
BioMed CentralBehavioral and Brain Functions

ss
Open AcceResearch
MEG event-related desynchronization and synchronization deficits 
during basic somatosensory processing in individuals with ADHD
Colleen Dockstader1, William Gaetz2, Douglas Cheyne1,2, Frank Wang1, F 
Xavier Castellanos3 and Rosemary Tannock*1,4

Address: 1Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Canada, 2Department of Diagnostic Imaging, The 
Hospital for Sick Children, Toronto, Canada, 3Child Study Center, New York University, New York, USA and 4Human Development & Applied 
Psychology, Ontario Institute for Studies in Education, Toronto, Canada

Email: Colleen Dockstader - colleen.dockstader@sickkids.ca; William Gaetz - william.gaetz@sickkids.ca; 
Douglas Cheyne - douglas.cheyne@utoronto.ca; Frank Wang - frank.wang@utoronto.ca; F 
Xavier Castellanos - Francisco.Castellanos@nyumc.org; Rosemary Tannock* - rosemary.tannock@utoronto.ca

* Corresponding author    

Abstract
Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent, complex disorder
which is characterized by symptoms of inattention, hyperactivity, and impulsivity. Convergent
evidence from neurobiological studies of ADHD identifies dysfunction in fronto-striatal-cerebellar
circuitry as the source of behavioural deficits. Recent studies have shown that regions governing
basic sensory processing, such as the somatosensory cortex, show abnormalities in those with
ADHD suggesting that these processes may also be compromised.

Methods: We used event-related magnetoencephalography (MEG) to examine patterns of cortical
rhythms in the primary (SI) and secondary (SII) somatosensory cortices in response to median
nerve stimulation, in 9 adults with ADHD and 10 healthy controls. Stimuli were brief (0.2 ms) non-
painful electrical pulses presented to the median nerve in two counterbalanced conditions:
unpredictable and predictable stimulus presentation. We measured changes in strength,
synchronicity, and frequency of cortical rhythms.

Results: Healthy comparison group showed strong event-related desynchrony and synchrony in
SI and SII. By contrast, those with ADHD showed significantly weaker event-related desynchrony
and event-related synchrony in the alpha (8–12 Hz) and beta (15–30 Hz) bands, respectively. This
was most striking during random presentation of median nerve stimulation. Adults with ADHD
showed significantly shorter duration of beta rebound in both SI and SII except for when the onset
of the stimulus event could be predicted. In this case, the rhythmicity of SI (but not SII) in the
ADHD group did not differ from that of controls.

Conclusion: Our findings suggest that somatosensory processing is altered in individuals with
ADHD. MEG constitutes a promising approach to profiling patterns of neural activity during the
processing of sensory input (e.g., detection of a tactile stimulus, stimulus predictability) and
facilitating our understanding of how basic sensory processing may underlie and/or be influenced
by more complex neural networks involved in higher order processing.
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Background
Attention-Deficit/Hyperactivity Disorder (ADHD) is an
impairing neurodevelopmental disorder that remains
inadequately understood. Along with the observable
behavioral symptoms of inattention and hyperactivity/
impulsivity, there is robust evidence of structural, func-
tional, and neurochemical brain differences in ADHD [1-
3] particularly in regions involved in vital executive func-
tions (EFs) that regulate the ability to identify, extract, and
interpret what is relevant for executing the correct
response, as well as monitoring, inhibiting, and changing
the prepotent response as needed [4,5]. The pathophysi-
ology of ADHD remains unclear, although converging evi-
dence suggests that alterations in brain structure,
function, and physiology likely arise from an interaction
of genetic and environmental causes and experience [5-8].
For example, structurally, prominent volumetric decreases
are evident in the posterior-inferior lobules of the cerebel-
lar vermis in both male and female children with ADHD
[9-12]. There are decreases in prefrontal volume, particu-
larly the right prefrontal cortex [9,13]. Also reported are
regional differences in cerebral blood flow in the cerebel-
lum, striatum [14] and prefrontal cortex (PFC) [15].
Moreover, differences in baseline oscillatory activity
between those with ADHD and controls have been
observed in frontal regions, particularly the PFC [16,17].
Consistent with the neuroimaging findings, psychological
research indicates clearly that subtle but impairing prob-
lems in EFs are correlates of ADHD, regardless of gender
or age [18].

