- - - /)
Behavioral and Brain Functions  sowaicw

Review

Mercury exposure, nutritional deficiencies and metabolic
disruptions may affect learning in children

Renee Dufault*!, Roseanne Schnoll?, Walter ] Lukiw3, Blaise LeBlanc?,
Charles Cornett®, Lyn Patrick®, David Wallinga?, Steven G Gilbert8 and
Raquel Crider?

Address: 'United Tribes Technical College, Bismarck, ND, USA, 2Department of Health and Nutrition Sciences, Brooklyn College of CUNY,
Brooklyn, NY, USA, 3Departments of Neuroscience and Ophthalmology, LSU Neuroscience Center. Louisiana State University Health Sciences
Center, New Orleans, LA, USA, 4Carl Hayden Bee Research Center, Tucson, AZ, USA, Department of Chemistry and Engineering Physics,
University of Wisconsin-Platteville, Platteville, WI, USA, ¢Contributing Editor, Alternative Medicine Review, Durango, CO, USA, “Institute for
Agriculture and Trade Policy, Minneapolis, MN, USA, 8Institute of Neurotoxicology and Neurological Disorders, 8232 14th Avenue NE, Seattle,
WA, USA and ?Shepherd University, Shepherdstown, WV, USA

Email: Renee Dufault* - rdufault@uttc.edu; Roseanne Schnoll - rschnoll@brooklyn.cuny.edu; Walter J Lukiw - wlukiw@Isuhsc.edu;
Blaise LeBlanc - blaise_ll@hotmail.com; Charles Cornett - cornettc@uwplatt.edu; Lyn Patrick - lpatrick@frontier.net;
David Wallinga - dwallinga@iatp.org; Steven G Gilbert - sgilbert@innd.org; Raquel Crider - rcrider01 @shepherd.edu

* Corresponding author

Published: 27 October 2009 Received: 16 August 2009
Behavioral and Brain Functions 2009, 5:44  doi:10.1186/1744-9081-5-44 Accepted: 27 October 2009
This article is available from: http://www.behavioralandbrainfunctions.com/content/5/1/44

© 2009 Dufault et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Among dietary factors, learning and behavior are influenced not only by nutrients, but also by
exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and
alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders
such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity.
Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids
eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals
zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal
plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder.
Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and
increase oxidative stress among children with autism. These dietary factors may be directly related
to the development of behavior disorders and learning disabilities. Mercury, either individually or
in concert with other factors, may be harmful if ingested in above average amounts or by sensitive
individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a
result of some manufacturing processes, and its consumption can also lead to zinc loss.
Consumption of certain artificial food color additives has also been shown to lead to zinc
deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury
elimination. Since high fructose corn syrup and artificial food color additives are common
ingredients in many foodstuffs, their consumption should be considered in those individuals with
nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury
or unable to effectively metabolize and eliminate it from the body.

Page 1 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19860886
http://www.behavioralandbrainfunctions.com/content/5/1/44
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Behavioral and Brain Functions 2009, 5:44

Background

Neuronal plasticity, the ability of neurons to undergo spe-
cific functional changes during the moments when learn-
ing takes place, appears to underlie learning capacity [1].
Neuronal plasticity is crucial to the creation and storage of
long-term memory. Dysfunction of neuronal plasticity is
a factor in poor neural development [2-5]. Abnormal neu-
ronal plasticity also has also been implicated in mental
retardation, and autism [2-5]. Essential nutrients, includ-
ing trace minerals, amino acids, and fatty acids, are neces-
sary for proper functioning of the central nervous system
and play a role in the maintenance of normal neuronal
plasticity. Specifically, dietary deficiencies of iron, zinc,
iodine, selenium, copper, manganese, fluoride, chro-
mium, and molybdenum are associated with mild to sig-
nificant changes in neuronal function that can lead to
poor health and adverse effects on behavior and learning

[6].

Zinc deficiency related to dietary intake may be a factor in
the development of several conditions that ultimately
make learning more difficult for children. Such condi-
tions include Autism Spectrum Disorders (ASD), Atten-
tion Deficit Hyperactivity Disorder (ADHD) and
hyperactivity. In a recent review article, it was hypothe-
sized that the increase in Autism may be related to tran-
sient maternal hypothyroxinemia resulting in low tri-
iodothyronine (T3) in the fetal brain from insufficient
dietary iodine intake and/or environmental exposure to
antithyroid agents such as mercury [7]. Zinc deficiency,
however, also lowers T3 [8] and may occur over time with
the consumption of certain food chemicals such as high
fructose corn syrup [9], tartrazine and sunset yellow
[10,11]. The prevalence of low birth weight increased sig-
nificantly in women in the United States (US) who had
serum zinc levels in the lowest quartile [12], and low zinc
intake during pregnancy is associated with a significant
increase in the risk of preterm delivery [13]. Low birth
weight and pre-term birth increase the risk of autism two
fold [14]. Zinc is particularly crucial to a number of bio-
logical processes, and essential for neural development
[15]. Poor nutrition leading to dietary deficiencies of zinc
and/or other essential dietary nutrients such as selenium,
amino acid methionine, and essential fatty acids can dis-
rupt metabolic processes and impair brain function and
neuronal plasticity by exacerbating heavy metal neurotox-
icity [1,16-18]. There is evidence to suggest that the body's
ability to maintain neuronal plasticity when essential die-
tary nutrients are lacking can be additionally impaired by
exposure to environmental mercury. This article provides
a review of such evidence and a model of how this toxic
effect of mercury may occur (Figure 1).

