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Abstract

Background: Many human neuroimaging investigations on recognition memory employ verbal instructions to direct subject's
attention to a stimulus attribute. But do the same or a similar neurophysiological process occur during nonverbal experiences,
such as those involving contingency-shaped responses? Establishing the spatially distributed neural network underlying
recognition memory for instructed stimuli and operant, contingency-shaped (i.e., discriminative) stimuli would extend the
generality of contemporary domain-general views of recognition memory and clarify the involvement of declarative memory
processes in human operant behavior.

Methods: Fifteen healthy adults received equivalent amounts of exposure to three different stimulus sets prior to neuroimaging.
Encoding of one stimulus set was prompted using instructions that emphasized memorizing stimuli (Instructed). In contrast,
encoding of two additional stimulus sets was prompted using a GO/NO-GO operant task, in which contingencies shaped
appropriate GO and NO-GO responding. During BOLD functional MRI, subjects completed two recognition tasks. One
required passive viewing of stimuli. The second task required recognizing whether a presented stimulus was a GO/NO-GO
stimulus, an Instructed stimulus, or novel (NEW) stimulus. Retrieval success related to recognition memory was isolated by
contrasting activation from each stimulus set to a novel stimulus (i.e., an OLD > NEW contrast). To explore differences
potentially related to source memory, separate contrasts were performed between stimulus sets.

Results: No regions reached supralevel thresholds during the passive viewing task. However, a relatively similar set of regions
was activated during active recognition regardless of the methods and included dorsolateral and ventrolateral prefrontal cortex,
right inferior and posterior parietal regions and the occipitoparietal region, precuneus, lingual, fusiform gyri and cerebellum.
Results also showed the magnitude of the functional response in the occipitoparietal region was inversely correlated with
reaction times (RTs), such that the largest functional response and slowest RTs occurred to Instructed stimuli and the smallest
functional response and fastest RTs occurred to GO stimuli, with effects to NO-GO stimuli intermediate. The inverse relation
was also present bilaterally in the parahippocampus and hippocampus. Comparisons between stimulus sets also revealed regional
differences potentially related to source memory.

Conclusion: Recognition of stimuli previously associated with instructions and operant contingencies (i.e., discriminative
stimuli) generally recruited similar inferior frontal and occipitoparietal regions and right posterior parietal cortex, with the right
occipitoparietal region showing the largest effect. These findings suggest domain-general views of recognition memory may be
applicable to understanding the neural correlates of control exerted by discriminative stimuli and suggest declarative memory
processes are involved in human operant behavior.
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Background

Numerous functional magnetic resonance imaging
(fMRI) studies on episodic and recognition memory for
words, picture and sounds, consistently find brain activa-
tion in various portions of the lateral and posterior pari-
etal regions, medial and inferior frontal regions and
various medial temporal lobe structures [1-4]. The relia-
bility of findings has encouraged the development of
domain-general views of human recognition memory [5-
7]. One common feature of many human neuroimaging
studies is to give subjects verbal instructions to direct their
attention to a specific stimulus attribute (e.g., perceptual,
semantic, source, spatial), which then prompts encoding.
Thus, instructions are a contextual variable that may be
manipulated to lay the foundation for subsequent mem-
ory formation. The question addressed in this investiga-
tion is whether the same or a similar neurophysiological
process is involved when the contextual variable prompt-
ing memory formation involves contingency-shaped,
rather than instructed responses.

Converging evidence from a diverse number of investiga-
tions shows memory formation and subsequent recall/
recognition is highly sensitive to contextual variables
present during encoding, particularly reward. For
instance, Wittmann et al. [8] examined long-term recall
for object pictures and reported greater dopaminergic
midbrain activation to items that predicted monetary
rewards, reward associated items were recalled better, and
reward-associated items elicited greater hippocampal acti-
vation. Adcock et al. [9] has shown that that long-term
memory for scenes encoded along with monetary reward
enhanced recall and were associated with greater activa-
tion during encoding. Visual cortex and parietal regions
associated with the allocation of spatial attention in a vis-
ual cueing task also show enhancement by the presence of
reward incentives for speeded performance [10]. Ramnani
and Miall [11] also showed greater activation within the
left parahippocampal gyrus when reward was present in a
motor task.