While the majority of ADHD research focuses on deficits
in EF, it is apparent that not all individuals with ADHD
have EF deficits [18,19] and that not all neuropsychologi-
cal difficulties can be explained by EF theory alone [20].
Moreover, EF tasks in which individuals with ADHD do
show deficits often include processing and responding to
simple sensory stimuli that vary in predictability. This sug-
gests that deficits in anticipatory or perceptual processing
of simple stimuli could also contribute to impairments on
tasks that assess higher-order functions. Accordingly, an
important goal of ADHD research is to address not only
the concept of multiple forms of impairment but also of
multiple sources of impairment. Emerging evidence not
only shows abnormalities in neural regions governing
higher order function but also in regions governing basic
function such as somatosensory cortex [21-24], motor
cortex [21,25,26] and visual cortex [27]. Although people
with ADHD have shown behavioural deficits in respond-
ing to simple stimuli during sensorimotor tasks [28-30],
methodological shortcomings in the limited studies avail-
able have precluded an adequate understanding of the
role of neural networks in processing predictable and
non-predictable stimuli in ADHD. Specifically, existing
studies have relied almost exclusively on behavioural

measures (i.e., accuracy, reaction time), which cannot
assess moment-by-moment activities that are driving
these processes on the order of milliseconds.

Our aim was to examine basic sensory processing of pre-
dictable and non-predictable stimuli in those with ADHD
using magnetoencephalography (MEG), a non-invasive
functional neuroimaging technique that records neural
activity on the order of a millisecond. This high temporal
resolution combined with novel source reconstruction
techniques capable of mm spatial resolution makes MEG
an optimal technique for capturing spatial and temporal
information during sensory processing for which the time
scale is on the order of milliseconds. MEG studies of the
human somatosensory system using median nerve stimu-
lation have shown that only the contralateral primary
somatosensory cortex (SI) responds to unilateral tactile
information whereas bilateral secondary somatosensory
cortices (SII) show activity in response to unilateral stim-
ulation [31,32]. The earliest somatosensory activity occurs
at approximately 20 ms post-stimulation in SI just caudal
to the central sulcus in the corresponding topographical
location. Subsequent somatosensory activation occurs in
the bilateral parietal opercula located in the dorsal regions
of the lateral sulci [32-34]. Source activity in SI and SII,
following median nerve stimulation, is composed of both
alpha and beta cortical rhythms [35]. In association with
MEG, median nerve stimulation has been used to exam-
ine evoked responses to somatosensory stimuli in order to
examine somatosensory cortical function [31,36,37] and
ascending pathways from the peripheral receptors to the
spinal cord, brainstem, thalamus, and cortex [38]. This
technique has also been used to examine physical and
cognitive impairments in individuals with Alzheimer's
[39], stroke patients [40], and infantile autism [41], for
example. Using MEG, we investigated the oscillatory
changes during somatosensory activation in adults with
and without ADHD.

The general assumption of cortical oscillations is that
populations of neurons exist in varying states of syn-
chrony as they respond to externally or internally gener-
ated events. Event-related desynchrony (ERD) and event-
related synchrony (ERS) phenomena are thought to repre-
sent decreases and increases, respectively, in synchroniza-
tion within a specific frequency range in relation to an
event [42]. Previous MEG studies of cortical activity fol-
lowing median nerve stimulation in healthy adults report
brief suppression of mu (an alpha wave variant oscillating
at approximately 10 Hz) and beta (15–30 Hz) cortical
activity in primary and secondary somatosensory cortex
(ERD) followed by a marked increase in beta band activity
above baseline (late-ERS, known as beta rebound) [42].
Basic or complex sensory processing requires a dynamic
interaction between groups of neurons oscillating at par-
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ticular frequencies and differing degrees of coupling.
Oscillations in the alpha and beta bands are of particular
interest in ADHD research as these frequencies are
thought to mediate perception [43,44] and attention [45-
47]. To our knowledge, MEG has not yet been used to
investigate changes in SI alpha or beta oscillations in indi-
viduals with ADHD. Accordingly, our aim was to charac-
terize ERD and ERS in the alpha and beta bands in SI and
SII in response to randomly and predictably presented
electrical stimulation of the median nerve in adults with
and without ADHD. Comparison of random versus pre-
dicted median nerve stimulation is a novel approach to
determine whether basic somatosensory processing dif-
fers between those with ADHD and healthy controls and
if stimulus predictability differentially influences somato-
sensory processing in those with ADHD compared to con-
trols.