The "Mercury Toxicity Model" in figure 1 is a flow chart of
what can happen in the body when there is exposure to
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mercury. Neither the form of mercury nor the route of
exposure is necessarily relevant for the purposes of this
discussion. Exposure can occur via inhalation or inges-
tion; the model gives two examples of mercury (Hg) expo-
sure from ingestion of foods found in our environment
(Hg in Fish and Hg in High Fructose Corn Syrup), without
excluding other possible exposures such as Hg in ambient
air. Upon exposure, in a healthy individual with adequate
nutrition, metallothionein is expressed and mercury is
eliminated from the body. If the individual consumes an
unhealthy diet leading to mineral imbalances, especially
zinc loss and copper gain, then it is possible that either
there will not be enough metallothionein to eliminate the
mercury or the metallothionein may not function prop-
erly. In either case, if the mercury is not eliminated then it
will lead to oxidative stress. An important target organ of
mercury regardless of form when it cannot be eliminated
from the body is the brain. In the case of ingestion, bacte-
ria and yeast in the gut may change inorganic mercury to
organic methyl mercury, which is thought to pass through
the blood brain barrier. In brain tissue organic mercury
may then be converted back to inorganic mercury. Oxida-
tive stress in the brain from mercury insult leads to
reduced neuronal plasticity and this impairs learning.
Mercury exposure via fish consumption is a special case.
Fish is an important dietary food as it contains the fatty
acids important for improved neuronal functioning and
plasticity. However, if fish does not contain selenium in a
1:1 ratio with mercury and there is more mercury in the
fish than selenium, then it is possible that consumption
of the fish can disrupt the glutathione system leading to
oxidative stress caused by mercury insult or other neuro-
toxins. Disruption in the glutathione system also reduces
neuronal plasticity and impairs learning. Properly func-
tioning metallothionein and glutathione systems are
therefore required for mercury metabolism. This model is
not perfect but the following review provides evidence to
support the hypothesis, that if correct, cannot be ignored
for very long.

Sources of mercury exposure

Mercury in the environment

Mercury exposure, in its various forms, is thought to be a
risk factor in causing some of the more prevalent neuro-
logical learning disorders, including autism [19]. A study
of mercury in the environment and its correlation to pedi-
atric neurodevelopmental disorders found that on aver-
age, for every 1,000 pounds of mercury (all forms)
released into the environment via air emissions or waste-
water effluent, as documented by the Environmental Pro-
tection Agency's Toxic Release Inventory, there was a 43-
percent increase in the rate of special education services
and a 61-percent increase in the rate of autism [20]. In a
more recent study, investigators of environmental mer-
cury exposure found that for every 1,000 pounds of mer-
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cury release, there is a 3.7% increase in autism rates of
school age children living near coal fired power plants
[21].

The presence of mercury in our environment will increase
as long as humans continue to burn coal and use mercury
to manufacture products (e.g., mercury amalgam, chlor-
alkali chemicals, thermometers, thermostat switches).
With respect to mercury emissions into the atmosphere,
the United States Environmental Protection Agency
(USEPA) estimates that about one third of US emissions
are deposited within the contiguous US and the remain-
der enters the global cycle, of which the US contributes
roughly three percent [22]. Current estimates are that less
than half of all mercury deposition within the US comes
from US emission sources. Mercury is therefore a trans-
boundary issue and a global environmental contamina-
tion problem. In addition to the emissions from burning
coal, mercury also enters the environment via wastewater
from dental clinics using mercury amalgam and chlor-

alkali chemical manufacturing plants using mercury cells.
For environmental mercury levels to fall, there must be a
worldwide effort to reduce mercury emissions from coal-
fired power plants and to reduce the use of mercury in
products and manufacturing processes.

With respect to mercury cell chlor-alkali chemicals, there
are approximately 50 manufacturing plants left world-
wide. In the US, many plants have closed and most of
them are now abandoned Superfund sites or undergoing
corrective clean up action for mercury contamination
[23]. The mercury contamination is a result of many years
of mercury loss to the building infrastructure, atmos-
phere, surrounding soil, groundwater, and nearby
streams. Clean up of these sites is slow often taking many
years as mercury is continually released into the environ-
ment [23-25] and clean up technology is still under devel-
opment [23]. The exact amount of mercury released from
these abandoned sites each day remains unknown. The
mercury cell chlor-alkali manufacturing plants still in
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operation in the US use approximately 80 tons of mercury
every year to manufacture the chlor-alkali products caustic
soda, chlorine, potash, and hydrochloric acid [26]. These
chlor-alkali products all contain residual mercury [27]
and are used by food, chemical, and pharmaceutical man-
ufacturers to make thousands of other products [28].
Although only five plants now operate in the US, mercury
cell chlor-alkali chemicals continue to be imported by US
manufacturers to make their products [29]. Because of the
magnitude of the use of mercury in manufacturing prod-
ucts, mercury and mercury-containing compounds from
these products are found as a waste material in both
household and industrial wastewater effluent and in sew-
age sludge that can then be applied to land as a fertilizer
[30].

As mercury is discharged into the environment by differ-
ent industrial processes and through the use of mercury
contaminated chlor-alkali chemicals, humans become
exposed via the water they drink, the air they breathe, and
the foods they eat. Chen et al. found that human subjects
living in a mercury contaminated region had a mean mer-
cury concentration in serum nearly 40 times that of the
control group and a mean mercury concentration in urine
almost 75 times that of the control subjects living in a
non-contaminated region [31]. The mercury in the con-
taminated region came from different sources: mercury
mining and ore processing, coal combustion for power
production, and chlor-alkali industries [31]. Chen et al.
determined that the human subjects living in the contam-
inated region were primarily exposed to mercury via the
inhalation of elemental mercury vapor and the consump-
tion of mercury contaminated foodstuffs, which con-
tained different mercury species or forms [31].