This investigation examined the effects of three different
methods of prompting encoding on activation during rec-
ognition memory. Encoding in one condition was
prompted by verbal instructions. In the remaining condi-
tions, encoding was prompted by trial and error learning
within the context of an operant (instrumental) learning
task. We hypothesized that during operant learning, the
three-term contingency (i.e., stimulus-response-conse-
quence relation) prompts encoding of a discriminative
stimulus in ways that parallel verbal instructions. Accord-
ingly, retrieval-based activation correlated with stimulus
recognition should be relatively similar between
instructed stimuli and discriminative stimuli and be local-
ized in dorsolateral and ventrolateral prefrontal cortex
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and posterior parietal regions, including the precuneus,
lingual gyrus, and particularly occipitoparietal regions
[12-16]. Findings highlighting a common spatially dis-
tributed network during recognition memory of
instructed and discriminative stimuli would facilitate the
generality of domain-general theories of human memory
functioning. Findings in line with our prediction would
also reinforce and extend nonhuman based neurophysio-
logical theories on the relation between operant behavior
and declarative memory, which involves the conscious
recollection of facts and events [17-20].

In the present investigation, encoding of stimulus infor-
mation was prompted using three different methods prior
to neuroimaging. Encoding of two stimulus sets was
prompted by operant contingencies embedded within a
GO/NO-GO task. Inclusion of the NO-GO condition,
which includes a contingency but no reward delivery, pro-
vides a novel test of whether activation observed during
recognition of GO stimuli is reward dependent. Encoding
of the third stimulus set was prompted by verbal instruc-
tions that emphasized memorizing stimuli. During two
separate functional neuroimaging runs, subjects com-
pleted a passive and an active recognition memory task,
with task order counterbalanced across subjects. Both
tasks presented individual stimuli from each stimulus set
and an additional novel stimulus ('NEW') used as a base-
line for the neuroimaging analysis. The passive memory
task required only observation of stimuli. In contrast, the
active recognition memory task required making a source
or categorical judgment regarding whether a stimulus was
a GO/NO-GO stimulus, an Instructed stimulus or a NEW
stimulus. This methodology was adapted from episodic
memory studies in which encoded stimuli, referred to as
'OLD’, are contrasted with 'NEW' stimuli to identify acti-
vation related to 'retrieval success.' Potential differences
related to source memory were examined by performing
contrasts between stimulus sets. Finally, varying the
response requirement (passive vs. active) between tasks
enabled examination of the relation between regional
activation and response dependency.

Methods

Fifteen healthy, right-handed males (n = 8) and females
(n = 7) participated. Subjects were Johns Hopkins
employees, students, and Baltimore residents. All were
unfamiliar with the task and reported being between 18
and 50 years of age, right-handed, free of medications
affecting the central nervous system or the autonomic sys-
tem for at least 2 weeks, and without a personal history of
psychiatric disorder or a psychiatric history in first-degree
relatives. Informed, written consent was obtained from all
subjects according to the institutional guidelines estab-
lished by the Johns Hopkins Human Subjects Protection
Committee.
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Experimental conditions

Stimulus encoding occurred outside of the fMRI scanner
approximately three hours before neuroimaging. Stimuli
consisted of nine Greek letters (o, [T, 2, N, 1, A, 3, B, Q),
approximately 7.6 cm by 7.6 cm in size, that were ran-
domly assigned to encoding conditions for each subject,
thereby minimizing confounds related to stimulus fea-
tures in the imaging analysis. Training took place in a
quiet room with the subject seated in front of the compu-
ter and keyboard. There were three encoding conditions:
GO, NO-GO and Instructed. GO and NO-GO encoding
conditions occurred concurrently during operant training.
The order of completing encoding conditions was coun-
terbalanced across subjects, such that half received the
Instructed encoding condition first, followed by operant
training under GO and NO-GO encoding conditions

