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Abstract

Background: Several studies had demonstrated the involvement of the dorsolateral portion of
periaqueductal grey matter (dIPAG) in defensive responses. This region contains a significant
number of neurons containing the enzyme nitric oxide synthase (NOS) and previous studies
showed that non-selective NOS inhibition or glutamate NMDA-receptor antagonism in the dIPAG
caused anxiolytic-like effects in the elevated plus maze.

Methods: In the present study we verified if the NMDA/NO pathway in the dIPAG would also
involve in the behavioral suppression observed in rats submitted to the Vogel conflict test. In
addition, the involvement of this pathway was investigated by using a selective nNOS inhibitor, No-
propyl-L-arginine (N-Propyl, 0.08 nmol/200 nL), a NO scavenger, carboxy-PTIO (c-PTIO, 2 nmol/
200 nL) and a specific NMDA receptor antagonist, LY235959 (4 nmol/200 nL).

Results: Intra-dIPAG microinjection of these drugs increased the number of punished licks
without changing the number of unpunished licks or nociceptive threshold, as measure by the tail
flick test.

Conclusion: The results indicate that activation of NMDA receptors and increased production of
NO in the dIPAG are involved in the anxiety behavior displayed by rats in the VCT.

Background

The periaqueductal gray matter (PAG) is structure closely
related to nociceptive and defensive responses which can
be divided into four different columns along its rostro-
caudal axis: dorsomedial, dorsolateral (dIPAG), lateral
and ventrolateral columns [1-3]. Microinjection of NMDA
receptor agonists into the dIPAG evokes flight reactions

[4-6] and glutamate receptors are widely expressed in the
dIPAG [7]. Moreover, antagonism of NMDA receptors
AP7 in the dIPAG causes an anxiolytic-like effect in rats
submitted to the elevated plus maze and Vogel conflict
test [8-10]. These data indicate that glutamate receptors in
the dIPAG play an important role in defensive responses.
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Glutamate-NMDA receptor activation can induce the pro-
duction of nitric oxide (NO) by activation of a calmodu-
lin-dependent enzyme, the neuronal isoform of the nitric
oxide synthase (nNOS), present in several corticolimbic
structures [11,12]. nNOS inhibition promotes effects sim-
ilar to those observed after NMDA antagonism [13,14].
Likewise, injections of non-selective NOS inhibitors into
the dIPAG induced an anxiolytic-like effect in the elevated
plus maze (EPM) model [15]. This model measures the
conflict generated by the drive to explore a safe (closed
arms) versus unsafe (open arms) place and is based on the
innate fear of open spaces displayed by rodents. However,
several pieces of evidence indicate that different aversive
contingencies may engage distinct neurobiological sys-
tems [16]. It is important, though, to investigate drug
effects in a specific brain site using different tests of anxi-
ety.

The Vogel conflict test (VCT) is another animal model of
anxiety that measures suppression of punished responses
[16-22]. Different from the EPM, however, it is based on
conflict induced by a learned contingency (electrical
shock on a drinking spout) in thirsty animals [16,22].

Since the possible anxiolytic effects of NOS inhibition in
the dIPAG have only been tested so far using the EPM, the
aim of this study was to verify if the NMDA/NO pathway
in the dIPAG is also involved in the behavioral suppres-
sion observed in rats submitted to the VCT. In addition,
instead of the non-specific NOS inhibitors used in a pre-
vious work [15] we investigated the effects of a selective
nNOS inhibitor, No-propyl-L-arginine (N-Propyl), and a
NO scavenger, carboxy-PTIO (c-PTIO) microinjected into
the dIPAG. These effects were compared to those pro-
duced by a specific NMDA receptor antagonist LY235959.

Methods

Subjects

Male Wistar rats weighing 230-250 g were used. Animals
were kept in the Animal Care Unit of the Department of
Pharmacology, School of Medicine of Ribeirao Preto, Uni-
versity of Sdo Paulo. Rats were housed four per cage in
plastic cages (18 x 32 x 40 cm) under standard laboratory
conditions, with free access to food and water and under
a 12 h light/dark cycle (lights on at 06:30 h). The Institu-
tion's housing conditions and the experimental proce-
dures were previously approved by the local Animal Ethics
Committee (process number: 067-2009).