With regard to cumulative mercury exposure, there are
multiple possible sources. These sources may include mer-
cury as a pollutant in air, soil, dust, and water, a contami-
nant in foodstuffs and consumer products, a material in
dental amalgam and lighting fixtures, and a contaminant
in fish and seafood. Overall environmental mercury expo-
sure includes all of these sources as "environment"
includes home and office as well as the outdoors. Given
the growing evidence of ongoing, cumulative environ-
mental mercury exposure, it may be prudent to follow the
American Academy of Pediatrics' guidelines for limiting
exposure to all forms of mercury to help prevent neurode-
velopmental problems in children [32].

Methyl mercury in fish: a special consideration

Fish is an important dietary source of omega-3 fatty acids
that are required for normal neural development. How-
ever, fish can also be contaminated with mercury. (Figure
1.) According to the World Health Organization (WHO)
and the Food and Drug Administration (FDA), concentra-
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tions of methylmercury (MeHg) in various species of fish
cover a wide range, from less than 0.01 ppm to over 3.0
ppm fresh weight, depending on factors such as pH, the
redox potential of the water, and the species, age and size
of the fish [33,34]. Human hair analysis for mercury is a
useful biomarker for determining long-term exposure to
mercury from fish and non-fish food. Using data from the
1999-2000 National Health and Nutrition Examination
Survey (NHANES), McDowell et al [35] found that total
hair mercury is associated with age, race/ethnicity, and fre-
quency of fish consumption. Analyses of blood from par-
ticipants of the NHANES also found elevated mercury
levels in women who were older, reported eating more
fish, and who designated themselves in the "other" racial/
ethnic category (includes Asians, Native Americans, and
Pacific Islanders [36,37]. With respect to chronic, low-
level exposure to MeHg from maternal seafood consump-
tion during pregnancy, there have been two studies pub-
lished with conflicting results. In the Faroe Islands study,
researchers found after following 900 children until seven
years of age that higher umbilical cord blood MeHg was
associated with lower scores on several developmental
and cognitive tests [38]. This finding differs from the Sey-
chelles Child Development study that found no associa-
tion between total maternal hair mercury and the
neurodevelopmental test performance demonstrated by
700 children, who were followed until up to nine years
[39]. These differing findings have led to much contro-
versy as to whether the risks of low-level MeHg exposure
outweigh the benefits provided by omega-3 fatty acids in
fish. The controversy, however, is based on the assump-
tion that dietary mercury exposures were the same for
mothers who participated in the Seychelle and Faroe
Island studies. Dietary mercury exposures for these two
groups are not the same however. The Faroese diet
includes whale meat and the Seychelles Islanders' diet
does not [40]. In whale meat, the concentration of mer-
cury rises continually with age and can exceed the sele-
nium content [41]. Selenium is an important
micronutrient needed to support glutathione function,
which protects neurons from damage caused by mercury
induced oxidative stress (figure 1). In fish, the concentra-
tion of mercury also rises continually with age but does
not generally exceed the selenium content [42]. The
Faroese diet of whale meat most likely contains more
unmitigated mercury exposure with lower levels of sele-
nium.

Studies suggest there is an interaction between mercury
and selenium [43-46], however, it is unclear whether sele-
nium protects from the toxic effects of mercury or mercury
interferes with the benefits of selenium. It has been sug-
gested that the formation of a 1:1 Hg-Se compound may
explain the mercury detoxification by selenium [46]. In
the study referenced earlier, Chen et al. reported serum

Page 4 of 15

(page number not for citation purposes)



Behavioral and Brain Functions 2009, 5:44

selenium concentrations were significantly higher in the
human subjects living in the mercury-contaminated
region [31]. Specifically, with increased exposure to all
forms of environmental mercury, serum selenium con-
centrations associated with glutathione peroxidase (GSH-
Px) were 2 times higher in the mercury-exposed group
than in the control group living in the non-contaminated
area [31]. Further research is needed to determine how
selenium and mercury interact when it comes to environ-
mental mercury exposure or their concomitant consump-
tion in fish or whale meat.

The results of a 2005 study found that, with moderate fish
consumption during pregnancy, there was a benefit to off-
spring cognition, but that exposure to higher levels of
mercury from fish led to adverse effects on child cognition
[47] (Figure 1). The consensus now is that pregnant
women do not need to avoid eating fish, but they need to
choose varieties of fish with lower mercury concentrations
[48]. Unfortunately, many species of fish have been com-
promised by MeHg contamination and the USEPA and
the FDA have issued a joint advisory to pregnant women
and others on the hazards of overconsuming contami-
nated commercial and non-commercial fish [49]. The
most contaminated fish include king mackerel, swordfish,
shark and tilefish.

Fish advisories for mercury in the US increased from
2,436 in 2004 to 3,080 in 2006. Thirty-five of fifty states
have issued statewide fish advisories for methylmercury
that suggest limiting consumption of certain fish and
some include recommendations for safe levels of con-
sumption and/or exposure [50]. These advisories often
focus on the health effects of mercury exposure associated
with neurodevelopmental harm and are therefore limited
to the infant and women who are pregnant, nursing, or of
reproductive age. No studies have been conducted to
determine what effect fish consumption may have on sen-
sitive populations such as children with attention deficit
hyperactivity disorder (ADHD) or some form of autism
spectrum disorder (ASD), however, clinical trials have
been performed giving children with ADHD fish oil as a
fatty acid supplement. The results of a study by Richard-
son and Puri are discussed in the last section of this article
[51].

