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Abstract

Background: Despite extensive investigation of the neural systems for face perception and emotion
recognition in adults and young children in the past, the precise temporal activation of brain sources
specific to the processing of emotional facial expressions in older children and adolescents is not well
known. This preliminary study aims to trace the spatiotemporal dynamics of facial emotion processing
during adolescence and provide a basis for future developmental studies and comparisons with patient

populations that have social-emotional deficits such as autism.

Methods: We presented pictures showing happy, angry, fearful, or neutral facial expressions to healthy
adolescents (aged 10—16 years) and recorded [28-channel event-related potentials (ERPs) while they
performed an emotion discrimination task. ERP components were analyzed for effects of age and emotion
on amplitude and latency. The underlying cortical sources of scalp ERP activity were modeled as multiple

equivalent current dipoles using Brain Electrical Source Analysis (BESA).

Results: Initial global/holistic processing of faces (PI) took place in the visual association cortex (lingual
gyrus) around 120 ms post-stimulus. Next, structural encoding of facial features (N 170) occurred between
160-200 ms in the inferior temporal/fusiform region, and perhaps early emotion processing (Vertex
Positive Potential or VPP) in the amygdala and orbitofrontal cortex. Finally, cognitive analysis of facial
expressions (P2) in the prefrontal cortex and emotional reactions in somatosensory areas were observed
from about 230 ms onwards. The temporal sequence of cortical source activation in response to facial
emotion processing was occipital, prefrontal, fusiform, parietal for young adolescents and occipital, limbic,

inferior temporal, and prefrontal for older adolescents.

Conclusion: This is a first report of high-density ERP dipole source analysis in healthy adolescents which
traces the sequence of neural activity within the first 500 ms of categorizing emotion from faces. Our
spatio-temporal brain source models showed the presence of adult-like cortical networks for face
processing in adolescents, whose functional specificity to different emotions appear to be not yet fully
mature. Age-related differences in brain activation patterns illustrate the continued development and
maturation of distinct neural systems for processing facial expressions during adolescence and possible

changes in emotion perception, experience, and reaction with age.
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Background

Discerning facial emotions is fundamental for normal
social interaction and commences in early infancy [1].
Recognition and interpretation of emotion from facial
expressions occurs almost instantaneously and is used in
social referencing, for example, when an infant first
encounters a novel object and looks towards the parent to
direct their behavior. If the parent expresses a happy face,
the child will understand this to be an encouragement to
approach the object [2]. On the other hand, if the parent
displays an expression of fear or disgust, the child will
tend to avoid the same object. This skill of "reading" emo-
tions from faces becomes more proficient as children
grow up and experience a multitude of social, emotional
and cognitive changes. However, the neural circuitry that
controls facial emotion processing during late childhood
and adolescence has received scant attention to date [3].
This period of cognitive and behavioral development is
critical since heterochronous brain changes take place:
cortical synaptic elimination occurs in the primary visual
and auditory cortices during late childhood, then subse-
quently in the prefrontal cortex in mid-adolescence [3].
Compatible with this is the region-specific nonlinear
increase in cortical grey matter volume, which peaks in the
frontal and parietal lobes around age 12, followed by the
temporal and occipital lobes at about ages 16 and 20
respectively [4].

Neurobiological findings from lesion, functional mag-
netic resonance imaging (fMRI) and positron emission
tomography (PET) studies have revealed that, just as dis-
tinct brain structures subserve verbal language, specialized
neural networks also exist for processing the non-verbal
language of facial expressions. These include the occipito-
temporal cortices, amygdala, orbitofrontal cortex, as well
as somatosensory-related cortices in the right hemisphere
[5]. Studies of pervasive developmental disorders such as
autism have also identified abnormalities in the fusiform
gyrus, superior temporal sulcus, and amygdale [6], sug-
gesting that the innate inability to perceive and respond to
complex emotional expressions of others may parallel
early abnormal development of brain regions involved in
face processing. Prosopagnosic patients who demonstrate
impairments in recognizing familiar faces, but have nor-
mal abilities in identifying facial expressions of emotion
[7], suggest a functional dissociation between facial iden-
tity and facial expression processing [8]. In accordance
with Bruce and Young's cognitive model for face percep-
tion [8], Haxby, Hoffman, and Gobbini's neuroanatomi-
cal model [9] posits that, after the initial stage of face
perception has taken place in the inferior occipital gyri,
(bidirectional) information proceeds along two distinct
parallel neural pathways: one for coding facial identity
(lateral fusiform gyrus for recognizing unique invariant
facial features), and the other for coding facial expression
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(superior temporal sulcus region for analyzing the
changeable aspects of faces e.g. eye gaze and lip move-
ment). The models of Bruce and Young [8] and Haxby et
al. [9] however, do not include the precise time frame in
which the various components of face processing take
place.