The neural basis of predictive responding to the absence of
a stimulus in both SI and SII will be described in a subse-
quent report.

Methods
Participants
We studied nine adults (4 females/5 males) with a diagno-
sis of ADHD (mean age: 34.6 +/- 3.28 years) and ten
healthy age-matched controls (4 females/6 males; mean
age of 34.13 +/- 4.6 years). All were right-handed. Adults
with ADHD were recruited from an outpatient neuropsy-
chiatry clinic in a mental health centre in a large metro-
politan city. All had completed the same comprehensive
clinical diagnostic assessment including: a clinical diag-
nostic interview and various self-report rating scales
including the Conners Scales [48]; Wender Utah Rating
Scale [49], Brown Attention Deficit Disorder Scales
(Brown, 1996); and Adult Self-Report Scale [50]. Healthy
adult volunteers were recruited by means of advertise-
ments placed in the same institution and in other com-
munity organizations. All participants completed a
telephone-based Intake Screening Questionnaire (screens
for psychopathology and education level) and the Adult
ADHD Self-Report Scale [51] at the time of participation
to estimate current levels of ADHD symptomatology. Par-
ticipants were excluded if they wore orthodontic braces,
had any non-removable metal, or had a diagnosis of psy-
chosis, neurological disorder, or uncorrected sensory
impairments.

MEG Recordings
A whole-head 151 channel MEG system (VSM MedTech
Ltd, Vancouver, Canada) was used to measure somatosen-
sory evoked fields. Participants lay in a supine position in
a magnetically shielded room with their head resting in
the MEG helmet. The MEG signals were bandpass filtered
at 0.3 – 300 Hz and recorded at a 1250 Hz sampling rate.

Head position in relation to the MEG sensors was deter-
mined by measuring the magnetic field generated by 3
fiducial reference coils just before and after each experi-
mental session. T1-weighted structural magnetic reso-
nance images (MRI) (axial 3D spoiled gradient echo
sequence) were obtained for each participant using a 1.5
Tesla Signal Advantage system (GE Medical Systems, Mil-
waukee, USA). During MRI data acquisition, 3 radio-
graphic markers were positioned on the same anatomical
landmarks as the fiduciary coils to allow coregistration
accuracy of the MEG and MRI data. Single equivalent cur-
rent dipole (ECD) models were also fit to the N20m
median nerve responses in order to confirm coregistration
accuracy.

Experimental Paradigm
Individuals were asked to lie comfortably on a bed in the
MEG room and relax. Stimuli were non-painful, current
pulses of 0.2 ms duration, presentation rate of 0.5 Hz (ISI:
2000 ms between onset of each stimulus), just above
motor threshold (eliciting a small, passive, thumb twitch)
applied cutaneously to the right median nerve. Somato-
sensory stimuli were presented in two counterbalanced
conditions: a) Predicted Stimulus Pattern and b) Random
Stimulus Pattern. In the Predicted Pattern, stimuli
occurred in trains of four followed by a long break before
the next train (4000 ms) giving 332 stimulus events (83
trains) and 83 breaks in between trains. In the Random
Pattern, stimuli and long breaks (4000 ms) were ran-
domly dispersed throughout a 415 event trial (totaling
332 stimuli and 83 breaks). Each condition was 12 min-
utes in length. Participants were naïve as to the specific
patterns that were presented. Upon completion of both
stimulus conditions, each participant was asked if they
recognized a presentation pattern or not in each of the
paradigms.

This research was conducted in compliance with the Hel-
sinki Declaration and approved by the Research Ethics
Board at The Hospital for Sick Children, Toronto, Canada,
File Number 1000010728.

Data analyses
Neural activities during the experiments were analyzed
with respect to brain location, latency, and frequency to
determine spatiotemporal profiles of event-related activ-
ity time-locked to stimulus presentation. Initial spatial
analyses were performed using a novel application of a
minimum-variance beamformer algorithm (synthetic
aperture magnetometry: SAM) [52-54]. In order to map
the median nerve initial response we created SAM differ-
ential images by subtracting control periods (-200 to 0 ms
prior to stimulus or gap onset) from active periods (0 to
200 ms after stimulus or gap onset) and filtering the data
from 3 – 50 Hz. This resulted in high resolution (2 mm)
Page 3 of 13
(page number not for citation purposes)



Behavioral and Brain Functions 2008, 4:8 http://www.behavioralandbrainfunctions.com/content/4/1/8
three-dimensional differential images which were time-
locked to median nerve stimulation and averaged over
time to identify peak activation sites in the brain during
the active period relative to baseline. Grand averaged
localizations of regional activity peaks for each group
were determined by warping SAM images to a template
brain and averaging across subjects using Statistical Para-
metric Mapping software [55]. Source activity was over-
laid on the template brain and imaged using mri3dX
software [56].