Total mercury in high fructose corn syrup

A key discovery related to the isomerization of dextrose in
the 1960's led to the development of high fructose corn
syrup (HFCS) by the corn refining industry [52]. HFCS is
the end product from a corn wet-milling process that
involves a number of steps in a product line that yields
corn oil, animal feed, starch products, and corn sweeten-
ers. Food manufacturers use HFCS as a sweetener to stabi-
lize food products and enhance product shelf life [53].
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Several chemicals are required to make HFCS, including
caustic soda, hydrochloric acid, alpha-amylase, glucoamy-
lase, isomerase, filter aid, powdered carbon, calcium chlo-
ride, and magnesium sulfate [54]. Up until recently, HFCS
manufacturers used "mercury grade" caustic soda from
mercury cell chlor-alkali plants to make their product and
as a result consumers were likely exposed to low levels of
mercury over time [55]. Using the results of analytical test-
ing conducted on FDA collected samples of commercial
HFCS for total mercury and the US per capita consump-
tion of HFCS, Dufault et al. estimated daily mercury
intakes from HFCS ranging up to 28 ug [55,56]. Con-
sumption of mercury contaminated HFCS may have over
time exceeded other major sources of mercury especially
in high-end consumers of beverages sweetened with HFCS
[55]. In response to the Dufault et al finding, the Corn
Refiners Association stated in a news interview that the
findings were outdated because they no longer use mer-
cury cell chlor-alkali products in their manufacturing
process [57]. This change in manufacturing practices has
not been verified by a third party with nothing to gain out-
side of the corn industry and there are no regulations in
place to prevent the future use of mercury cell chlor-alkali
products in the HFCS manufacturing process. In any case,
the data released by Dufault et al remain the only publicly
available peer reviewed data. The Corn Refiners Associa-
tion does not appear to dispute the fact that for many
years, HFCS consumers were exposed to low levels of mer-
cury in their diet from this product. HFCS is now ubiqui-
tous in processed foods and significantly consumed by
people all over the world. By the mid 1980's, when high
fructose corn syrup had become the sweetener of choice
by the soft drink beverage industry [52] as well as the
manufacturers of many other processed food products,
there was a corresponding rise in the prevalence of autism
[58].

The rates of diagnosed Autism Spectrum Disorders are
shown in Table 1 for California, the only State that reports
number of cases dating back to the mid-1980s [59]. The
annual net growth in cases ranges from 9% to 12%
between 1987 and 2006-2007 and is consistent with
growth found in other states in recent years. Annual
growth rates of Autism Spectrum Disorder in California
peaked in 2001 and 2002 at 19.6 and 19.4 percent respec-
tively then declined to 11.8 percent in 2006. Once a child
is diagnosed with autism, the diagnosis is stable as is
shown by the data from a longitudinal study by Lord and
her colleagues [60]. In that study fewer than 6% of the
children ages 2 to 9 had a reversal in the diagnosis. Simi-
larly, in California, 94 percent of total persons with
Autism Spectrum Disorders kept their diagnoses. Table 1
also shows the per capita consumption of high fructose
corn syrup in pounds per year based on USDA estimates.
The peak years for annual consumption of HFCS occurred
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Table I: Net Growth in Persons Diagnosed with Autistic
Spectrum Disorders, CA Per Capita Consumption of High
Fructose Corn Syrup, US, 1987-2006

Year % Growth Per Capita
Autism Consumption
HFCS, Iblyr
1987 9.0 340
1988 10.8 349
1989 .3 343
1990 10.9 353
1991 10.4 358
1992 8.5 36.9
1993 12.9 3838
1994 13.5 40.0
1995 134 41.0
1996 16.8 41.1
1997 17.2 43.0
1998 17.2 44.1
1999 16.2 45.4
2000 18.3 44.6
2001 19.6 44.6
2002 19.4 448
2003 13.5 43.4
2004 12.1 42.7
2005 10.6 422
2006 1.8 41.5

CA = California; US = United States; % = percent; HFCS = High
Fructose Corn Syrup; Ib/yr = pounds per year

in 2000-2002 at 44.6 and 44.8 lbs/yr respectively, the
same years as the peak for autism.

The decline in annual growth rates of Autism Spectrum
Disorder in California could be explained by the reduc-
tion in annual per capita consumption of high fructose
corn syrup or the reported reduction in the use of mercury
cell chlor-alkali chemicals in the high fructose corn syrup
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manufacturing process. Whatever the case, there may be a
biochemical connection between low level mercury expo-
sures, zinc deficiency and the development of learning
disorders such as ADHD and autism spectrum disorders.
In a 1990 human study, researchers found that consump-
tion of fructose and HFCS may lead to certain mineral
imbalances including zinc loss and copper gain [9] (Fig-
ure 1). The human subjects demonstrated a reduction in
numerical zinc balance and an increase in numerical cop-
per balance when they were fed fructose and HFCS com-
pared to the adjustment period [9]. This finding along
with the more recent finding of the historic use of mercury
in high fructose corn syrup [55] is of particular signifi-
cance today with respect to neurodevelopmental disor-
ders since there is now evidence that autism can be caused
by a biochemical abnormality that disables the metal
clearing function of the zinc dependent metallothionein
(MT) protein [61-64] and zinc deficiency plays a role in
ADHD [10,11]. Two mechanisms with the potential for
disabling MT functioning include severe zinc depletion
[65] and toxic metal overload [61-64]. Long term expo-
sure to mercury contaminated high fructose corn syrup
could produce both of these mechanisms and/or condi-
tions that may disable MT functioning and lead to the bio-
accumulation of mercury or other adverse neurological
effect.