Such time-sensitive issues can be addressed using dense-
array electroencephalography (EEG), event-related poten-
tials (ERPs), and magnetoencephalography (MEG), since
these techniques provide millisecond temporal resolution
not accessible by hemodynamic measures. Recent work
has localized sources of face-specific components to the
occipital and inferotemporal cortices [10,11], which over-
lap with regions identified in fMRI studies [12-14]. For
example, an equivalent current dipole model for adult
face recognition showed the following temporal dynam-
ics of ERP source activation: bilateral lingual gyri at 120
ms, followed by the right and then left fusiform/hippoc-
ampal gyri around 150-170 ms, bilateral medial tempo-
ral gyri from 200 ms onwards, the right caudate nucleus
peaking at 300 ms, and finally the anterior cingulate gyrus
300 ms after stimulus onset. However, such source locali-
zation has not yet been performed on ERP data from chil-
dren and adolescents actively processing facial
expressions of emotion, and only few studies to date have
examined differential neural processing of emotional
facial expressions in children [15,16] and adolescents
[17], let alone using high-density EEG.

Adult studies have suggested that emotionally expressive
faces (especially high-arousal negative emotions like fear
or anger) tend to evoke larger ERP responses than emo-
tionally unexpressive (neutral) faces [15,16,18]. The
"face-sensitive" N170 component over posterior temporal
scalp regions is said to reflect the encoding of configural
and relational features within a face [19] and appears not
to be selective for any particular facial expression [17,20-
23]. However, others have found that negative (fear and
disgust) emotions do indeed evoke larger N170 ampli-
tudes in adults than positive (happy, surprise, neutral)
ones [24,25]. Similarly, the vertex positive potential
(VPP), originating from the same pair of dipoles in the lat-
eral inferior occipital cortex/posterior fusiform gyrus that
generates the N170 in adults [26], is enhanced by facial
expressions of fear [20,21]. In addition, the timing of the
neural response in adults seems also affected by emotion,
such that the N170 appears at earlier latencies for positive
than negative emotions. Krolak-Salmon et al. [23]
reported that occipital ERP patterns first distinguished
between emotional and neutral faces during the 250-550
ms time interval, and then differed between emotional
expressions (fear and happiness in particular) from 550-
750 ms over right occipito-temporal scalp regions. Activ-
ity specific to expressions of disgust occurred even later,

Page 2 of 12

(page number not for citation purposes)



Behavioral and Brain Functions 2009, 5:16

between 700-900 ms in frontal and right temporal areas
[23].

Several studies of young children (3-7 years of age) have
shown differential ERP activity to facial emotion at laten-
cies longer than about 300 ms [27-29], but earlier emo-
tion effects on the face-elicited P1, N170, or P2
components as seen in adults were not present in children
between 9-15 years [17]. In contrast, Batty and Taylor
[30] detected an effect of emotion on the P1 latency in
children as young as four years old. This early emotion
effect, indexing rapid holistic processing of faces [31],
however, disappeared with age (absent after 7 years old)
along with age-related decreases in P1 amplitude and
latency. By mid-teens, global processing of emotions was
replaced by detailed configural processing, reflected by an
emotion effect on the N170 amplitude in 14- to 15-year-
olds [19,30]. This change in the spatio-temporal profile of
face-processing ERPs with development [32] suggests that
as cortical circuits mature and become more specialized
for processing faces, dipole generators of ERP components
may shift in location or orientation from childhood to
adolescence [33]. For example, it is thought that two func-
tionally distinct cortical generators of the N170a and
N170b subcomponents in children are fused into a single
source responsible for the adult N170 [32]. One model of
adult face encoding and recognition [19] explained the
posterior P1 and P2 components with bilateral dipole
generators in the parietooccipital cortex, the N170 com-
ponent by a pair of posterior ventral dipoles, and the VPP
component by an orbitofrontal regional dipole source in
the right hemisphere. However, no study has yet investi-
gated the dipole source location and time course of
processing facial expressions of emotion in the adolescent
years.

