNA when compared to WKY rats of the
same age (see Figs. 1E and 2). In both strains of rats the
three-, and five-week-old rats expressed significantly (P <
0.05) higher calcyon mRNA levels than the ten-week-old
rats.

Nucleus accumbens
ANOVA of the nucleus accumbens (shell region) revealed
a significant main effect of STRAIN [F = 9.3; P = 0.005]
and AGE [F = 17.9; P < 0.0001], but failed to reveal a
STRAIN × AGE interaction. Post-hoc analysis showed that
the three-, and five-week-old SHR expressed a rather small
but significant (P < 0.05) increase in calcyon mRNA when

compared to WKY rats of the same age (see Figs. 1F and 2).
In addition, in both strain of rats the three-, and five-
week-old rats expressed significantly (P < 0.05) higher cal-
cyon mRNA levels than the ten-week-old rats.

Co-expression network analysis
In order to shed more light on calcyon function, we
explored its functional connections to other genes by per-
forming network analyses. We reasoned that the most
informative pattern would be revealed by analyzing a co-
expression network in brain tissue. The Mouse Atlas of
Gene Expression [21] was suitable for this purpose, as it
contains the expression patterns of 11,328 genes. For a
confident co-expression analysis, one should use datasets
in which most of the genes have been observed in multi-
ple expression conditions. We were aware of 13 large
expression sets in human, mouse, and rat. Calcyon is a rel-

Representative autoradiograms showing calcyon mRNA at the level of the frontal cortex and rostral striatum in three-, five-, and ten-week-old SHR and WKY ratsFigure 2
Representative autoradiograms showing calcyon mRNA at the level of the frontal cortex and rostral striatum in three-, five-, 
and ten-week-old SHR and WKY rats. Coronal sections are from approximate bregma levels +2.6 and +1.6, respectively (arbi-
trary scale). The abbreviations are as follows: mPFC, medial prefrontal cortex; OFC, orbital frontal cortex; M1, primary motor 
cortex; STR, striatum; AccSh, nucleus accumbens (shell region).
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atively novel and poorly studied gene. Thus apart from the
Mouse Tissue Atlas, only one Human Atlas ([23]; consid-
ered in the paper as well) had a calcyon expression profile
– but this atlas did not have enough various brain tissue
conditions.

While analyzing functional links in the co-expression net-
work, special attention was paid to genes previously sug-
gested as being related to calcyon. Figure 3 shows the
calcyon network and the potentially related genes in the
developing and adult mouse brain tissues. No significant
links were found between calcyon and dopamine recep-

tors Drd2 and Drd1a (the latter previously having been
shown to interact with calcyon), even when indirect con-
nections via other genes were considered. The dopamine
receptors Drd3, Drd4, and Drd5 were not present in the
database. Several ADHD-associated genes with available
mRNA profiles did not relate to calcyon either. However,
multiple, and mostly strong, connections were revealed
between calcyon and genes whose annotations suggested
that they are involved in synaptic plasticity, endocytosis
and/or vesicle formation (e.g. clathrin heavy chain, and
the ionotropic glutamate receptor, AMPA1) (see Fig. 4 and
Table 1). A number of genes in this calcyon-related cluster

Table 1: Genes of the calcyon-related network cluster. Gene name, ENSEMBL gene ID, and ENSEMBL gene description are provided 
from left to right.