Children with Autism Spectrum Disorders have increased
body burdens of mercury [66]. Because mercury inhibits
cysteine ligands in the metal clearing metallothionein
(MT) proteins that normally bind with metal ions such as
copper and zinc [67], consumption of mercury-contami-
nated HFCS and other zinc depleting substances [10,11]
over time by sensitive individuals may induce an MT mal-
function (Figure 1). Such a malfunction may lead to
severe zinc deficiency and allow copper to reach toxic lev-
els in membranes leading to lipid peroxidation and cell
damage [68] (Figure 1). Exposure of the brain to excessive
oxidative stress may lead to a loss in learning capacity
(Figure 1). Many children with ADHD are deficient in the
micronutrient zinc [69,70]. Consumption of zinc deplet-
ing food additives [9-11] increases hyperactive behaviors
(inattention, impulsivity, and over activity) both in chil-
dren with extreme hyperactivity (i.e., ADHD) and in the
general population [71]. Increased hyperactivity is associ-
ated with the development of educational difficulties
especially in reading [72]. In rats, zinc deficiency along
with oxidative stress predisposes the brain to damage by
disruption of the blood-brain barrier [73] and prenatal
zinc deficiency has pronounced effects on postnatal met-
allothionein metabolism, which can persist into adult-
hood [65]. With respect to consumption of high fructose
corn syrup and adverse effect, Molteni et al. [74], found
that a high fat, HFCS diet reduced brain-derived neuro-
trophic factor (BDNF) neuronal plasticity, and learning in
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rats. BDNF levels have been measured in human subjects
with neurodevelopmental learning disorders. In 2006,
Hashimoto et al. reported the serum levels of BDNF in
human patients with autism were significantly lower than
those of normal controls [75]. Shim et al. however, found
mean plasma BDNF levels were significantly higher in 41
ADHD patients compared to 107 normal controls and
suggested that plasma BDNF levels were positively associ-
ated with the severity of inattention symptoms [76]. Fur-
ther studies will be required to understand the role of
BDNF in either learning disorder.

As indicated by our toxicity model (figure 1), mercury
may adversely affect learning if either metallothionein
and glutathione metabolic functions are not functioning
properly and supported by key dietary nutrients. Both of
these metabolic functions are required by the body's
immune system to combat mercury exposure. How the
immune system responds to mercury insult is discussed in
the section below.

Nutritional deficiencies and metabolic
disruptions in sensitive populations

Amino acids and the glutathione system

Essential amino acids, fundamental building blocks of
proteins that provide the structural integrity of all living
organisms, are provided by a diet rich in protein. Essential
amino acids (those not produced endogenously) include
histidine, isoleucine, leucine, lysine, methionine, pheny-
lalanine, threonine, tryptophan, and valine. Essential
amino acid deficiency can lead to adverse health effects.
For instance, a deficiency of the essential amino acid
methionine can adversely affect behavior and learning.
Researchers found that 51 percent of autistic children
showed evidence of methionine deficiency [77]. In a more
recent study of 90 autistic children and 45 controls, mean
plasma levels of methionine, cysteine, total glutathione,
and the ratio of oxidized to reduced glutathione were sig-
nificantly decreased among the autistic children [78].
Methionine acts as a precursor in the production of glu-
tathione (GSH) in mammalian hepatocytes as a result of
its conversion to cysteine [79]. James et al. found lower
concentrations of methionine in the plasma of 20 autistic
children compared to 33 control children without autism
in a study published in 2004 [80].

GSH is the primary defense used by the neuron against
free radicals. Depletion of GSH in rats can impair short-
term and long-term mechanisms of synaptic plasticity and
stress the redox balance in the normal function of brain
circuitry [81]. Metals, particularly copper and mercury,
play a primary role in the initiation of reactive oxygen spe-
cies and the depletion of GSH [31,82].
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The GSH system is effective at scavenging free radicals and
serves as an oxidation reduction buffer that allows for the
reduction of the highly reactive hydrogen peroxide (H,O,;
a byproduct of cellular respiration) to water. This prevents
oxidative stress, which could lead to lipid peroxidation
and cell damage [83,84]. In the reaction scheme illus-
trated in Figure 2, oxidation is potentiated by the catalyst
glutathione peroxidase (GSH-Px) in which selenium plays
a key role as an antioxidant cofactor. GSH-Px catalyzes the
oxidation of reduced glutathione and allows for the
reduction of hydrogen peroxide to water, preventing lipid
peroxidation and cell damage [31,83,85]. Oxidized glu-
tathione (GSSG) is reduced to GSH, a reaction catalyzed
by glutathione reductase (GSH-Rx). Mercury or copper,
shown as Mn in Figure 2, can disrupt the GSH system,
leading to cellular insult and potential apoptosis as a
result of the generation of hydrogen peroxide [86]. Results
from the recent study by Chen et al. of mercury-exposed
humans suggest that mercury affects the bioavailability
and retention of selenium and interferes with the meta-
bolic processes dependent on selenium [31]. The
researchers found that the serum selenium concentrations
associated with GSH-Px and selenoproteins were 2 times
higher in the mercury-exposed group than the control
group [31]. A disruption of the GSH system by mercury
leads to GSH depletion and cell destruction. An in vitro
study of Jurkat T cells exposed to thiomersal demon-
strated concentration-dependent apoptosis [87]. It was
found that the mercury moiety, not the thiosalicylic acid
moiety, of thiomersal was responsible for glutathione
depletion [87]. GSH depletion is linked to several neuro-
degenerative disorders [88]. James et al. found lower con-
centrations of total GSH in the plasma of 20 autistic
children compared to 33 control children without autism
in a study published in 2004 [80]. In a recent study pub-
lished in 2009, Sitta et al. found erythrocyte and plasma
glutathione levels were significantly reduced in phenylke-
tonuric patients compared to a control group [89]. When
the GSH system is upset by the presence of mercury,
changes in the immune system occur. Mercury exposure
activates the glucocorticoid anti-inflammatory response
[90,91]. Glucocorticoids enhance the neurotoxicity of
reactive oxygen species by decreasing the activity of glu-
tathione peroxidase. This results in a negative feedback
loop that depletes GSH and exacerbates the apoptotic
process [92,93] (Figure 2). The glucocorticoid anti-
inflammatory response also induces MT expression in the
presence of mercury [91,93-96].