The main purpose of this study was to construct a dipole
model of brain sources for healthy adolescents to show
the temporal unfolding of neural events that occur during
explicit processing of different facial emotions. In addi-
tion, we examined the effects of emotion on ERP ampli-
tudes, latencies, and scalp distribution, as well as
developmental changes in ERPs to faces from early (age
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10 to 13 years) to late (age 14 to 16 years) adolescence.
We hypothesized that facial-emotional processing would
occur rapidly in time, sequentially activating brain regions
similar to those seen in adults subserving face detection,
structural encoding of facial features, and emotion recog-
nition.

Methods

Participants

Twenty healthy right-handed Chinese adolescents (12
male, 8 female) aged between 10 and 16 years (mean 14.2
+ 1.8 years) took part in this study. In order to examine
developmental changes in face-specific ERPs and their
sources [34], participants were divided into two groups:
10 young adolescents aged 10-13 years, and 10 older ado-
lescents aged 14-16 years. However, due to severe artifact
contamination in four young participants, we analysed 6
datasets (3 male) in the young group and 10 datasets (5
male) in the old group.

The research protocol was approved by the Institutional
Review Board of the hospital where the study took place
and all participants were compensated for travel and
inconvenience. Parents of participating children signed
informed consent and every participant gave their assent
to participate in the project. All were screened for psychi-
atric illness using the parental Chinese Diagnostic Inter-
view Schedule for Children for DSMIV [35] and had no
history of headache, loss of consciousness, nor any neuro-
logical disorder. All attended normal school and had nor-
mal or corrected-to-normal vision.

Stimuli and procedure

ERP stimuli consisted of 32 color photographs selected
from the standardized set of Japanese and Caucasian
Facial Expressions of Emotion (JACFEE) and Neutral
Faces (JACNeuF) [36]. The images of four males and four
females each depicting happy, angry, fearful, and neutral
facial expressions were randomized six times to generate a
sequence of 192 stimulus trials. Participants were
instructed to press one of four buttons corresponding to
‘happy', 'angry', 'fearful’, or 'neutral' expressions, in
response to the face stimuli presented. As shown in Figure

. DT, &
500 ms 1500-2000 ms 500 ms

Stimulus sequence. Schematic diagram of a typical trial sequence of face stimuli used in explicit and implicit emotion

processing tasks, with timing parameters as shown.
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1, each face was presented for 500 ms on the full screen of
an 11- by 13-inch monitor situated about one meter in
front of the participant. A central fixation '+' was displayed
during inter-stimulus intervals of lengths varying between
1500-2000 ms. E-Prime v.1.0 beta (Psychology Software
Tools, Inc.) was used to present the visual stimuli and to
record reaction times and button-press responses. During
EEG recording, the attentive state of the participant was
monitored and short breaks were permitted after each 2-
minute block of 48 trials to allow the participant to rest.

EEG recording and signal processing

Scalp EEG was recorded using a 128-channel Geodesic
Sensor Net (Electrical Geodesics, Inc., Eugene, OR, USA)
that matched the head size of the participant. Electrode
impedances were adjusted to stabilize under 50 kQ2 before
recording, and continuous EEG was sampled at 500 Hz
with filters 0.1 to 100 Hz using the vertex (electrode 129)
as reference. Offline, notch filters were employed to
remove electrical noise from the mains power supply (50
Hz) and the stimulus display monitor (60 Hz refresh
rate). Subsequent data processing was done using Brain
Electrical Source Analysis (BESA 5.1, MEGIS Software
GmbH, Munich, Germany). Eye-blink patterns were
marked and averaged for each individual and the spatial
topography of the blink artifact was used for correction of
individual EEG data by the surrogate model approach
[37]. The surrogate model for brain activity consisted of
15 regional sources covering all brain regions. After blink
correction, trials with remaining artifacts between -100
ms and 500 ms (amplitude > 100 uV, gradient > 75) were
rejected and a 1 Hz high-pass forward filter was applied to
reduce slow channel drift as well as to provide implicit
baseline correction. EEG epochs, starting 200 ms prior to
stimulus onset until 800 ms post-stimulus, were averaged
for each emotion category. The resulting individual ERPs
were transformed to an average reference and low-pass fil-
tered at 30 Hz for ERP analysis and dipole source mode-
ling.