Seven days before the experiments the rats were anesthe-
tized with tribromoethanol (10 ml/kg i.p.) and fixed on a
stereotaxic apparatus (Stoelting, Wood Dale, Illinois,
USA). Immediately before the surgery they received anti-
biotic (0.2 ml/animal, I.M., Pentabiotico®, Fort Dodge)
and anti-inflammatory (2.5 mg/Kg, s.c, Banamine®,
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Schering-Plough) treatment. After local anesthesia of the
scalp with 2% lidocaine chloridrate with norepinephrine
(Xylestesin®, Cristalia), the skull was surgically exposed
and stainless steel guide cannulae (0.6 mm OD) were uni-
laterally implanted on the right side aimed at the dorsola-
teral periaqueductal gray (coordinates: AP = 0 from
lambda, L = 1.9 mm at an angle of 16°, D = 4.0 mm) [23]
with the help of a stereotaxic apparatus. The cannula tip
was located 1 mm dorsal to the final injection site. The
cannulae were fixed to the skull with dental cement and
one metal screw. An obturator inside the guide cannula
prevented obstruction.

Drugs

LY235959 (Tocris), No-propyl-L-arginine (Tocris, Ellis-
valle, MO, USA) and carboxy-PTIO (S)-3-Carboxy-4-
hydroxyphenylglicine (c-PTIO, RBI, St. Louis, MO, USA);
were dissolved in sterile artificial cerebrospinal fluid
(composition: NaCl 100 mM, Na;PO, 2 mM, KCl 2.5
mM, MgCl, 1 mM, NaHCO; 27 mM, CaCl, 2.5 mM; pH =
7.4).); tribromoethanol (Aldrich, St. Louis, MO, USA),
and urethane (Sigma, St. Louis, MO, USA) were dissolved
in saline.

Apparatus

Vogel conflict test

The Vogel conflict test was performed in a Plexiglas box
(42 x 50 x 25 cm) with a stainless steel grid floor. The
metallic spout of a drinking bottle containing water pro-
jected into the box. The contact of the animal with the
spout and the grid floor closed an electrical circuit control-
led by a sensor (Anxio-Meter model 102, Columbus,
USA), which produced 7 pulses/s whenever the animal
was in contact with both components. Each pulse was
considered as a lick and at every 20 licks the animal
received a 0.5 mA electrical shock on the metallic drinking
spout for 2 s. The sensor recorded the total number of
licks and shocks delivered during the test period. The
whole apparatus was located inside a sound-attenuated
cage [24,25].

Water consummatory evaluation

The apparatus was the same used in the test above except
that the electrical shock delivering system was render
inoperative. The number of unpunished licks was meas-
ured after 24 h (pre-drug treatment) and 48 h of water
deprivation. In the latter situation the measurement of
water consumption was performed 10 min after intra-
dIPAG microinjections of vehicle, LY235959, N-Propyl or
c-PTIO.

Tail-flick test

The apparatus consisted of an acrylic platform with a
nichrome wire coil (Insight Instruments. Brazil) main-
tained at room temperature (24-26°C). The rats were gen-
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tly handled and had their tails laid across the coil. The coil
temperature was then raised at 9°C/s by the passage of
electric current. The system had a cut-off time of 6 s to pre-
vent tissue damage when the coil temperature approached
80°C. The time to withdraw the tail was recorded as tail-
flick latency. The electric current was calibrated to provoke
this reflex within 2.5-3.5 s in non-treated animals [15,25].

Experimental design

In the Vogel conflict test the animals received microinjec-
tion of 200 nL of vehicle, 4 nmol of LY235959, 0.08 nmol
of N-Propyl or 2 nmol of ¢-PTIO. Each animal was used
only once and the doses were based on those employed in
previous studies using intra-cerebral administration
[14,26,27]. Intracerebral injections were performed with a
thin dental 33G needle (Small Parts, Miami Lakes, FL,
USA) introduced through the guide cannula until its tip
was 1.0 mm below the cannula end. A volume of 0.2 ul
was injected in 30 s using a syringe (Hamilton, USA) con-
nected to an infusion pump (Kd Scientific, USA). In order
to prevent reflux the guide cannula was left in place for 30
s after the end of each injection. A polyethylene catheter
(PE 10) was interposed between the upper end of the den-
tal needle and the syringe. Morphine hydrochloride [9,24]
was used as a positive control in the tail-flick test (see bel-
low).

Procedure

The Vogel conflict test

The animals were water deprived for 48 h before the test.
After the first 24 h of deprivation they were allowed to
freely drink for 3 min in the test cage in order to find the
drinking bottle spout. Some animals did not find the
spout and were not included in the experiment. Twenty-
four h later the animals received the microinjections and
after 10 min were placed into the test box. The test period
lasted for 3 min and the animals received a 0.5 mA shock
every 20 licks. During this period the number of licks and
shocks delivered were registered.

Water consumption test

This test was performed in independent groups of animals
and the procedure was the same used in the Vogel conflict
test except that the electric shock delivering system was
render inoperative. After the first 24 h of deprivation they
were allowed to freely drink for 3 min in the test cage.
Twenty four h later the animals received the microinjec-
tions and were again allowed to drink for 3 min. The
number of licks during these two periods was registered.