Metallothionein: a protein for metal elimination

MTs represent a family of ubiquitous, low-molecular-
weight, metal-binding proteins that have a molecular
mass of less than 7,000 Daltons, containing approxi-
mately 33-percent cysteine residues [94]. Due to their
binding capacity (i.e., up to seven zinc or 12 copper ions
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Oxidation and Reduction of the Glutathione System
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Figure 2
Oxidation and Reduction of the Glutathione System.

NADP * NADPH

per molecule) and ubiquitous nature, it has been sug-
gested that MTs may engage in essential metal trafficking
to and from many metal-dependent proteins [91]. MTs
are involved in many important processes such as the reg-
ulation of zinc homeostasis, necessary for proper enzyme
function [95-97]. Although as many as 18 different metals
may be associated with an MT molecule, only copper, cad-
mium, lead, silver, mercury, and bismuth are capable of
displacing a zinc atom [94]. All of these known environ-
mental toxicants cause MT expression [94]. MTs are
among the body's primary protective molecules against
toxic metals [68,98]. In mice, MT provides a survival ben-
efit in stressful situations, such as heavy metal and free
radical exposure, inflammation, and zinc or other nutri-
ent deficiency [94]. The protective effect of MT against the
toxicity of cadmium and mercury vapor has been the most
studied thus far [99-102].

Besides toxic metal exposure, the MT gene family is also
induced by bacterial cell wall lipopolysaccharides and
inflammatory cytokines (such as interleukin-1beta), col-
lectively playing a major neuroprotective role against
these various environmental insults. Constitutive cellular
abundance of MTs -1, -2, -3 and -4 (the latter specifically
localized to stratified squamous epithelium) are therefore
an important index of a tissue's susceptibility, and capa-
bility to handle a wide array of toxic insults. As the nasal
cavity, primary olfactory neurons at the cribiform plate,
and anatomically connected olfactory bulb are continu-

ally exposed to various airborne pollutants in the external
environment, the olfactory system provides a direct route
of entry into the central nervous system for an assortment
of environmental neurotoxic agents including mercury. It
is therefore not surprising that the olfactory system has
one of the highest MT abundances of the mammalian cen-
tral nervous system, and that expression of the MT-1, -2,
and especially -3 isoforms are greatest in the olfactory
neurons of the brain and the anatomically adjacent hip-
pocampal region, which has direct nerve fiber projection
contacts from the olfactory bulb [94,101,103-105]. In
mercury vapor intoxicated mice, MT-3 expression was
found to dominate in the olfactory cells of the olfactory
mucosa as well as in neurons of the olfactory bulb, while
MT-1 and -2 immunoreactivity predominated in support-
ing basal and acinar cells of the Bowman's gland of the
olfactory mucosa [101].

MT-3 is a brain specific, high zinc containing MT, which is
found in neuronal and glial cells [94,101,104-107].
Researchers examined 503 patients with autistic spectrum
disorders and found lower levels of MT with significantly
higher copper: zinc ratios in the autistic group compared
to healthy age- and gender-matched controls [77]. Three
peer reviewed papers published in 2009 report findings
that support the link between low-dose mercury exposure
and metallothionein dysfunction and an association with
ASD [62-64]. It has been theorized that MTs may serve as
a redox control and the fact that MT-3 is relatively high in

Page 8 of 15

(page number not for citation purposes)



Behavioral and Brain Functions 2009, 5:44

zinc and is associated with neurons provides evidence that
it fills a role as an oxidation-reduction buffer in neuronal
tissue. Importantly, the MT protein in the immune system
may not function properly if either zinc or methionine are
deficient in the diet [108,109]. Consumption of any sub-
stance leading to zinc loss and copper gain (e.g. HFCS) or
zinc deficiency (e.g. tartrazine and sunset yellow food
dye) should be avoided by sensitive populations such as
children diagnosed with ASD, ADHD or found to be zinc
deficient.

Fatty acids and neuronal functioning

Omega-3 fatty acids have been found to be a basic com-
ponent of normal neural development and maintenance
of neural plasticity [110]. Dietary sources of omega-3,
however, are not plentiful in plant foods with the excep-
tions of flax (Linum usitatissimum) and Chia (Salvia his-
panica) seeds, and are found in small amounts in walnuts,
soybeans, canola oil, and free-range chicken eggs [110].
The only rich sources of omega-3 fatty acids are cold water
fish (e.g., anchovies, krill, herring, tuna, mackerel,
salmon, and sardines), cod liver oil, and other fish oils.
Deficiencies of two important omega-3 fatty acids, eicos-
apentaenoic acid (EPA) and docosahexaenoic acid
(DHA), commonly lead to adverse health effects and have
been found in children with behavior disturbances
[111,112].