We then computed the single trial output of the spatial fil-
ters ('virtual sensors') for peak locations of source activity
in the SAM images displaying millisecond changes in
source power. Time-frequency response (TFR) plots were
constructed from the virtual sensor data using a wavelet-
based technique which demonstrates both phase-locked
and non-phase-locked changes in power at different fre-
quencies over time relative to the baseline period (-100
ms to 0 ms prior to stimulus onset).

Following TFR results we wished to examine group differ-
ences for specific frequency sets. Selected bandwidths
were averaged across subjects, demonstrating the time
course of averaged group response amplitude for a chosen
frequency set. Regions on the line graphs were highlighted
wherever standard errors did not overlap between con-
trols and those with ADHD in order to exemplify band-
widths where the two groups diverged significantly over
time. To determine statistical differences between groups
and conditions for each separate time-frequency value we
used a permutation program that extracted the normal-
ized, source power value for each time-frequency bin.
Individual data were subject to 1000 permutations and
then collapsed across participants within a specific group
and experimental condition to derive a mean value which
could then be statistically compared between groups or
conditions. The group mean difference for each pixel was
plotted (i.e. – control group data minus ADHD group
data for SI random condition) and subsequently thresh-
olded so that only statistically significant differences
remained, being expressed as a P-Value plot. Multiple
comparison corrections (such as a Bonferroni correction)
were not made to the data as each TFR point was not inde-
pendent.

Results
Primary somatosensory cortex (SI)
Random stimulus presentation
Neural activity captured from each of the 151 MEG chan-
nels was averaged over the total number of trials in which
a stimulus was presented, and then spatial analyses were
performed using SAM to create differential images that
represented changes from baseline in neural activity.

SAM analysis indicated that for individuals in both the
comparison and ADHD groups, the control period
showed little or no somatosensory activation with average
peak values being approximately 5% of active period val-
ues (for average peak values during control and active
periods see Additional files 1 &2 for control and ADHD
groups, respectively). During the active period, maximal
peak activity was localized specifically to the hand area,
area 3b, in the contralateral primary somatosensory cortex
(SI) (Figure 1). The virtual sensor of each individual's con-
tralateral SI location identified that for the control group
the grand-averaged maximal activity occurred at 22.02 ms
+/- 0.74 SEM post-stimulus and at 21.78 ms +/- 0.86 SEM
for the ADHD group. There was no statistical difference of
response time [t(17) = 0.303, p > 0.05].

Time-Frequency Representation (TFR) plots clearly dem-
onstrated that there were three distinct phases of rhythmic
changes in the somatosensory cortex. These occurred in
both primary and secondary cortices (SI and SII, respec-
tively) in both controls and those with ADHD; (i) early-
ERS (approximately 20 to 200 ms post-stimulus); (ii) ERD
(approximately 200 to 400 ms post-stimulus); and (iii)
late-ERS, known as beta rebound (approximately 400+ ms
post-stimulus). In the control group, the early ERS in SI
was a broad-frequency increase in power occurring
approximately 20 to 200 ms post-stimulus. This immedi-
ate response was followed by a broad-frequency ERD; a
transitory suppression of source power below baseline
that occurred from 200 to 400 ms post-stimulus. Follow-
ing the suppression, the final phase of activity demon-
strated a rebound of ERS specific to the beta band that

Grand Mean Contralateral SI localization for Control (blue) and ADHD (red) Based on SAM Differential AnalysesFigure 1
Grand Mean Contralateral SI localization for Control 
(blue) and ADHD (red) Based on SAM Differential 
Analyses.
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began approximately 400 ms after median nerve stimula-
tion and lasted for about 1200 ms (Figure 2A). Our find-
ings are consistent with previous research showing that
beta rebound begins between 250 ms [57,58] and 500 ms
[58] following median nerve stimulation.