ERP analysis

A mean of 37 + 9 (SD) clean trials were averaged for each
emotion per participant. ERPscore [38] was used to extract
the individual peak amplitude and latency values for each
ERP component in the four emotion conditions. Time
windows for scoring ERP peaks were determined from
plots of global field power of individual participant aver-
ages, and amplitudes were measured from electrodes
where the component was largest. The posterior compo-
nent P1 was scored at occipital sites 76 (Oz), 72, and 77,
and the anterior N1, VPP, and N2 components were meas-
ured from fronto-central sites 6 (FCz), 7, and 107. The
N170 component was measured from bilateral temporal
sites 57, 58 (T5), 64, and 96, 97 (T6), 101, and the P2
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from bilateral parietal sites 59, 60 (P3), 66, and 85, 86
(P4), 92.

Our selected scalp regions for ERP analysis (see Figure 2)
correspond to electrode sites commonly used in similar
high-density ERP studies [17,18,39]. Instead of peak
amplitude, average amplitude was used to measure the
slower P2 and N2 components across seven 30-ms time
windows between 220 and 430 ms [30]. Repeated meas-
ures analyses of variance (ANOVA, using SPSS 14.0 for
Windows) on ERP amplitudes and latencies were per-
formed using Emotion (happy, angry, fearful, neutral),
Hemisphere (left, right for N170 and P2 components),
and Electrode (3) as within-subject factors and Age Group
(10-13 years, 14-16 years) as the between-subject factor.
Greenhouse-Geisser corrected degrees of freedom were
used whenever the sphericity assumption was violated
[40].

Dipole source analysis

Brain Electrical Source Analysis (BESA v.5.1, MEGIS Sofft-
ware GmbH, Munich, Germany) was used to model corti-
cal sources of ERPs as equivalent spatiotemporal current
dipoles with a certain orientation and time-varying dipole
moments [41]. Separate source models were created for
the 10-13-year-olds and the 14-16-year-olds in realistic
isotropic head models with conductivity ratio of 60 for
the young adolescents and 80 for the older group [42-44].
Visual inspection of scalp topographies at latencies of
peak ERP activity suggested that placing a symmetrical
constraint on the location of bilateral pairs of sources was
appropriate in order to limit the number of parameters in
the inverse problem. Principal component analysis (PCA)
decomposition showed that four pairs of dipole sources
would sufficiently explain the majority of the variance in
the ERP waveform.

Four pairs of sources were fit sequentially over time at
latencies of the P1, N170/VPP, and P2 components, then
adjusted in an iterative manner until they localized to sta-
ble locations and orientations, with the best temporal sep-
aration of source waveforms and as little interaction
between sources as possible. The fit interval assigned to
each pair of sources was defined such that the decomposi-
tion of the residual data (unexplained by previously fitted
sources) was dominated by a single PCA component.
Since preliminary source analysis on the grand average
ERPs to each of the four different facial expressions did
not show qualitative differences in source location
between emotions, the source model for each age group
was constructed based on the combined-conditions (all
facial expressions) grand average ERP [45,46]. The final
source solutions required a residual variance of less than
10% [37,47], i.e. a goodness of fit over 90%.
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Figure 2
Scalp ERPs to faces. Combined-conditions grand-average ERP waveforms for 10- to |3-year-olds (dashed lines) and [4- to

| 6-year-olds (solid lines) collapsed across selected electrode groups. Vertical scale represents voltage amplitude in uV and hor-
izontal scale displays latency in ms.
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Results

Behavioral data

Significant main effects of Emotion on both accuracy
[F(3,39) = 24.328, p < 0.001] and reaction time [F(3,39)
=39.004, p < 0.001] showed that happy faces were recog-
nized most quickly (mean reaction time 761.5 ms) and
accurately (mean 97.0% correct), while angry expressions
took the longest to discriminate (mean reaction time
968.1 ms) and were more likely to be misclassified (mean
75.4% correct). The older group were overall more accu-
rate (mean 92% correct) than the younger group (mean
83% correct) in identifying facial expressions [F(1,13) =
6.099, p = 0.028], but their mean reaction times did not
differ significantly. A significant Emotion by Age Group
interaction [F(3,39) = 7.339, p = 0.001] revealed that

younger adolescents misclassified angry expressions more
often than any of the other expressions (all p < 0.05) and
recognized happy faces more easily than fearful faces (p =
0.024). Older adolescents were equally proficient at iden-
tifying happy, fearful, and neutral faces but also found
angry expressions most difficult to discriminate (p =
0.018).