The role of DHA in brain development and visual acuity
has been extensively studied [113]. The breast milk of
nursing mothers contains adequate amounts of DHA if
dietary intake is sufficient [113]. There is a preponderance
of evidence that shows infants fed unfortified formula
have poorer vision and lower IQs than infants fed formula
fortified with DHA [113]. In 1993, the WHO recom-
mended that pre-term and term infant formulas include
DHA and in 2001, FDA allowed a manufacturer's self-dec-
laration that DHA and arachidonic acid (AA) were gener-
ally recognized as safe (GRAS) for use in infant formula
[114]. In 2002, infant formula manufacturers began mar-
keting infant formulas containing DHA and AA in the US.

DHA protects neurons and glia from death, in part, by
maintaining BDNF, which is a small protein, made within
the brain that is crucial for maintaining neuronal plastic-
ity [115,116]. Wu et al. [117] found that dietary omega-3
fatty acids in the form of DHA not only normalize BDNF
but also reduce oxidative damage and counteract learning
disability after traumatic brain injury in rats. Oxygenated
DHA-derivatives, including a recently described form of
modified DHA called neuroprotectin D1, have been
shown to promote brain cell survival via the induction of
highly specific brain gene expression programs that confer
strong resistance to apoptosis and potent neuroprotection
[118].

http://www.behavioralandbrainfunctions.com/content/5/1/44

Researchers have been investigating the link between
essential fatty acids and ADHD in children. Stevens et al.
[119] found that 53 children with ADHD had signifi-
cantly lower plasma levels of omega-3 fatty acids than did
the control group of 43 children. The authors noted that
the children with the worst symptoms of essential fatty
acid deficiency increased thirst, frequent urination, dry
hair and skin - had the lowest plasma levels of omega-3
fatty acid levels. Another study, conducted by Mitchell et
al. [120], compared 44 hyperactive children with 45 age-
and sex-matched controls. DHA levels were significantly
lower in the hyperactive children, who also had auditory,
visual, language, reading, and learning difficulties, and
lower average birth weight compared to controls. Colter et
al. [121] also found low levels of DHA and total omega-3
fatty acids in ADHD children compared with controls. In
an effort to raise DHA levels, Voight et al. [122] adminis-
tered 345 mg per day of DHA to 27 children with ADHD
without any significant improvement in behavior com-
pared to the 27 children who served as controls. Hirayama
et al. [123] used a higher dose of DHA (514 mg per day)
than the previous study and also found no improvement
in the DHA group.

Despite the fact that low levels of DHA were found in chil-
dren with ADHD, supplementing with DHA alone or in
high amounts relative to other essential fatty acids (EFAs)
have not been shown to be effective in improving behav-
ior. Researchers have begun to look at other fatty acids
and found that a combination of EFAs and in particular
EPA may be more effective in the modulation of behavior
disorders. Forty-one children with learning difficulties
were randomly assigned to supplementation with EPA
186 mg, DHA 480 mg, gamma linolenic acid (GLA) 96
mg, linoleic acid 864 mg, and AA 42 mg or placebo (olive
oil) for 12 weeks [51]. The group receiving the fish oil sup-
plement had significant improvements in learning and
behavioral scores and other ADHD-related symptoms
compared to the group given olive oil [51]. (Figure 1.) In
a later study, 117 children with developmental coordina-
tion disorder were given either 558 mg EPA, 174 mg DHA,
and 60 mg GLA or placebo [124]. The children receiving
the fish oil supplement demonstrated significant
improvements in reading, spelling, and behavior after
three months of treatment compared to placebo [124]. In
an open-label pilot study, Sorgi et al. [125] gave a high
dose EPA/DHA supplement containing 10.8 g of EPA and
5.4 g of DHA per day to 9 children for eight weeks. They
found significant improvements in behavior including
inattention, hyperactivity, oppositional behavior and
conduct disorder. Sinn and Bryan [126] administered 558
mg EPA, 174 mg DHA and 60 mg GLA/day to 36 children
for 15 weeks and improvements were found for inatten-
tion and hyperactivity and impulsivity compared with the
control group. Recently both Johnson et al. [127] and
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Belanger et al. [128] found improvement in inattention in
a subgroup of children with ADHD when supplemented
with a mixture of these essential fatty acids.

EPA and DHA are both essential for optimal brain func-
tion, but for different reasons. DHA is important for the
structure of the neuronal membranes, while EPA plays a
role in brain function by regulating neuronal signaling,
neurotransmitter uptake, and the activity of phospholi-
pase enzymes. EPA has been shown to reduce the overac-
tivity of phospholipase A, which in excess can deplete the
phospholipids of the long chain polyunsaturated fatty
acids critical to normal brain function. EPA may be a use-
ful adjunct in the treatment of various neurological condi-
tions including depression, bipolar disorder,
schizophrenia, dyslexia, dyspraxia, ADHD, and Autism
Spectrum Disorders [112,129,130].

Magnesium and zinc are needed to help convert the 18-
carbon, plant-derived essential fatty acids (EFAs) to long
chain fatty acids, notably DHA and EPA [131]. Many chil-
dren with ADHD are deficient in these nutrients and may
therefore have difficulty elongating the 18-carbon fatty
acids [132]. In a sample of 116 children with ADHD,
researchers found that 95 percent had a magnesium defi-
ciency [133]. In 1997, researchers found that a combina-
tion of magnesium aspartate and magnesium lactate
supplemented at a dose of 200 mg daily for six months
significantly reduced disruptive behavior in children with
ADHD compared to a control group [134]. Galland [135]
found an impaired desaturation of polyunsaturated fatty
acid in a magnesium compromised population. This
desaturation enzyme is magnesium dependent. Mahfouz
et al. [136] found a significant reduction in long chain
polyunsaturated fatty acids in magnesium deficient cells
pointing to an impairment of delta 5 and/or delta 6 desat-
urase enzymes. It is possible that correcting a magnesium
deficiency may restore desaturase enzyme function.
Researchers also found that deficient levels of zinc are
more commonly found in children with ADHD and sup-
plementing these children with zinc significantly reduced
hyperactivity, impulsivity, and impaired socialization
scores, especially in children with low levels of EFAs
[137,138].