The sequence of extended operant training followed by
BOLD functional MRI was modeled after established pro-
cedures used in previous operant-fMRI investigations [for
additional details see [21,22]]. At the start of training (i.e,
encoding), task instructions emphasized that when a
stimulus appeared on a computer screen pressing a desig-
nated response button would sometimes produce money,
thus, it was up to subjects to choose when to press/not to
press, earn as much money as possible and to pay careful
attention to the stimuli as they would be presented later
during neuroimaging. Instructions highlighting the future
memory test served the function of encouraging similar
levels of intentional encoding of stimulus information.
Operant training consisted of learning two stimulus-
response-consequence contingencies: GO and NO-GO.
Three GO stimuli and three NO-GO stimuli were pre-
sented individually in a randomized order during training
(e.g.. GO, GO, NO-GO, GO, NO-GO, etc...). Panel A
labeled "Encoding Conditions" in Figure 1 provides a
schematic diagram for each contingency. For NO-GO
stimuli, a period of 10 s without a response in the pres-
ence of the stimulus terminated the trial and initiated the
next trial. For GO stimuli, reinforcers (either $0.05, $0.50
and $5.00) were delivered on a variable-ratio 3 reinforce-
ment schedule for responding. After earning five consecu-
tive reinforcers under a GO stimulus, the next stimulus in
the order (GO or NO-GO) was presented. Total exposure
to GO and NO-GO stimuli was found to not differ signif-
icantly during encoding, thus differences in viewing dura-
tions between GO and NO-GO conditions would not
likely confound imaging results. Operant training contin-
ued until the total number of responses emitted in the
presence of GO stimuli was greater than 90% of the total
number of responses emitted during a session - thus, per-
cent responses to NO-GO stimuli was less than 10% of the
total responses emitted. During the Instructed encoding
condition, three stimuli were printed on the computer
screen for 6 min, as seen in Figure 1, panel A. Subjects
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Trial types used in each encoding condition prior to
functional neuroimaging. (A) During GO trials, complet-
ing a response requirement on a response button in the
presence of GO stimuli produced money. During NO-GO
trials, withholding responding in the presence of NO-GO
stimuli for 10 s terminated the stimulus and trial. In the
Instructed encoding condition, subjects were told to memo-
rize a set of stimuli. Subjects received equivalent amounts of
exposure to stimuli in all three encoding conditions prior to
neuroimaging. (B) During the active recognition memory task
completed during neuroimaging, stimuli from each encoding
condition were presented in a random order along with a
baseline stimulus (asterisk). The recognition response
involved making a categorical judgment regarding whether a
stimulus was observed in the GO/NO-GO training condition
(button #1), the instructed condition (button #2), or was
NEW (button #3).

were instructed to memorize the stimuli over the next 6
minutes and to pay careful attention because the stimuli
would be presented later during imaging - intentional
encoding of stimulus information. A paired two-tailed t-
test was performed to determine whether differences
existed in total duration of exposure to stimuli in the
Instructed condition (group mean = 6 min (thus, SE = 0
s)) and discriminative stimuli (mean = 5 min 52 s (SE =9
s)). Results showed no significant differences in exposure
(t (14) = 2.02, P = 0.06). Thus, exposure to stimuli com-
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prising Instructed, GO and NO-GO encoding conditions
were similar, eliminating potential differences in viewing
durations to stimuli during encoding as a potential con-
found in the imaging data.

fMRI task and acquisition parameters

Neuroimaging occurred approximately 2-3 hours after
training was completed. Subjects were placed in the scan-
ner and handed a response box containing three response
buttons arranged vertically. Instructions described the
basic task and the function of each response button. Panel
B in Figure 1 provides a schematic diagram of the recogni-
tion memory task used and trial timings. Using an event
related design, individual stimuli from each encoding
condition were randomly presented on 18 trials for 1500
ms followed by a blank screen averaging 4500 ms, which
effectively 'jittered' stimulus presentations across time
such that stimulus onsets were separated by an average of
6's. Subjects completed a passive and an active recognition
memory task, which were presented in a counterbalanced
order across subjects. For the passive memory task, stimuli
were presented and subjects were instructed to observe
each stimulus and make no button presses. For the active
recognition memory task, subjects were instructed to press
the button #1 (top button) if the stimulus was seen during
the behavioral (operant) training condition, button 2
(middle button) if the stimulus was seen during the
Instructed training condition, and button 3 (bottom but-
ton) if the stimulus was novel (NEW). The NEW stimulus
used was an asterisk and served as the baseline condition
for performing conventional OLD > NEW imaging con-
trasts to highlight regional activation correlated with rec-
ognition memory.

Functional MRI images were obtained on a 3 T Philips
MRI scanner. Eprime software controlled stimulus presen-
tation and recorded timing data. Task instructions and
stimuli were presented on a rear screen monitor viewed
through a mirror anchored to a standard head coil. After
an initial series of sagittal T1-weighted localizers, a set of
oblique T1-weighted images, angled parallel to the inter-
commissural line, were gathered. The fMRI data were
acquired at the same slice locations. The T1 parameters
were repetition time (TR) of 500 ms and an estimation
time (TE) of 11 ms. Functional MRI data were gathered
using a single-shot echo planar imaging (EPI) sequence
for data acquisition, with a TR of 2000 ms, a TE of 50 ms,
and a 90-degree flip angle. The matrix size was 64 x 64
and the field of view 24 cm, yielding voxels measuring
3.75 x 3.75 mm in plane. Using these parameters, 43 con-
tiguous slices were obtained angled parallel to the inter-
commissural line.
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fMRI analyses