Gene ENSEMBL ID ENSEMBL description

Acot7 ENSMUSG00000028937 acyl-CoA thioesterase 7 [Acc:MGI:1917275]
Ankrd13d ENSMUSG00000005986 ankyrin repeat domain 13 family, member D [Acc:MGI:1915673]
Aplp1 ENSMUSG00000006651 amyloid beta (A4) precursor-like protein 1 [Acc:MGI:88046]
Atp1a3 ENSMUSG00000040907 ATPase, Na+/K+ transporting, alpha 3 polypeptide [Acc:MGI:88107]
Atp6v1a ENSMUSG00000052459 ATPase, H+ transporting, lysosomal V1 subunit A [Acc:MGI:1201780]
Atp6v1d ENSMUSG00000021114 ATPase, H+ transporting, lysosomal V1 subunit D [Acc:MGI:1921084]
Calm3 ENSMUSG00000019370 calmodulin 3 [Acc:MGI:103249]
Cdh13 ENSMUSG00000031841 cadherin 13 [Acc:MGI:99551]
Cyfip2 ENSMUSG00000020340 cytoplasmic FMR1 interacting protein 2 [Acc:MGI:1924134]
Dos ENSMUSG00000035640 downstream of Stk11 [Acc:MGI:1354170]
Dusp26 ENSMUSG00000039661 dual specificity phosphatase 26 (putative) [Acc:MGI:1914209]
Gprasp1 ENSMUSG00000043384 G protein-coupled receptor associated sorting protein 1 [Acc:MGI:1917418]
Gria1 ENSMUSG00000020524 glutamate receptor, ionotropic, AMPA1 (alpha 1) [Acc:MGI:95808]
Grina ENSMUSG00000022564 glutamate receptor, ionotropic, N-methyl D-asparate-associated protein 1 [Acc:MGI:1913418]
Hdac11 ENSMUSG00000034245 histone deacetylase 11 [Acc:MGI:2385252]
Kifap3 ENSMUSG00000026585 kinesin-associated protein 3 [Acc:MGI:107566]
Kns2 ENSMUSG00000021288 kinesin 2 [Acc:MGI:107978]
Ndrg4 ENSMUSG00000036564 N-myc downstream regulated gene 4 [Acc:MGI:2384590]
Pcdh17 ENSMUSG00000035566 protocadherin 17 [Acc:MGI:2684924]
Pfkm ENSMUSG00000033065 phosphofructokinase, muscle [Acc:MGI:97548]
Phactr1 ENSMUSG00000054728 phosphatase and actin regulator 1 [Acc:MGI:2659021]
Pja2 ENSMUSG00000024083 praja 2, RING-H2 motif containing [Acc:MGI:2159342]
Ppp2r2c ENSMUSG00000029120 protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52), gamma isoform 

[Acc:MGI:2442660]
Prkacb ENSMUSG00000005034 protein kinase, cAMP dependent, catalytic, beta [Acc:MGI:97594]
Rogdi ENSMUSG00000022540 rogdi homolog (Drosophila) [Acc:MGI:1913299]
Rusc1 ENSMUSG00000041263 RUN and SH3 domain containing 1 [Acc:MGI:1919546]
Scamp5 ENSMUSG00000040722 secretory carrier membrane protein 5 [Acc:MGI:1928948]
Slc25a4 ENSMUSG00000031633 solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 4 

[Acc:MGI:1353495]
Stx1b2 ENSMUSG00000030806 syntaxin 1B2 [Acc:MGI:1930705]
Sult4a1 ENSMUSG00000018865 sulfotransferase family 4A, member 1 [Acc:MGI:1888971]
Sv2a ENSMUSG00000038486 synaptic vesicle glycoprotein 2 a [Acc:MGI:1927139]
Syngr3 ENSMUSG00000007021 synaptogyrin 3 [Acc:MGI:1341881]
Tspyl4 ENSMUSG00000039485 TSPY-like 4 [Acc:MGI:106393]
Vamp2 ENSMUSG00000020894 vesicle-associated membrane protein 2 [Acc:MGI:1313277]
Wbp2 ENSMUSG00000034341 WW domain binding protein 2 [Acc:MGI:104709]
Wsb2 ENSMUSG00000029364 WD repeat and SOCS box-containing 2 [Acc:MGI:2144041]
0710005I19Rik ENSMUSG00000041141 RIKEN cDNA 0710005I19 gene [Acc:MGI:1918941]
2900002G04Rik ENSMUSG00000041020 RIKEN cDNA 2900002G04 gene [Acc:MGI:1917474]
2900011O08Rik ENSMUSG00000044117 RIKEN cDNA 2900011O08 gene [Acc:MGI:1914504]
5330410G16Rik ENSMUSG00000035964 RIKEN cDNA 5330410G16 gene [Acc:MGI:1915187]
A030009H04Rik ENSMUSG00000043419 RIKEN cDNA A030009H04 gene [Acc:MGI:1915359]
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were novel, as indicated by absence of any annotation or
gene names (0710005I19Rik, 2900002G04Rik,
2900011O08Rik, 5330410G16Rik, A030009H04Rik);
others were only sparsely documented (Aplp1, Pja2, and
Rusc1).