ERP results

Figure 2 shows ERP waveforms averaged over all four
expressions and electrodes of interest for the two age
groups.

P1: The occipital P1 peaked at a mean latency of 122 ms
in 10- to 13-year-olds and 114 ms in 14- to 16-year-olds,

Page 5 of 12

(page number not for citation purposes)



Behavioral and Brain Functions 2009, 5:16

but effects of Emotion, Electrode, and Age Group on
amplitude and latency did not reach statistical signifi-
cance.

N1: The fronto-central N1, with mean latencies of 118
and 115 ms in the younger and older age groups respec-
tively, was maximal over electrode FCz [F(2,28) = 3.568,
p = 0.042] but did not show significant effects of Emotion
or Age Group.

N170: There were no significant effects of Emotion, Hem-
isphere, Electrode, or Age Group on the N170 latency,
which averaged 189 ms in 10- to 13-year-olds and 173 ms
in 14- to 16-year-olds. All effects on N170 amplitude were
also insignificant. Although Figure 3 shows a more wide-
spread occipital N170 distribution in 10- to 13-year-olds
and a more bilateral temporal distribution in 14- to 16-
year-olds, this difference in N170 topography did not
reach statistical significance (no significant Electrode by
Age Group interaction was found when a larger group of
temporal-occipital electrodes were analysed).

VPP: The VPP showed a trend of earlier latencies in the
older adolescents compared to the younger ones [mean
latency 175 ms versus 196 ms respectively, F(1,14) =
4.095, p = 0.063].

P2: No significant effects of Emotion, Hemisphere, Elec-
trode, or Age Group were observed for the parietal P2
mean amplitudes across the seven 30-ms time windows
between 220 and 430 ms. However, significant Electrode
by Age Group interactions were found in time intervals
250-280 ms and 340-430 ms (p < 0.05) of the P2 wave,

http://www.behavioralandbrainfunctions.com/content/5/1/16

as illustrated by the age-related differences in P2-N2
topographies shown in Figure 3.

N2: The fronto-central N2 was also unaffected by Emotion
or Electrode, and Age Group effects were present only in
the last two time windows between 370-430 ms, reflect-
ing the delayed N2 peak in young relative to older adoles-
cents (see Figure 2).

Dipole sources of ERPs

Figure 4 illustrates the time-varying cortical activity that
explains the scalp ERP components and the slightly differ-
ent dipole locations and orientations within the three-
dimensional head model of the two groups. Talairach
coordinates of the dipole locations are listed in Tables 1
and 2, together with an estimation of their nearest corre-
sponding anatomical structure and latencies of peak
source activation. With the caveat that discrete equivalent
current dipoles only represent idealized point sources on
an active patch of cortex [48], each source waveform is
likely to describe activity of the named structure and/or
integrated activity from the 'center of mass' of several
neighboring structures within a one centimeter radius.
Nevertheless, our two source models explained 93% and
91% of variance in the group averages of 10- to 13-year-
olds and 14- to 16-year-olds respectively within the anal-
ysis time window of 90 to 400 ms.

The posterior P1 scalp component in all participants was
characterized by a pair of occipital sources localized in the
lingual gyrus bilaterally. Activation of this first pair of
sources in the visual cortex was particularly strong in the
young adolescents at their P1 peak latency (122 ms),
reflecting their larger P1 amplitude relative to the older

P1-N1  N170-VPP P2-N2
1093 (0 ( \
years: 1
123ms 206ms 235ms 265ms 205ms 325ms 355ms 385ms  415ms
14-16 \
years: )
112ms 164ms  235ms 265ms 205ms 325ms 355ms 385ms  415ms
Figure 3

ERP scalp maps to faces. Voltage topography maps showing the scalp distribution of PI-N| and N170-VPP dipolar com-
plexes at latencies of maximum global field power for 10- to |3-year-olds (top row) and 4- to | 6-year-olds (bottom row). The
P2-N2 complex is shown over the seven 30-ms analysis time windows. Shaded areas show negative voltages and each contour

represents a step of 0.5 uV.
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Table I: Dipole locations and latencies of maximum dipole moments in source model for 10- to |13-year-olds

Dipole source Talairach coordinates (mm)

(Brodmann area)

Nearest anatomical structure

Dipole moment (nAm) Latency (ms)