For a subject's imaging data to be included in the analysis,
head movement was limited to less than 2 mm. All pre-
processing and data analysis were performed using statis-
tical parametric mapping software, version 2 [23]. EPI
images were slice-timing corrected to adjust for the lag
between slices during each TR, corrected for head motion
during scanning, and normalized to a standard template
brain from the Montreal Neurological Institute (MNTI) to
get all participants into the same space [24]. After normal-
ization, voxels were resampled with a 2 x 2 x 2 mm voxel
size. EPI images were then spatially smoothed using a 6
mm full-width-half-maximum(FWHM) Gaussian kernel.
High pass filtering was applied to the time series of EPI
images to remove the low frequency drift in EPI signal and
then subjected to a two-level analysis. At the first level,
individual-subject models were constructed in which a
linear regression analysis was performed between the
observed event related EPI signals and onset times of stim-
uli (GO, NO-GO, Instructed and NEW) [25]. Contrast
images were then produced by performing voxel-wise
comparisons for stimuli within each encoding condition
(i.e., OLD) relative to the baseline stimulus (i.e., NEW).
Contrast images were analyzed at the second 'random
effects' level using one-sample t-tests, for revealing the
main effect of recognition and condition-specific activa-
tion, and multiple regression (simple correlation), for
revealing linear increases in activation across conditions
[26]. The thresholds P < .001, uncorrected for multiple
comparisons, and 20 contiguous voxels were used except
where noted. Analyses of medial temporal regions were
performed using separate anatomically defined masks,
which employs a small volume correction, created with
the Wake Forest University PickAtlas SPM2 plug-in [27].
The location of voxels with significant activation was sum-
marized by their local maxima separated by at least 8 mm,
and by converting the maxima coordinates from MNI to
Talairach coordinate space using linear transformations
[28]. These coordinates were finally assigned neuroana-
tomic labels using human brain atlas' and the Talairach
Daemon [29].

Results

Behavioral

All subjects responded with 100% accuracy during the
active recognition memory task. Paired t-test analyses
were used to compare differences in reaction times among
GO, NO-GO, Instructed and the NEW baseline condition.
Group mean reaction times and standard deviations
appear in Figure 2. Reaction times for GO stimuli were
found to be significantly faster than NO-GO ((t (14) =
2.9, P=0.0117) and Instructed stimuli (¢t (14) =4.01, P =
0.0013), but not NEW stimuli (¢ (14) = .55, P = 0.591). All
other comparisons did not reach significance, however,
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Reaction times during recognition memory. Group
mean reaction times and standard deviations of recognition
memory judgments exhibited during neuroimaging to stimu-
lus items with different encoding histories. Encoding
occurred prior to imaging and was prompted by three condi-
tions (1) GO stimulus items: pressing a button to earn
money under one set of stimuli; (2) NO-GO stimulus items:
inhibiting button pressing under a second set of stimuli; and
(3) Instructed stimulus items: memorizing a third set of stim-
uli as prompted by verbal instructions. The item labeled
"NEW" was an asterisk presented during neuroimaging that
prompted a button press and functioned as the baseline con-
dition for assessing activation correlated with the onsets of
encoded stimulus items (i.e., OLD > NEW contrasts). Signifi-
cant differences in reaction times were observed between
GO and NO-GO conditions and GO and Instructed condi-
tions.

reaction times for NEW stimuli relative to Instructed stim-
uli did approach significance (t (14) = 1.97, P = 0.069).

Neuroimaging

Main effect for recognition

For the passive viewing task, voxel-wise comparisons
revealed no regions that exceeded our thresholds. For the
active recognition memory task, Figure 3 (row 1) and
Table 1 present results for the main effect of recognition
memory (collapsed across encoding conditions) con-
trasted against activation to the NEW stimulus. Bilateral
activation was observed in inferior, middle, and superior
frontal regions and posterior parietal regions that
included the precuneus and cuneus localized near the
occipitoparietal sulcus. Additional activation was noted in
the left cingulate gyrus, medial frontal gyrus and fusiform
gyrus and right lingual gyrus, middle occipital gyrus, infe-
rior and superior parietal regions and cerebellum.