Children who have difficulty converting EFAs to long
chain fatty acids can obtain a preformed source of EPA
and DHA as a nutritional supplement or in the diet by
consuming fish or fish oil. As discussed above, cold-water
fish provide the only rich dietary source of these omega-3
fatty acids; however, recent research on trace metal con-
tamination has questioned their safety. Guallar et al.
[139] found, for instance, that the cardio protective bene-
fits of fatty fish may be compromised by their high mer-
cury content. Canadian researchers found a significant
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association between high levels of mercury and EPA in the
blood of children (consistent with high levels of fish con-
sumption) [140]. In addition, the researchers found a sta-
tistically ~ significant inverse association between
attentional focusing and blood mercury levels in children
under age three years of age [140]. A careful selection of
fish with low mercury and high EFA content, such as
salmon and sardines, is essential in minimizing exposure
to mercury while increasing consumption of these impor-
tant EFAs. With respect to the consumption of fish oil or
other supplements that are fish-derived, caution is war-
ranted, as mercury contamination may be possible. Out of
100 samples of fish oil dietary supplements analyzed for
mercury by the Food Standards Agency in the United
Kingdom, nine were found to contain mercury above the
limit of detection of 0.0014 mg/kg [141].

Key issues related to mercury exposure
guidelines

While the total dietary intake of mercury is not known,
mercury is widely accepted to be an unusually toxic heavy
metal and the American Academy of Pediatrics has recom-
mended that minimizing exposure to any form of mer-
cury is essential for optimal child health [32]. The current
recommendation for "safe" mercury consumption is
based on a "reference dose" or RfD from fish consump-
tion and only applies to methyl mercury (MeHg). The
USEPA and FDA define the RfD as " [a]n estimate (with
uncertainty spanning perhaps an order of magnitude) of a
daily oral exposure to the human population (including
sensitive subgroups) that is likely to be without an appre-
ciable risk of deleterious effects during a lifetime." The
current official RfD for methyl mercury in the US is set at
1 ppm although EPA has historically pushed for a lower
reference dose of 0.1 ppm. Unfortunately, this official
"reference dose" of 1 ppm does not take into considera-
tion what the human body needs nutritionally to success-
fully metabolize and excrete methyl mercury, and it only
applies to MeHg exposure.

With regard to total mercury exposure, the Joint Expert
Committee on Food Additives (JECFA) recommends an
exposure limit of 1 ppm for mercury in their 2005 Evalu-
ation of Food Additives report [142]. This report does not
specifically address the mercury content in the food color
additives tartrazine also known as FD&C Yellow 5 or sun-
set yellow also known as FD&C Yellow 6 but these chem-
icals are manufactured with the chlor-alkali product
"hydrogen chloride" and may not contain more than 1
ppm mercury according to US Food and Drug Administra-
tion regulations [143]. In addition to causing zinc defi-
ciency, both of these food color additives have been
linked to hyperactivity in children [71] and the United
Kingdom has asked manufacturers to voluntarily ban
their use in food products [144].
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Etiology of ASD and ADHD

In 2007 alone, there were 1000 studies published on all
aspects of ASD [145]. As is the case with ADHD, there are
likely unknown and unmeasured variables associated
with the development of ASD. Disease related and/or
exposure related bias arises when there is a causal or asso-
ciational path of no interest to the researchers [146]. In
this review article we have clearly not identified all of the
possible variables associated with the development of
these two disease conditions. The development of ASD
and ADHD likely involve a broad range of genetic, prena-
tal, social, developmental, nutritional and environmental
factors [145,147]. We have focused primarily on some of
the nutritional factors that may be considered along with
environmental mercury exposure in the development of
treatment plans for patients with ASD or ADHD. Multiple
treatment modalities are most likely needed to treat these
patients successfully [147].

Conclusion

Adequate nutrition, specifically omega-3 fatty acids,
methionine, and the trace minerals zinc and selenium are
important for maintaining neuronal plasticity and learn-
ing capacity. The evidence does suggest that improper or
inadequate nutrients may lead to behavior and learning
disorders when mercury is present in the environment.
Because current standards allow the use of mercury cell
chlor-alkali chemicals in food manufacturing, food prod-
ucts that are made with one or more of these ingredients
may contain trace amounts of mercury such as is the case
for HFCS and other food additives. These low-level mer-
cury exposures may contribute to cumulative environ-
mental mercury exposure and present a problem for
sensitive individuals who do not have adequate levels of
glutathione and metallothionein and/or are deficient in
the trace minerals needed for metal metabolism. Because
consumption of HFCS and other food additives may lead
to trace mineral imbalances and/or zinc deficiency, fur-
ther research is needed to determine whether or not these
food ingredients are safe for consumption by sensitive
populations. If food manufacturers continue to use mer-
cury grade chlor-alkali chemicals, it may be necessary to
account for this source of mercury exposure in dietary
guidelines for sensitive populations such as children with
ADHD and autism spectrum disorders. In addition, con-
sideration of dietary micronutrients required to enhance
neurological development and support proper function-
ing of metallothionein, glutathione peroxidase, and other
metal clearing and detoxifying mechanisms in the brain
seems warranted.
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