In the ADHD group the early SI ERS, occurring approxi-
mately 20 to 200 ms post-stimulus, was characterized by
strong early ERS in the lower bandwidths (theta and low
alpha) and high beta band (25+ Hz), with more moderate
activity in the midrange (10 to 22 Hz) compared to base-
line. ERD occurred across the spectrum of frequencies
from 200 to 400 ms post-stimulus while beta rebound
ERS commenced at approximately 400 ms but continued
for only 600 ms which was considerably shorter in dura-
tion than controls (Figure 2B).

Group comparisons revealed that adults with ADHD
showed substantially less power between 10 and 15 Hz
during the early ERS, compared to the control group and
substantially less power during beta rebound (Figure 2C).
The group differences in neural response reached statisti-
cal significance between 30 and 180 ms and ranges from
11 to 14 Hz during the immediate response (Figure 2D).
This is highlighted in the line graph (Figure 2E) where one
can observe the considerable divergence of the two groups
in amplitude of response across this particular frequency
range over the first 200 ms of the trial (i.e., marked area in
which there is no overlap of group standard error bars).
Adults with ADHD also showed substantially less ERS
than controls between 15 and 30 Hz in the latter half of
the trial (1000+ ms) (also Figure 2D), indicating that indi-
viduals with ADHD experienced a significantly shorter
beta rebound following a somatosensory event. The line
graph demonstrates the power divergence of the entire

SI Group Differences in Frequency and Power During Random Presentation of a Somatosensory StimulusFigure 2
SI Group Differences in Frequency and Power During Random Presentation of a Somatosensory Stimulus. (A) 
Grand Mean TFR of the individual, virtual channel, spatially-filtered single trials for control subjects. In both control subjects 
and subjects with ADHD the plot was baselined using the average spectral energy observed in the pre-stimulus period (-100 – 
0 ms). (B) Grand Mean TFR of the individual, virtual channel, spatially-filtered single trials for subjects with ADHD. (C) Group 
mean differences of the group TFRs. (D) Statistically significant values remaining once group differences were thresholded to p 
</= 0.05. (E) Divergence of early response to the stimulus in controls and ADHD. (F) Divergence of power in beta rebound 
in the latter portion of the trial between controls and ADHD.
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beta bandwidths between groups during the rebound
period (Figure 2F).

Predicted stimulus presentation
For controls, the temporal onset of the grand averaged SI
response occurred at 21.30 ms +/- 0.94 SEM which did not
statistically differ from the onset of the averaged control
random response [t(9) = 0.79, p > 0.05]. Permutation
analysis revealed that the grand averaged time-frequency
responses for controls did not differ statistically between
the random and predicted stimulus conditions (Addi-
tional file 3). Similarly, the grand averaged SI temporal
onset of the ADHD group response occurred at 21.62 ms
+/- 1.14 SEM which did not differ from their averaged ran-
dom onset [t(8) = 0.198, p > 0.05] or from the control pre-
dicted temporal onset [t17) = -0.225, p > 0.05].
Interestingly, permutation analyses of the ADHD TFRs
suggested a a slight within-group difference between con-

ditions from 1200 to 1500 ms in the 17 to 25 Hz range
(Additional file 4).

In the control group, the TFR analysis of the early SI ERS
revealed intense activity from 5 Hz to 50+ Hz followed by
ERD and a strong beta rebound ERS (Figure 3A). Notably,
SI mu rhythm showed ERD (150 ms to 900 ms) and beta
rebound ERS (900 ms to 1600 ms) following tactile stim-
ulation. The somatosensory region endogenously oscil-
lates around this bandwidth [59,60] and SI mu
synchronizations and desynchronizations have been
identified consistently in response to median nerve stim-
ulation [61].

The TFR analysis of the ADHD group showed a strong
early ERS in the lower bandwidths (theta and low alpha)
and high beta band (25 to 40 Hz), but little power in the
midrange (10 to 22 Hz) followed by ERD and a rebound

SI Group Differences in Frequency and Power During Predicted Presentation of a Somatosensory StimulusFigure 3
SI Group Differences in Frequency and Power During Predicted Presentation of a Somatosensory Stimulus. 
(A) Grand Mean TFR of the individual, virtual channel, spatially-filtered single trials for control subjects. In both control sub-
jects and subjects with ADHD the plot was baselined using the average spectral energy observed in the pre-stimulus period (-
100 – 0 ms). (B) Grand Mean TFR of the individual, virtual channel, spatially-filtered single trials for subjects with ADHD. (C) 
Group mean differences of the group TFRs. (D) Statistically significant values remaining once group differences were thresh-
olded to p </= 0.05. (E) Groups show no divergence of early response to the stimulus in controls and ADHD. (F) Divergence 
of power in beta rebound in the pre-stimulus period between controls and ADHD.
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ERS composed of strong activation during the first half of
the rebound period and reduced activation in the latter
half (Figure 3B). Additionally, there was a subtle, transient
beta response just prior to stimulus onset observed in the
ADHD TFR grand mean (Figure 3B, circled).