Condition effects
Voxel-wise contrasts comparing stimuli within each
encoding condition to the NEW stimulus revealed no
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regions that exceeded our thresholds during the passive
viewing task. For the active recognition memory task, sub-
sequent rows in Figure 3 (rows 2-4) highlight regional
activation for each encoding condition relative to the
NEW stimulus, with complete results summarized in
Table 2. Across encoding conditions there was considera-
ble overlap in the localization of activation, as well as
notable magnitude effects - discussed below. Stimulus
onsets elicited bilateral activation in posterior parietal
regions centered near the occipitoparietal sulcus, with the
effect larger in the right cerebrum. Moreover, activation
was generally localized in inferior and middle/medial
frontal regions and the right inferior and superior parietal
cortex.

Magnitude effect

Given the orderly increases in reactions times observed
across conditions (i.e., Instructed > NO-GO > GO) cou-
pled with the observation of increases in the extent of acti-
vation across encoding conditions in Figure 3, we
performed a simple regression analysis to localize linear
increases in activation across encoding conditions (i.e.,
Instructed > NO-GO > GO) with special attention given to
occipitoparietal regions. The analysis used both P < .001
and P < .000001 thresholds, uncorrected for multiple
comparisons, and an extent threshold of 20 contiguous
voxels. Results presented in Figure 3 (rows 5 and 6) and
Table 3 highlight regions showing significant increases in
activation across encoding conditions. The primary find-
ing was activation centered near the occipitoparietal sul-
cus, with the extent of activation more extensive in the
right cerebrum. Linear bilateral increases in activation
were also observed in inferior and precentral frontal
regions, cuneus, middle occipital gyrus and the superior
parietal region. Activation was also noted in the left
medial frontal gyrus and right middle and superior gyrus,
lingual gyrus, precuneus and cerebellum. Results in Figure
3 also show at reduced statistical thresholds bilateral
increases in activation in the posterior parahippocampus
and hippocampus (parahippocampus: maxima = P <
.001; left, t = 5.33, right t = 3.93). Plots of percent signal
change for the hippocampus also highlight the linear
effect (left maxima at P = .011, t = 2.36, and right maxima
atP=.027,t=1.97).

Source memory contrasts

Contrasts performed among the encoding conditions pro-
vides a means of exploring differences in activation during
recognition memory that might vary as a function of dif-
ferent methods or sources that prompted encoding of
stimulus information. Results highlighting voxel-wise dif-
ferences between selected encoding conditions appear in
Table 4 (P < .005, uncorrected for multiple comparisons,
using an extent threshold of 20 contiguous voxels). Con-
trasting GO > Instructed revealed bilateral activation pri-
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Table I: Regional activation for main effect of recognition.
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Peak
Region X Y Z t BA
Left Inferior Frontal Gyrus -30 21 -11 5.86
Medial Frontal Gyrus -4 29 37 4.68 6
Middle Frontal Gyrus -51 34 20 4.26
Superior Frontal Gyrus -20 59 6 5.78
Cingulate Gyrus -12 -55 29 5.82 31
Precuneus -24 71 20 5.5
Cuneus -16 -64 9 6.18
Fusiform Gyrus -26 -55 -9 4.8
Right Inferior Frontal Gyrus 38 21 -3 6.07
Superior Frontal Gyrus 4 33 48 5.82 8
Middle Frontal Gyrus 50 16 40 4.52 8
Lingual Gyrus 16 -66 5 9.39
Precuneus 10 71 26 8.76
Cuneus 4 -8l 8 5 17
Middle Occipital Gyrus 40 -80 | 5.45
Inferior-Superior Parietal Lobule 32 -56 40 7.39
Declive 4 -76 -15 6.37
Medial Temporal Gyrus 46 -55 -2 5.96

marily in the insula and claustrum, regions with ties to
affective processing and reward processing, as well as the
right cingulate and superior temporal gyrus. Contrasting
NO-GO > Instructed evidenced greater bilateral activation
in the supramarginal gyrus and parahippocampus and the
left precentral gyrus and insula and right superior and
medial frontal gyrus, cingulate and fusiform gyrus. For the
GO > NO-GO contrast, GO stimuli elicited activation in
the precuneus. Contrasting NO-GO > GO revealed bilat-
eral activation in middle frontal and precentral cortices,
cingulate, lateral posterior nucleus of the thalamus, fusi-
form gyrus and precuneus. Right localized activation
occurred in the medial, superior and postcentral frontal
gyri, supramarginal and angular gyri and the inferior pari-
etal lobule. Regional activation was also observed in the
left posterior cingulate, insula and inferior temporal

gyrus.