X y z
| 17.4 -66.5 -9.7 Right lingual gyrus (BAI8) 734 130
2 -17.4 -66.5 9.7 Left lingual gyrus (BAI18) 65.8 124
3 19.3 67.0 -5.3 Right superior frontal gyrus (BA10) 154 132
4 -19.3 67.0 -5.3 Left superior frontal gyrus (BA10) 14.7 142
5 375 -62.2 -12.3 Right fusiform gyrus (BA37) 12.2 180
6 -375 -62.2 -12.3 Left fusiform gyrus (BA37) 21.1 198
7 20.8 -45.3 46.3 Right paracentral lobule (BA5) 1.7 246
8 -20.8 -45.3 46.3 Left paracentral lobule (BAS) 12.2 324

group, whose dipoles were situated more superiorly.
Within this early time frame, the 10- to 13-year-olds also
activated sources in the frontopolar region near the supe-
rior frontal gyrus symmetrically, which helped to explain
their relatively larger fronto-central N1 peak.

Next, a pair of sources in the temporal lobes around the
fusiform gyrus accounted for the 10- to 13-year-olds'
N170 just before 200 ms, and bilateral sources in the
superior parietal lobe contributed to their P2 and N2
components around 300 ms. In contrast, the source
model for 14- to 16-year-olds showed limbic activity orig-
inating near the parahippocampal gyrus at about 160 ms
(N170) after the initial visual (P1) response in the lingual
gyrus at 114 ms. Generators of the subsequent P2 and N2
components were estimated in the inferior temporal and
prefrontal regions with greater source strengths seen in the
right hemisphere than the left.

Discussion

This study examined the precise temporal dynamics of
adolescent neural processing in response to judging emo-
tion from facial expressions and provided a first report of
multiple dipole source analysis on healthy adolescent
data. In 10- to 13-year-olds, sequential activation of occip-

ital, prefrontal, fusiform, and parietal brain sources were
observed, whereas in 14- to 16-year-olds, neural sources
in the occipital, limbic, inferior temporal, and finally pre-
frontal region were successively activated in response to
face processing. The similarity in source locations between
our adolescent models and previous reports of dipole
source analyses on adult data [11,19,49-51] suggest that
cortical networks for face-specific processing are present
before 16 years of age [52,53], but that their functional
specificity to different emotional expressions are not yet
fully mature. Differences in brain sources and activation
patterns between young and older adolescents detected in
this study provide preliminary evidence for the continued
development and maturation of distinct neural systems
for processing emotional facial expressions during adoles-
cence and possible changes in emotion perception, expe-
rience, and reaction with age.

Our behavioral data confirmed the improvement of facial
emotion recognition with age [54], and that happiness is
universally the most accurately recognized facial emotion
[55]. Angry expressions on the other hand, are likely per-
ceived as more complex than other emotions [29] and
hence took the longest to discriminate and were misclas-
sified most often by adolescents, while neutral expres-

Table 2: Dipole locations and latencies of maximum dipole moments in source model for 14- to |16-year-olds

Dipole source Talairach coordinates (mm)

(Brodmann area)

Nearest anatomical structure

Dipole moment (nAm) Latency (ms)

X y z
| 13.6 -74.2 7.6 Right lingual gyrus (BA18) 22.8 114
2 -13.6 -74.2 7.6 Left lingual gyrus (BAI8) 22.8 114
3 329 -45.8 1.4 Right parahippocampal gyrus (BA19) 20.7 164
4 -32.9 -45.8 1.4 Left parahippocampal gyrus (BA19) 19.2 156
5 523 -52.1 -14.0 Right inferior temporal gyrus (BA20) 17.0 266
6 -52.3 -52.1 -14.0 Left inferior temporal gyrus (BA20) 16.1 294
7 264 56.9 1.6 Right superior frontal lobule (BA10) 16.2 260
8 -26.4 56.9 1.6 Left superior frontal lobule (BA10) 6.1 244
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Figure 4
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14-16 years

R_LG_(BA18)

+20

L_LG_(BA18)

20 : \/—‘-
6 L_ITG_(BA20)

SFG_(BA10)

Dipole source waveforms and cortical locations. BESA solutions for 10- to |3-year-olds (left panel) and 14- to |16-year-
olds (right panel) showing time varying source activity (dipole moments in nAm) and the estimated 3D dipole locations and ori-

entations within the head model.

sions might have been emotionally ambiguous. The lower
accuracy rate in 10- to 13-year-olds could also substantiate
the temporary performance dip in face encoding/recogni-
tion [56,57] and cognitive/emotional processing [58] dur-
ing this period of synaptic reorganization at the onset of
puberty.