Even though we observed some general group differences
in power of the early ERS, ERD, and beta rebound ERS in
the Predicted condition Group comparisons between con-
trols and those with ADHD (Figure 3C) there were no sta-
tistical differences in power changes between groups
during any of these phases (Figure 3D). The lack of a dif-
ference in beta activity during these phases is exemplified
in the beta bandwidth line graph analyses (Figure 3E).
However, examining SI activity in the pre-stimulus phase
of the trial we observed a significant between-group differ-
ence that may suggest anticipatory neural responses in the
ADHD group (also Figure 3D) when at approximately 170
ms prior to stimulus onset the two group responses began
to diverge (Figure 3F) and the ADHD group showed an
early increase in beta power that the control group did
not.

Secondary somatosensory cortex (SII)
SAM analyses showed prominent activation of secondary
somatosensory cortices (SII) within the parietal opercu-
lum. Bilateral SII activation was observed with contralat-
eral and ipsilateral activity profiles being very similar. For
brevity, only contralateral SII information, the recipient of
contralateral SI information, is reported.

Random stimulus presentation
The control and ADHD groups both showed consistent,
robust peak activity in SII (Figure 4). For controls, the
grand-averaged virtual sensor identified the first activity
peak at 41.20 ms +/- 2.43 SEM following a stimulus: for
adults with ADHD it occurred at 43.15 ms +/- 3.16 SEM
which did not statistically differ from the onset of the
averaged control random response [t(17) = -0.803, p >
0.05].

The grand-averaged TFR In the control group showed
strong early ERS in the trial followed by strong ERD and
beta rebound ERS activity similar to that observed in SI.
The early ERS and the ERD was characterized by robust
activity from 5 to 20 Hz, with the strongest activity oscil-
lating around 7 Hz while frequencies 15 to 30 Hz contrib-
uted to the ensuing rebound (Figure 5A). By contrast, in
the ADHD group the grand-averaged TFR showed a mod-
est early ERS response characterized by clusters of source
power oscillating at theta, alpha, and beta frequencies.
Moreover, minimal ERD power was present in the alpha
and low beta bandwidths and this was followed by a very
brief, modest beta rebound ERS (Figure 5B).

Group comparisons revealed that overall, SII responding
of adults with ADHD showed markedly less source power
than that of controls (Figure 5C). These group differences
were substantiated in the permutation analyses which
revealed that adults with ADHD displayed significantly
less ERD and significantly shorter beta rebound ERS
across both alpha and beta activities (Figure 5D). The neu-
ral responses of the two groups diverged considerably dur-
ing broad-spectrum ERD (Figure 5E) and during the
ensuing beta rebound ERS (Figure 5F).

Predicted stimulus presentation
In the control group, the temporal onset of the grand aver-
aged control SII response (41.85 ms +/- 1.20 SEM) did not
statistically vary between random and predicted condi-
tions [t(9) = -0.318, p > 0.05]. Grand averaged time-fre-
quency responses did not statistically vary between the
two conditions they experienced (Additional file 5). Cor-
respondingly, the grand averaged SII temporal onset of
response of adults with ADHD (40.38 ms +/- 1.97 SEM)
did not vary in the predicted condition compared to the
random condition [t(8) = 0.92, p > 0.05] or from the SII
control predicted temporal onset [t(17) = 0.651, p > 0.05]
Grand averaged time-frequency responses did not statisti-
cally vary between the two conditions the ADHD group
experienced except for the period of ERD in which the SII
response showed significantly more desynchrony in the
alpha band (between 8 and 10 Hz) in the predicted con-
dition than in the random one (Additional file 6).

In the control group, SII exhibited strong early ERS from
5 Hz to 25 Hz followed by ERD and beta rebound ERS,
consistent with the control Random SII response. Similar

Grand Mean contralateral SII localization for control (blue) and ADHD (red) based on SAM differential analysesFigure 4
Grand Mean contralateral SII localization for control 
(blue) and ADHD (red) based on SAM differential 
analyses.
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to the SI Predicted response and contrary to the SII Ran-
dom response, the SII Predicted control response showed
mu ERD followed by a rebound ERS late in the trial (Fig-
ure 6A).