Discussion

In summary, the present investigation yielded three major
findings of importance to human neuroimaging investi-
gations on memory and human operant behavior. First,
voxel-wise contrasts revealed no regions that reached sta-
tistical significance during the passive viewing task, which
suggests simple presentations of OLD stimuli is not suffi-
cient to elicit significant activation. However, activation
during active recognition was present bilaterally in infe-
rior, middle, and superior frontal regions and posterior
parietal regions that included the precuenus and cuneus
localized near the occipitoparietal sulcus. Second, the
localization of activation during recognition memory was
found to be relatively similar for stimuli encoded under
conditions involving verbal instructions and conditions

involving operant contingencies. Each type of encoded
stimulus set elicited bilateral activation near the occip-
itoparietal sulcus, with the effect larger in the right cere-
brum. Moreover, activation was observed in inferior and
middle/medial frontal regions and the right inferior and
superior parietal cortex. Third, the magnitude of the func-
tional response in the occipitoparietal region was also
found to be inversely correlated with reaction times (RTs),
such that the largest functional response and slowest RTs
occurred to Instructed stimuli and the smallest functional
response and fastest RTs occurred to GO stimuli, with
effects to NO-GO stimuli intermediate. The inverse rela-
tion was also present bilaterally in the parahippocampus
and hippocampus. Linear bilateral increases in activation
were also observed in inferior and precentral frontal
regions, cuneus, middle occipital and the superior parietal
region.

Differences in the localization of activation between con-
ditions and the linear increases in activation across condi-
tions suggests the methods used to direct attention and
prompt encoding of stimulus information may modulate
activation during recognition. Several prior investigations
have shown that elaborating on stimulus meaning during
encoding facilitates subsequent recognition and retrieval.
This "levels of processing” view suggests that stimuli
encoded under operant contingencies may be more elab-
orately (deeply) processed because of the demands associ-
ated with trial and error learning, that is, forming the
relations among the stimulus, response and the conse-
quence. Accordingly, discriminative stimuli might be
expected to be easily recognized and, therefore, be associ-
ated with faster reaction times and greater activation com-
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ACTIVATION DURING RECOGNITION MEMORY JUDGMENTS
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Figure 3

Activation correlated with recognition memory by
condition. The top row shows regional activation for the
main effect of recognition relative to baseline (i.e, the NEW
stimulus). Subsequent rows reveal regional activation during
recognition of GO, NO-GO and Instructed (INS) stimulus
items relative to a baseline. The most prominent and consist-
ently activated region across conditions was the occipitopari-
etal region. Activation was also noted in varying degrees in
dorsolateral and ventrolateral prefrontal cortex and poste-
rior parietal regions. Linear increases in activation reflecting
magnitude differences across conditions were also noted
(Instructed > NO-GO > GO). The regional increases were
centered in the precuneus, superior and inferior frontal gyrus
and right superior parietal regions (results shown in panel A.
at P <.001 and in panel B. at P <.000001). The insert shows
bilateral increases in the posterior parahippocampus and hip-
pocampus.
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pared to stimuli encoded under instructions, which
presumably may be processed on a more superficial level
(shallow encoding) [e.g., [30]]. Naturally, this fundamen-
tal idea may not be limited to tasks involving operant con-
tingencies, but rather extend to conditions that require
extensive interactions with stimuli. However, while the
level of processing idea is consistent with our observation
of significantly faster reaction times for GO and NO-GO
stimuli relative to Instructed stimuli, this view does not
account for our findings that showed greater activation for
Instructed stimuli relative to GO an NO-GO stimuli, par-
ticularly in the occipitoparietal region.

An alternative account suggested by findings from verbal
working memory studies, in which slow reaction times
were accompanied by a large functional response in pos-
terior parietal cortex, is that recognition of Instructed
stimuli was relatively more 'difficult' [14,15]. Related to
the present findings, the slower reactions times to
Instructed stimuli, and the larger functional response sug-
gests these effects were a function of either differences in
the methods that prompted encoding (instructed versus
contingency shaped) or some other aspect of our proce-
dure. Since the order of exposure to conditions was coun-
terbalanced across subjects and the duration of exposure
to stimuli across conditions was similar, the linear magni-
tude effect seems unrelated to these factors. One proce-
dural difference that may have influenced the linear
magnitude effect was presenting Instructed stimuli as a
group and presenting discriminative stimuli individually.
However, it is difficult to develop a plausible account of
how differences in presentation would produce the linear
increases observed. It seems more likely that once the
operant contingencies (GO or NO-GO) exerted firm con-
trol over behavior, recognition required fewer resources,
which resulted in less activation. By comparison, encod-
ing of stimulus information prompted by verbal instruc-
tions required much less behavioral involvement. These
differences in behavioral control or involvement pro-
duced by either operant contingencies or simply task
involvement may be responsible for the magnitude effect
observed. Accordingly, this view predicts greater levels of
behavioral control or involvement prompted by a proce-
dure would result in easier recognition, faster reaction
times, and less activation in the occipitoparietal region.