Tail-flick test

The tail-flick test was conducted in independent groups of
animals receiving vehicle, morphine, LY235959, N-Propyl
or ¢-PTIO. The heating was applied to a portion of the
ventral surface of the tail located between 4 and 6 cm from
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its end. The tail-flick latency was measured at 5-min inter-
vals until a stable baseline (BL) was obtained over three
consecutive trials. The latency was measured again 30 s
after drug administration and then at 10-min intervals for
up to 40 min [22]. Morphine was administered systemi-
cally (i.p.) 10 min before the test. Vehicle, LY235959, N-
Propyl or c¢-PTIO was microinjected into the dIPAG as
described above.

Histology

After the behavioral tests the rats were sacrificed under
deep urethane anesthesia and perfused through the left
ventricle of the heart with isotonic saline followed by 10%
formalin solution. After that, the brains were removed
and, after a minimum period of 5 days immersed in a
10% formalin solution, 50 um sections were obtained in
a Cryostat (Cryocut 1800). The injection sites were identi-
fied in diagrams from the Paxinos and Watson's atlas [23]
and are illustrated in Figure 1. Rats receiving drug injec-
tions outside the dIPAG, dorsomedial PAG, lateral PAG
and superior colliculus, were included in an additional
(OUT) group.

Statistical analysis

The data were expressed as mean + S.E.M. The number of
punished licks was analyzed by one-way ANOVA. The
latency of tail withdrawal and water consumption were
analyzed by a two-way repeated-measure ANOVA with
treatment as the independent factor and time or day as the
repeated measure. In case of significant interactions post-
hoc comparisons were performed using the Dunnet's test.
Results of statistical tests with P < 0.05 were considered
significant.

Results

The Vogel conflict test

In the first experiment, the animals that had received
LY235959 (n = 8), N-propyl (n = 7) or c-PTIO (n = 9) into
the dIPAG showed an increased the number of punished
licks in the Vogel conflict test as compared to animals
which had received vehicle (n = 10, F4 5,= 6.71; P < 0.01,
Figure 2). Moreover, drug injection outside this region
(LY: n = 11, N-Propyl: 6 and ¢-PTIO: 8, Figure 2) did not
modify the number of licks (P > 0.05).

Drug effects on water consumption and tail-flick test
These additional experiments were performed to discard
changes in nociceptive responses and water consumption
as confounding factors in the Vogel test. In the water con-
sumption test (Figure 3) neither drug (LY235959: n = 6,
N-propyl: n = 6 and ¢-PTIO: n = 6) changed the number
of unpunished lick compared to vehicle (n = 6, F; 4, =
1.380, P > 0.05). There was no difference for days (F, ,, =
2.8, P> 0.05), and no interaction treatment x drug (F; 4, =
0.63, P > 0.05).
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Microinjections sites. Photomicrograph of a coronal brain section showing an unilateral microinjection site in the dorsal
periaqueductal gray and a histological localization of injection sites (200 nL) in diagrams based on the atlas of Paxinos and
Watson [23]. The solid and the open circles represent injection sites inside of the dIPAG. Numbers represent distances from
interaural level (mm). dPAG: dorsal periaqueductal gray; dIPAG: dorsolateral periaqueductal gray.

Finally, the tail-flick test results can be seen in Figure 4.
There were a significant drug effect (LY235959: n = 6, N-
propyl: n = 6 and c-PTIO: n = 6) (F, 5, = 14.59, P <0.001),
time (Fg 16, =9.65, P <0.001) and drug x time interaction
(Fy4,161 = 4.05, P < 0.001). Withdrawal latencies were sig-
nificantly greater than vehicle at 20, 30 and 40 min after
morphine injection (n = 5). No other difference against
vehicle was found.
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Figure 2

Vogel conflict test. Effects of LY235959 (4 nmol/200 nL),
No-propyl-L-arginine (0.04 nmol/200 nL) and c-PTIO (|
nmol/200 nL) injected into the dIPAG of rats submitted to
the Vogel test. Bars represent the mean + SEM total number
of punished licks in the 3 min session. Animals that received
drugs outside the dIPAG were included as OUT groups.
Asterisk indicates significant difference from vehicle (P <
0.05, ANOVA followed by the Dunnet's test; vehicle (veh, n
= 10), LY235959 (n = 8), No-propyl-L-arginine (n = 7), c-
PTIO (n = 9); OUT-LY235959 (n = 1), OUT-Nw-propyl-L-
arginine (n = 5) and OUT-c-PTIO (n = 8).

Discussion
The present study showed that a selective nNOS inhibitor

and a NO scavenger microinjected into the dIPAG pro-
duce effects similar to a glutamate NMDA receptor antag-
onist, increasing the number of punished licks in rats
submitted to the VCT. The drugs did not interfere with the
number of unpunished licks or nociceptive threshold
measured in the tail flick test, indicating an anxiolytic-like
effect.