In the ADHD group, the SII predicted response showed
modest early ERS composed mostly of alpha and some
beta oscillations followed by corresponding ERD and a
small beta rebound ERS. Minor activation around 10 Hz
from 1000 ms to 1600 ms suggests a faint mu rebound
effect (Figure 6B).

Group comparisons revealed that, as in SII Random, the
overall responding of adults with ADHD was considerably
less than the controls (Figure 6C). The permutation anal-
yses corroborated the findings revealing that individuals
with ADHD displayed exhibited significantly less ERD

and significantly shorter beta rebound ERS than the con-
trols (Figure 6D). The two group responses diverged con-
siderably within the ERD (alpha bandwidth) and beta
rebound ERS phases (beta bandwidth) (Figure 6E &6F,
respectively).

Debriefing interview
There were no group differences in their detection of stim-
ulus patterns during median nerve stimulation: where no
participants detecting a pattern during the random condi-
tion and all participants reported detecting a pattern dur-
ing the predicted stimulus condition.

Discussion
This study used MEG with median nerve stimulation to
determine whether somatosensory processing was altered
in adult ADHD. We measured frequency specific changes

SII Group Differences in Frequency and Power During Random Presentation of a Somatosensory StimulusFigure 5
SII Group Differences in Frequency and Power During Random Presentation of a Somatosensory Stimulus. 
(A) Grand Mean TFR of the individual, virtual channel, spatially-filtered single trials for control subjects. In both control sub-
jects and subjects with ADHD the plot was baselined using the average spectral energy observed in the pre-stimulus period (-
100 – 0 ms). (B) Grand Mean TFR of the individual, virtual channel, spatially-filtered single trials for subjects with ADHD. (C) 
Group mean differences of the group TFRs. (D) Statistically significant values remaining once group differences were thresh-
olded to p </= 0.05. (E) Divergence of the ERD response to the stimulus in controls and ADHD. (F) Divergence of power in 
beta rebound in the latter portion of the trial between controls and ADHD.
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in evoked spatiotemporal patterns of neural activation in
response to non-painful electrical stimuli in adults with
and without ADHD. Major findings included a marked
reduction in the duration of beta rebound in the ADHD
group compared to controls in both SI and SII. Beta
rebound is a post-stimulus beta phenomenon which com-
mences approximately 400 – 600 ms after median nerve
stimulation. Additionally, the ADHD group showed a
substantial decrease in SII alpha and beta power during
ERD (decreases in power of cortical oscillations below
baseline) and ERS (increases in power of cortical oscilla-
tions above baseline).

When the stimuli were randomly presented, the ADHD
group showed reduced SI ERS power during the immedi-
ate N20m response and a significantly shorter SI beta
rebound than the controls. This suggests that incoming

somatosensory information is less well-characterized at a
basic neural level in those with ADHD. Irrespective of
whether stimuli were randomly or predictably presented,
the ADHD group showed substantive power decreases in
SII alpha and beta ERD and SII beta rebound ERS relative
to controls as well as a significantly shorter SII beta
rebound. From SI, somatosensory information is thought
to project to SII, where stimulus information is integrated
and contextualized [62,63]. Without sufficient consolida-
tion at SI the deficit may become even more profound as
the information is volleyed to the higher processing
region of SII. This would explain the marked reduction in
SII ERD and ERS in the ADHD group.

To our knowledge this is the first demonstration of
reduced duration of somatosensory evoked beta rebound
in a clinical population. Little is known regarding the

SII Group Differences in Frequency and Power During Predicted Presentation of a Somatosensory StimulusFigure 6
SII Group Differences in Frequency and Power During Predicted Presentation of a Somatosensory Stimulus. 
(A) Grand Mean TFR of the individual, virtual channel, spatially-filtered single trials for control subjects. In both control sub-
jects and subjects with ADHD the plot was baselined using the average spectral energy observed in the pre-stimulus period (-
100 – 0 ms). (B) Grand Mean TFR of the individual, virtual channel, spatially-filtered single trials for subjects with ADHD. (C) 
Group mean differences of the group TFRs. (D) Statistically significant values remaining once group differences were thresh-
olded to p </= 0.05. (E) Divergence of the ERD response to the stimulus in controls and ADHD. (F) Divergence of power in 
beta rebound in the latter portion of the trial between controls and ADHD.
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functional significance of the beta rebound response. His-
torically, beta rebound was thought to be an epiphenom-
enon that originated in the motor cortex in response to
volitional movement [64]. More recent MEG recordings
show that beta rebound also occurs in somatosensory cor-
tex and can be initiated by a tactile stimulus, in the
absence of volitional movement [47]. Moreover, attend-
ing to a stimulus can suppress beta rebound relative to
that occurring when the stimulus is intentionally ignored
[47]. Both movement imagery [65] and observation [66]
have been found to suppress the rebound effect. Collec-
tively, these findings suggest that beta rebound can be
associated with cognitive state.