Collectively, the present findings support our prediction
that during operant or instrumental learning, the operant
contingencies functioned in much the same way as verbal
instructions by eliciting a relatively similar set of 'retrieval
success' regions, with the largest effects observed in the
occipitoparietal region. These results provide some pre-
liminary support for extending domain-general theories
of human recognition memory, based largely on pictures,
words and sounds, and encoding prompted by verbal
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Table 2: Regional activation during recognition for each encoding condition.

Peak
Contrast and Region X Y Z t BA
GO > NEW
Left Inferior Frontal Gyrus -36 17 -6 4.74 47
Cingulate Gyrus -10 -53 27 4.44
Precuneus -22 -73 20 5.88 31
Cuneus -20 -86 25 4.6l 18
Cuneus -14 -64 9 451
Right Medial Frontal Gyrus 36 30 19 5.16
Posterior Cingulate 8 -67 I 5.36 30
Cuneus 10 -76 26 6.97 18
Middle Occipital Gyrus 40 -78 | 5.24
Lingual Gyrus 14 -66 -2 4.67 18
Medial Temporal Gyrus 36 -63 29 5.18
NO-GO > NEW
Left Middle Frontal Gyrus -51 34 20 5.50
Medial Frontal Gyrus -6 44 16 523 9
Inferior Frontal Gyrus -32 25 -3 4.98
Parahippocampus -26 -45 -10 6.89 37
Precuneus 0 -72 29 6.16
Fusiform Gyrus -26 -53 -7 5.00
Cuneus -24 -82 24 4.90
Tonsil -12 -48 -31 7.40
Culmen -2 -55 -16 4.36
Right Inferior Frontal Gyrus 38 32 15 7.87
Superior Frontal Gyrus 2 14 56 551
Middle Frontal Gyrus 48 8 36 5.47 9
Medial Frontal Gyrus 2 20 45 4.48
Precentral Gyrus 53 10 12 4.56 44
Frontal-Temporal 55 12 3 4.65
Lingual Gyrus 16 -66 5 8.65
Precuneus 10 -73 26 8.47
Cuneus 26 -74 31 4.46
Inferior Parietal Lobule 36 -54 38 6.36
Fusiform Gyrus 48 -57 -12 6.72 37
Medial Temporal Gyrus 34 -61 27 6.01
Superior Temporal Gyrus 44 -53 25 5.37 39
Instructed > NEW
Left Inferior Frontal Gyrus -36 29 4 7.72
Middle Frontal Gyrus -50 17 34 5.72
Posterior Cingulate -16 -60 10 5.56
Middle Occipital Gyrus -48 -65 -10 5.88 37
Cuneus -24 -82 26 5.12
Lingual -12 -49 | 4.56 19
Superior Parietal Lobule -36 -60 49 5.71
Inferior Parietal Lobule -36 -58 42 4.18
Declive -6 -76 -15 4.05
Uvula -30 -65 -25 4.27
Insula -40 19 0 4.89 13
Medial Temporal Gyrus -36 -77 19 5.11
Right Inferior Frontal Gyrus 53 12 12 5.88 44
Middle Frontal Gyrus 50 6 37 5.64 9
Medial Frontal Gyrus 6 16 47 5.43 6
Cingulate Gyrus 8 23 39 4.26
Cuneus 6 -80 32 822 19
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Table 2: Regional activation during recognition for each encoding condition. (Continued)

Lingual Gyrus

Middle Occipital Gyrus
Inferior Parietal Lobule
Superior Parietal Lobule
Declive

Uvula

Pyramis

Insula

Fusiform Gyrus

16 -62 0 7.57 19
48 -74 -3 5.6l
32 -56 43 9.21
34 -64 44 5.00 7
28 -63 -17 7.60
34 -63 -25 4.62
10 -75 -27 6.44
38 21 | 4.93
50 -41 -1 4.55 37

instructions [5-7], to stimuli encoded through nonverbal,
goal-directed experiences involving operant learning
processes. Because recognition memory is considered a
declarative memory process requiring conscious recollec-
tion of stimulus information, the observation of similar
activation patterns to Instructed and discriminative stim-
uli suggests similar neural process are engaged during
memory retrieval and situations involving discriminative
stimulus control.