The results confirm, using the highly selective NMDA-
antagonist LY235959 [26,28,29], those previously
obtained with AP7, another antagonist of these receptors,
in the VCT and elevated plus maze [9]. They also agree

1200+
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Day 1 Day 2
Figure 3

Woater consume test. Effect of LY235959 (4 nmol/200 nL),
Nw-propyl-L-arginine (0.04 nmol/200 nL) and c-PTIO (I
nmol/200 nL) injected into the dIPAG in the water consump-
tion test during training (Day |) and test (Day 2). Vehicle
(veh, n = 6) LY235959 (n = 6), Nw-propyl-L-arginine (n = 6),
c-PTIO (n = 6).
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Figure 4

Tail flick nociception test. Time course of the effects of
vehicle (veh, n = 6), LY235959 (n = 6), Nw-propyl-L-arginine
(n = 6), c-PTIO (n = 6) or Morphine 5 mg/kg (n = 4) in the
tail flick test. Each point represents the mean + S.E.M. for the
latency of tail withdrawal. Asterisk indicates significant differ-
ence from vehicle (P < 0.05, ANOVA followed by the Dun-
net's test).

with previous findings obtained after systemic injection of
NMDA antagonists. For example, using systemic adminis-
tration of noncompetitive or competitive NMDA receptor
antagonists, Plaztnik et al. (1994) described increased
punished responses induced by these drugs in the VCT.
These antagonists also attenuated the anxious-like behav-
ior observed in rats which had been previously exposed to
a cat, suggesting that NMDA receptors are involved in the
neural changes mediating the anxiogenic effect of severe
stress [30]. Moreover, after repeated systemic administra-
tion in rats the NMDA receptor antagonist CGP 37849 not
only retained its anxiolytic-like potency in the VCT but
even enhanced rat exploratory behavior in a new environ-
ment, independently of changes in animal motor activity
[31].

The present results reinforce the proposal that the dIPAG
could be one of the brains sites where systemically admin-
istered NMDA-receptor antagonists exert their anxiolytic
effects. The dIPAG is recognized as a key structure in the
organization of defensive responses [3] and receives
important projections from different cortical and limbic
regions, including the prefrontal cortex and medial
hypothalamus [1], that are intensively activated by anxio-
genic drugs or by aversive stimuli [32,33]. Moreover, in
addition to glutamate-receptors antagonists, anxiolytic
effects have been observed after intra-dIPAG microinjec-
tion of drugs with different mechanisms of action, includ-
ing benzodiazepines [34] and cannabinoids [24]. These
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latter drugs could be acting by inhibiting glutamate
release [24,35].

In the central nervous system NO production by nNOS
correlates with activation of NMDA receptors [36]. More-
over, NOS immunoreactive neurons are highly localized
in the dIPAG [37]. Previous studies have shown that inhi-
bition of NO formation or its effects in this region pro-
duces anxiolytic-like effects [13,15]. However, these
studies employed non-selective NOS inhibitors and there-
fore could not exclude the involvement of other NOS iso-
forms. N-propyl is a NOS inhibitor that has a much higher
potency to inhibit nNOS compared to eNOS or iNOS [38-
40] whereas c-PTIO is a cell membrane-impermeable NO
scavenger [41]. Together, the results indicate that that
both nNOS activation and extracellular release of NO in
the dIPAG are involved in anxiety modulation.

It has been showed by Aguiar et al [6] that that NO may
have a facilitatory role in defensive reactions mediated by
dIPAG. Corroborating our data, previous results had
described that local NOS inhibition into the dIPAG, using
an non-specific NOS inhibitor, induced anxiolytic-like
effects in the elevated plus maze [15]. Our results using C-
PTIO are in agreement with previous finds where C-PTIO
injected into the dIPAG of rats exposed to the EPM evoked
anxiolytic-like effect in this model [13,42]. Finally, the
systemic administration the NOS inhibitor evoked anxio-
lytic like effects [43] and the benzodiazepine anxiolytic-
like effect is NOS dependent in EPM [44].

Another caveat of the previous studies, as mentioned
above, is that they were performed using only the EPM. It
is important, however, to investigate the presence of anx-
iolytic drug effects in several animal models, since differ-
ent aversive contingencies may engage distinct
neurobiological systems [16]. In this way, although both
the EPM and VCT are based on approach-avoidance con-
flict, the former relates to innate fear of open spaces
against the drive to explore new environments whereas
the latter involves fear of a learned contingency (electrical
shock on a drinking spout) in thirsty animals [16,22,42].

Conclusion

In summary, the present study provide evidence indicat-
ing that activation of NMDA receptors and increased pro-
duction of NO in the dIPAG are involved in the anxiety
behavior displayed by rats in the VCT.
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