Further evidence supports the notion that beta rebound
plays a significant role in cortical inhibition of neural
regions unrelated to current task performance [42]. For
instance, Chen et al [67] showed that the brain is less
responsive to transcranial magnetic stimulation during
the period of beta rebound following median nerve stim-
ulation. If cortical inhibition is indexed by levels of beta
activity then it might be argued that the lower levels of
beta activity in individuals with ADHD reflect increases in
cortical activity. Functional imaging studies indicate that
individuals with ADHD activate more widespread brain
regions than controls during task performance (review:
[68]).

To our knowledge, this is the first application of MEG to
investigate changes in somatosensory alpha or beta power
in individuals with ADHD. Here we demonstrate that
adults with ADHD showed less changes in source power
in the alpha and beta bands overall in response to a som-
atosensory stimulus. Correspondingly, reduced alpha and
beta powers have consistently been associated with
ADHD EEG profiles (review: [69]). Intriguingly, when the
adults in the ADHD group were able to predict the onset
of an impending event, their SI response to a stimulus did
not differ statistically from controls. It may be that the
small sample size precluded our ability to detect an under-
lying effect, as the group mean time frequency plots for
the SI Predicted condition in the ADHD and control
groups appear different, however these differences did not
reach statistical significance. Alternatively, it may be the
case that, when a stimulus is predictable, individuals with
ADHD are able to recruit additional resources to facilitate
somatosensory processing, thereby concealing underlying
primary deficits. A similar effect has been observed in
individuals with obsessive-compulsive disorder whose
behavioural performance was the same as controls in a
visual working memory task [70]. This occurred in spite of
the fact that these patients had significantly weaker desyn-
chrony in the alpha band in response to a visual stimulus
during the task with a distracter present but not when the
distracter was absent [70].

Our findings support the notion that cortical oscillations
are altered during somatosensory processing in those with
ADHD. It is possible that impaired somatosensory
processing may impede sensorimotor development, as
has been found in a substantial proportion of children
with ADHD [71-74]. Our data may explain, in part, why
individuals with ADHD perform poorly on tasks that
require somatosensory feedback such as externally-paced
finger-tapping tasks [28,30,75,76] especially when the
tasks require that tactile information be integrated in
higher processing regions. Alternatively, it is possible that
deficits in attention or executive functions may exert top-
down influences on somatosensory processing in the
ADHD group.

Our study is limited by the fact that we were unable to
investigate effects of gender, comorbidity, or treatment
history as the sample of adults with ADHD used in this
study was small and heterogeneous, with variation in age,
comorbidity, and/or medication (although medication
was stopped for at least 24 hours prior to the study). Addi-
tionally, right hemisphere SI activity was not investigated
as median nerve stimulation was only delivered to the
dominant arm. In spite of these limitations, several find-
ings reach statistical significance, emphasizing the power-
ful nature of the differences in somatosensory processing
between the two groups. Future studies will investigate the
effects of gender, comorbidity, and medication, as well as
the activity of the right SI in response to a contralateral
stimulus. Future steps to examine the cortical activity in
regions that are in communication with the somatosen-
sory cortex are necessary goals to further elucidate differ-
ences in basic processing in individuals with ADHD.

In summary, this study revealed several novel observa-
tions regarding somatosensory activity in an ADHD pop-
ulation. It is the first to profile somatosensory ERS and
ERD in ADHD and the first to show that beta rebound is
not a uniform phenomenon but one that can be modified
in the presence of a psychiatric disorder. Profiling
impaired cortical rhythms in response to basic sensory
processing in ADHD will provide a more in depth under-
standing of the breadth of deficits in individuals with
ADHD and aid in reconstructing the conceptualization
and clinical understanding of ADHD.
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