Conclusion

Our investigation examined activation during recognition
memory to nonverbal stimuli previously encoded under
operant learning contingencies and nonverbal stimuli
encoded under verbal instructions. Results showed a rela-
tively similar spatially distributed network was activated
during active recognition, especially in the occipitopari-

Table 3: Linear increases in activation: Instructed > NO-GO > GO.

etal region, but the magnitude of the functional response
was modulated by conditions present during encoding. In
general, the present findings suggest domain-general
views regarding the neural correlates of recognition mem-
ory may be relevant to understanding operant behavior
and offer additional support for operant learning as
involving declarative memory. At a broader level, neu-
roimaging investigations on human memory systems that
employ both conventional human imaging research pro-
cedures (i.e., instructed encoding) and nonhuman
research procedures (i.e. operant learning paradigms)
provide a novel context in which to investigate cross-spe-
cies functional-anatomical similarities.
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Peak
Region X Y Z t BA
Left Inferior Frontal Gyrus -34 27 4 7.82
Medial Frontal Gyrus -4 27 37 6.00
Precentral Gyrus -42 25 34 6.27 9
Cuneus -24 -80 24 7.28
Middle Occipital Gyrus -18 -87 15 6.36 18
Superior Parietal Lobule -32 -70 46 6.23
Right Medial Frontal Gyrus 40 32 17 729
Inferior Frontal Gyrus 38 21 -3 7.12
Middle Frontal Gyrus 50 8 38 6.89
Precentral Gyrus 42 | 26 6.85 6
Superior Frontal Gyrus 4 14 56 6.28 6
Lingual Gyrus 16 -66 5 10.49
Cuneus 8 -68 7 8.20
Precuneus 10 -71 26 9.35
Cuneus 8 -78 24 9.33
Middle Occipital Gyrus 34 -8l 21 6.52 19
Superior Parietal Lobule 36 -62 44 6.26 7
Precuneus 32 -66 35 6.24
Declive 4 -76 -15 7.19
Pyramis 10 -75 -23 6.62
Inferior Temporal Gyrus 46 -58 -2 7.31
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Table 4: Regional activation for contrasts between encoding conditions.
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Peak

Contrast and Region X Y z t BA

GO > Instructed

Left Insula -42 -19 5 5.28 13
Claustrum -34 -15 6 4.38

Right Insula 32 -24 21 6.91
Cingulate 8 -10 36 4.88
Superior Temporal Gyrus 48 -42 15 451
Precuneus 22 -51 30 4.13

GO > NO-GO

Right Precuneus 20 -57 32 3.75

NO-GO > Instructed

Left Precentral Gyrus -44 -6 26 3.49
Parahippocampus -22 -17 -23 4.5
Insula -28 -32 18 5.6
Supramarginal Gyrus -44 -49 30 4.34

Right Superior Frontal Gyrus 10 56 32 4.07 9
Medial Frontal Gyrus 10 48 34 3.32
Cingulate 8 -41 33 5.59
Parahippocampus 38 -43 -6 341
Fusiform Gyrus 34 -41 -13 4.58
Supramarginal Gyrus 46 -53 27 3.46

NO-GO > GO

Left Middle Frontal Gyrus -46 12 38 422 8
Precentral Gyrus -42 17 34 3.56 9
Cingulate -8 12 38 3.92
Posterior Cingulate -4 -38 24 3.24 23
Thalamus: Lat Post Nuc. -20 -21 14 451
Insula -32 -28 16 3.70 13
Inferior Temporal Gyrus -48 -66 -2 5.54
Fusiform Gyrus -44 -49 -16 3.94
Precuneus -12 -48 47 451 7

Right Medial Frontal Gyrus 8 29 43 6.48 8
Middle Frontal Gyrus 26 16 42 6.83
Precentral Gyrus 48 | 26 5.10 6
Superior Frontal Gyrus 24 48 23 4.71
Thalamus: Lat Post Nuc. 20 -19 16 5.26
Cingulate 14 9 35 6.20 32
Fusiform Gyrus 50 -45 -15 4.28 37
Supramarginal Gyrus 46 -37 33 5.39
Angular Gyrus 40 -55 34 4.55
Inferior Parietal Lobule 42 -52 43 4.50 40
Precuneus 8 -62 38 4.01 7
Postcentral Gyrus 40 -29 51 3.56
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