Our ERP results support the hypothesis that the P1 com-
ponent reflects an initial response to visual stimuli and
the early global/holistic processing of faces [31], while the
N170 represents a subsequent encoding stage of config-
ural and relational features within a face [19]. Consistent
with developmental ERP studies of facial expression
processing [30,32], we observed a decrease in ERP peak
latencies as well as a reduction in the occipital P1 ampli-
tude from the young to old adolescent groups, reflecting
increasing cortical efficiency in face processing with age.
The N170 voltage topography showed a shift from a wide-
spread occipital negativity in 10- to 13-year-olds to a more
focal lateral temporal distribution in 14- to 16-year-olds,
providing support for a change in location and/or orien-
tation of its dipole generator(s) as neural circuits mature
and become more specialized for processing faces [33].
Continuing maturation of the face-specific N170 through
adolescence is compatible with previous work suggesting

that between the ages of 10 and 13 years, two functionally
distinct cortical generators of the N170a and N170b sub-
components in children begin to fuse into a single source
responsible for the adult N170 [32]. Developmental fMRI
studies have also supported differences in the engagement
and modulation of neural systems involved in face
processing between adolescents and adults [59,60]. Our
finding that early ERP components in adolescents were
insensitive to emotion agrees with a similar study [17] in
which emotion effects were present only in adults but not
in children. We presume that face-specific ERP compo-
nents which seem to distinguish between emotional
expressions in adults [16,21,24] are still immature in early
adolescence, and that emotion effects and hemisphere
asymmetry may only become visible when the adult N170
morphology develops fully sometime after the mid-teens
[32]. However, due to the limited sample size of this study
and our attempt to explore developmental differences in
ERPs and their sources during the adolescent period, sig-
nificant effects of emotion and age may possibly have
been masked by large inter-subject variability in brain
responses during pubertal development. Further confirm-
atory studies using larger participant numbers and nar-
rower age bands will be important for more in-depth
examination of developmental changes in ERP sources as
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well as sex-related differences in brain responses to differ-
ent facial emotions [61].

Using BESA, we constructed two equivalent current dipole
models to explain ERP activity in the two adolescent age
groups. Both models contained sources in the visual asso-
ciation cortex (lingual gyrus, LG) and around the inferior
temporal/fusiform gyrus (FG) that explained the P1/N1
and N170/VPP dipolar complexes respectively. Occipito-
temporal sources including the LG and FG have been pre-
viously identified in adult studies as dipole generators of
face-sensitive ERPs [11,19,49-51] and MEG signals
[62,63]. Although the accuracy of source localization is
limited to the spatial sampling of scalp signals as well as
the statistical and geometrical properties of the brain and
head model used [64], our source locations and activation
time courses corresponded well with adult intracortical
ERP recordings [65,66], MEG sources [62,63,67], and
fMRI activations [12,13,68,69] to face stimuli. Halgren et
al. [65] located an intracortical N75-P105 response (cf.
our P1) to faces in the LG (visual areas 17 and 18), fol-
lowed by an N130-P180-N240 complex (cf. our scalp
N170-VPP-N2) in the FG (Brodmann areas 19 and 37)
and the posterior superior and middle temporal gyrus.
They also showed a wide transmission of the face-specific
potential (P180) from the basal temporo-occipital cortex
to the superior temporal sulcal, parietotemporal, and dor-
solateral prefrontal cortices [65]. With extensive reciprocal
connections between temporal visual regions and the pre-
frontal cortex, it is postulated that activity in the temporal
cortex can modulate input to the orbitofrontal cortex dur-
ing facial emotion processing [5].