Discussion
The present study demonstrates for the first time that the
transcript encoding calcyon is upregulated in the frontal-
striatal circuitry of SHR when compared to WKY rats, with
the strongest strain differences found in the youngest ani-
mals in motor cortex, dorsal caudate, and nucleus
accumbens. By contrast, in the medial prefrontal, and
orbital frontal cortices increased transcript expression of
calcyon was observed throughout the different develop-

mental stages investigated (prepubertal, adolescence, and
adulthood). Taken together with recent findings (see
below), the present results indicate a potential alteration
in clathrin mediated endocytosis and synaptic plasticity in
the frontal-striatal circuitry of SHR involved in motor and
cognitive functions.

The expression of calcyon mRNA in frontal-striatal cir-
cuitry has been previously described in adult Sprague-
Dawley rats [8]. Calcyon was found to be highly expressed
in the medial prefrontal cortex, with low to moderate
expression throughout the dorsal striatum and nucleus
accumbens. In the present study, we also found a similar
pattern of expression in both SHR and WKY rats, which is
similar to that seen in primates [5,7]. Interestingly, cal-

Co-expression network of calcyon in the developing and adult mouse brain are shownFigure 3
Co-expression network of calcyon in the developing and adult mouse brain are shown. Red lines: positive co-expression (Pear-
son r > 0.55, P < 0.001) in brain tissue; Green lines: positive co-expression (Pearson r > 0.55, P < 0.001) across all tissues of 
the Mouse Atlas; Blue lines: paralogs; Nodes: genes; Yellow: calcyon; Blue: dopamine receptors; Cyan: clathrin subunit (only 
data for the heavy chain gene was available); Green: ADHD-related genes (by OMIM annotation); Box: the network cluster of 
strong positive relation to calcyon (see more details in Fig. 4 and Table 1).
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cyon mRNA expression was consistently higher in prepu-
bertal rats (three-week-old) compared to young adult rats
(ten-week-old) in both strains. We have also found a sim-
ilar developmental pattern in Sprague-Dawley rats (Diaz
Heijtz, unpublished results). These observations of a
developmental gradient may also be relevant for under-
standing the neurobiology of schizophrenia, in which sev-
eral studies have found calcyon to be upregulated in
dorsolateral prefrontal cortex in postmortem brain tissue
from patients with schizophrenia [26-29]. Moreover,
these studies suggest the speculation that elevated levels of
calcyon in patients with schizophrenia may result from an
altered developmental program of synaptic plasticity.

Support for a role of calcyon in the aetiology of ADHD
comes primarily from genetic studies. In a recent genome-
wide linkage scan study for loci influencing ADHD, the
calcyon gene was found to coincide with one of the high-
est positive linkage sites identified at chromosome 10q26
[30]. Some patients with terminal or interstitial deletions
involving chromosome bands 10q25.2–26 have a charac-
teristic phenotype, which may include learning difficul-
ties, aggression and hyperactivity [31]. More recently, the
inheritance of nine polymorphisms in the calcyon gene
was examined in a large clinically referred sample of
affected children with ADHD and their immediate fami-
lies using the transmission-disequilibrium test. This study
reported evidence for excess transmission of the most
common calcyon haplotype, designed C1 [4]. In addition,
this haplotype was positively associated with both the
hyperactive/impulsive and inattentive symptoms of
ADHD, supporting the idea that variations in calcyon may
contribute to both deficits in motor control and cognitive
functions of the disorder. This notion is indirectly sup-
ported by the result of the present study demonstrating
alterations in calcyon mRNA expression in subregions of
the prefrontal cortex and striatum of SHR, which are
involved in motor control and cognitive-executive func-
tions. However, the finding that the expression of calcyon
mRNA is unaltered in the motor cortex, dorsal striatum
and nucleus accumbens of young adult SHR suggests that
calcyon is more likely to contribute to deficits in motor
control during early development.

Previous studies have suggested that calcyon functions as
a dopamine D1 receptor interacting protein (DRD1IP)
enabling the typically Gs-linked dopamine D1 receptor
(DRD1) to stimulate intracellular calcium release, after
initial activation of a heterologous Gq-linked G-protein
coupled receptor [5,32,33]. However, several authors
observed the presence of high levels of calcyon mRNA
expression in brain regions not associated with DRD1
[7,8]. A substantial proportion of this mismatch was pro-
posed to be related to a potential interaction of calcyon
with DRD5, which contain a region similar in sequence to
the core calcyon binding domain of DRD1. New evidence
indicates a role for calcyon in clathrin mediated endocy-
tosis in the brain. Clathrin-coated vesicle assembly and
disassembly are known to be regulated by multiple adap-
tor and accessory proteins, most of which are ubiquitous
and interact with clathrin heavy chain [34]. Using two-
hybrid screen systems, the cytosolic domain of calcyon
was shown to interact with the heavy chain binding
domain and C-terminal regions of the light chain [11].
Moreover, the addition of a fusion protein containing the
calcyon C-terminus stimulated clathrin self-assembly in
vitro [11].