Indeed, adult studies using fMRI and PET have demon-
strated significant involvement of frontal brain regions for
explicit identification of facial emotion [13,68-70]. Fur-
thermore, adults have been found to produce greater acti-
vation in the orbitofrontal cortex than adolescents
regardless of whether attention is directed to emotional or
nonemotional aspects of a face [59]. According to struc-
tural MRI studies, structures in the frontal lobe are still
developing post-adolescence [71], as evidenced by signif-
icant loss of frontal gray matter due to synaptic pruning
between adolescence and adulthood and continued
axonal myelination that increases white matter density
with age [72]. We believe that structural changes in the
prefrontal cortex during adolescent brain development
may account for the difference in activation patterns of
prefrontal sources observed in our two dipole models.
Our adolescent source locations are consistent with a pre-
vious model of adult face encoding and recognition [19]
that explained the VPP component by an orbitofrontal
regional dipole source in the right hemisphere, together
with bilateral dipole generators of the posterior P1 and P2
components in the parietooccipital cortex and a pair of
posterior ventral sources accounting for the N170. Simi-
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larly, Sabbagh et al. [73] localized the frontal N270-400
elicited during mental state decoding from pictures of eyes
to the orbitofrontal and medial frontal cortices in adults
using low-resolution electromagnetic tomography
(LORETA-KEY). They contended that the right orbitofron-
tal region is used for understanding others' mental states,
while the left medial frontal regions are engaged in the-
ory-of-mind reasoning about mental states [73]. Strong
right-lateralized activation of the frontopolar region in
our 14- to 16-year-old adolescents likely reflects the con-
scious evaluation and judgment of emotion category
[69,70] and is also suggestive of recognition of previously
seen faces [74]. Recruitment of more mature frontal net-
works for social cognition and executive function in older
adolescents [72] is expected to facilitate emotional
processing and explains their superior performance in dis-
criminating facial expressions compared to the younger

group.

In addition to occipital, temporal, and prefrontal sources
of ERPs, we also detected parahippocampal activity in the
older adolescents around 160 ms. The parahippocampal
gyrus has been speculated to be part of a ventro-medial
pathway that receives input from the lingual and fusiform
gyri and transmits perceptual information to the hippoc-
ampal and medial frontal regions for memory and face
recognition [52,75]. Limbic responses are known to be
greater during explicit (emotion discrimination) rather
than implicit (e.g. age discrimination) facial emotion
processing [76]. Moreover, since the amygdala plays such
an important role in emotional responses and has struc-
tural and functional connections to the prefrontal and
temporal cortices [77,78], frontal and temporal source
activity in our adolescent dipole models possibly reflected
underlying amygdala activity triggered by emotional facial
expressions.

Finally, we suspect that parietal source activity in young
adolescents at roughly 280 ms post-stimulus could repre-
sent an engagement of the parietal somatosensory cortices
when participants mentally simulated the perceived facial
expression in order to achieve an emotional response for
a better understanding of the emotion [5,72,79]. It has
been shown that a single presentation of a face displaying
an emotion for 500 ms is sufficient to elicit an emotional
reaction in the observer [79]. We speculate that expres-
sions of happiness, sadness, and fear for example, are
likely to have evoked the corresponding emotions, more
so in the younger group than in the older adolescents,
while angry faces may have triggered feelings of fear and
disgust [79].

Limitations

Although the small sample size in this study may have
limited the power to detect significant effects of emotion
and age on scalp ERP components and ERP brain source
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activity, our findings will form the basis for future devel-
opmental ERP studies employing spatiotemporal dipole
source analysis on a wider age range of children, adoles-
cents, and adults. In particular, frontal and parietal
sources of later ERP components (those after 200-300 ms
post-stimulus) deserve to be studied in greater detail, as
emotion-specific activities are likely to occur at longer
latencies in children and adolescents than in adults. Incor-
porating local maxima of fMRI activations from the same
participants as constraints for ERP dipole sources can fur-
ther improve localization accuracy and optimize the spa-
tial and temporal resolution these complementary
modalities provide [80]. It would also be useful to extend
this work to populations with social-emotional deficits or
abnormalities in processing of faces and emotions, such
as autism, depression, and schizophrenia, in order to
examine differences in the engagement of neural systems
and distinct perceptual/cognitive styles of facial emotion
processing.

Conclusion

This is a first report of spatiotemporal dipole source anal-
ysis on healthy adolescent ERP data tracing the sequence
of neural activity within the first 500 ms of categorizing
emotion from faces. The similarity in source locations
between our adolescent models and previous adult find-
ings [11,19] suggest that cortical networks for face
processing are present before 16 years of age [53], but
their functional specificity to different emotions are not
yet fully mature. Differences in brain sources and activa-
tion patterns between young and older adolescents illus-
trate the continuing development and maturation of
distinct neural systems for processing emotional facial
expressions during adolescence and possible changes in
emotion perception, experience, and reaction with age.
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