Cluster of genes of high positive co-expression with calcyon in the mouse brainFigure 4
Cluster of genes of high positive co-expression with calcyon 
in the mouse brain. Each of the genes shown had a Pearson 
correlation coefficient of mRNA profiles with calcyon 
exceeding r > 0.55 (P < 0.001). Because of the high number 
of such connections between genes (~8 links per gene), the 
ARACNE algorithm [46] was applied to reduce connectivity 
straightforwardly. Namely, for each triangle (genes i, j, and k 
connected to each other) the algorithm removed the weak-
est 3 links; thus the number of links was reduced 6-fold while 
all the linked genes were retained. Note that even though 
some genes have a distant path to calcyon (1 or 2 nodes 
away), each had a Pearson correlation value with calcyon r > 
0.55. Nodes (genes); Yellow diamond (Calcyon); Color trian-
gles (Members of known metabolic pathways); Grey circles 
(Other genes producing a tight cluster of mutually co-
expressed genes around calcyon). For further details about 
the annotations see Table 1.
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The results of the co-expression network analysis in
mouse support calcyon involvement in clathrin mediated
endocytosis. Indeed, clathrin, ionotropic glutamate recep-
tors, vesicle proteins Vamp2 and Sv2a, secretory carrier
protein Scamp 5 (see the complete list in Table 1) were
directly connected to calcyon. This set of genes has been
found to co-express with calcyon also in the human brain
(data not shown). Previous genetic studies have impli-
cated several genes involved in the vesicular release of
neurotransmitters (e.g. SNAP-25) in ADHD [35-40]. We
also observed that SNAP-25 strongly co-expressed with
calcyon in human tissues, but its mouse ortholog data was
unavailable. Interestingly, no significant links were found
between calcyon and Drd1a, which has been previously
shown to interact with the C-terminal of calcyon [5].

The above information is consistent with anatomical find-
ings localizing calcyon to vesicular compartments in den-
dritic spines and axon terminals, two sites in the brain
where clathrin mediated endocytosis is essential for effi-
cient synaptic neurotransmission and plasticity associated
with learning and memory [41,42]. For example, clathrin
mediated endocytosis plays a crucial role in the stimulus
dependent removal of alpha-amino-3-hydroxy-5 methyl-
isoxazole-4-propionic acid (AMPA) receptors from syn-
apses in hippocampal dendritic spines during the synaptic
weakening phenomenon of long-term depression (LTD)
[43]. Preliminary studies have found that LTD is attenu-
ated in hippocampal neurons from calcyon knock-out
mice, but enhanced in neurons from calcyon over-
expressing mice [44]. Interestingly, there is also evidence
indicating elevated AMPA receptor function in the pre-
frontal cortex of SHR when compared to WKY rats [45].

Calcyon over-expressing mice have also been tested in
some behavioural tasks commonly associated with schiz-
ophrenia pathology. Compared to wild type mice, calcyon
over-expressing mice appear to have elevated basal loco-
motor activity, increased exploratory behaviours in an ele-
vated plus maze, and impaired prepulse inhibition [44].
Further investigations using the calcyon knock-out and
over-expressing mice might provide additional mechanis-
tic insights regarding the potential role of calcyon for reg-
ulating synaptic plasticity at excitatory synapses, and how
it may relate to behavioural alterations.

Conclusion
In this study we analyzed the expression of calcyon mRNA
in the frontal-striatal circuitry of SHR and WKY rats at dif-
ferent postnatal ages. In addition, we performed a co-
expression network analysis using a database of mRNA
gene expression profiles of multiple brain regions in order
to explore potential functional links of calcyon to other
genes. We found calcyon to be upregulated in various sub-
regions of the prefrontal cortex and striatum of SHR when

compared to WKY rats. Importantly, these alterations
were influenced by age. Results from the co-expression
network analysis support the notion that calcyon may be
involved in vesicular processes. We speculate that elevated
levels of calcyon might produce both cognitive and motor
dysfunction in an age-dependent manner in patients with
ADHD via effects of synaptic plasticity (e.g. involving
receptor endocytosis).
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