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Abstract

Background: Individuals at ultra-high risk (UHR) for psychosis have self-disturbances and deficits in social cognition
and functioning. Midline default network areas, including the medial prefrontal cortex and posterior cingulate
cortex, are implicated in self-referential and social cognitive tasks. Thus, the neural substrates within the default
mode network (DMN) have the potential to mediate self-referential and social cognitive information processing in
UHR subjects.

Methods: This study utilized functional magnetic resonance imaging (fMRI) to investigate resting-state DMN and
task-related network (TRN) functional connectivity in 19 UHR subjects and 20 matched healthy controls. The
bilateral posterior cingulate cortex was selected as a seed region, and the intrinsic organization for all subjects was
reconstructed on the basis of fMRI time series correlation.

Results: Default mode areas included the posterior/anterior cingulate cortices, the medial prefrontal cortex, the
lateral parietal cortex, and the inferior temporal region. Task-related network areas included the dorsolateral
prefrontal cortex, supplementary motor area, the inferior parietal lobule, and middle temporal cortex. Compared to
healthy controls, UHR subjects exhibit hyperconnectivity within the default network regions and reduced anti-
correlations (or negative correlations nearer to zero) between the posterior cingulate cortex and task-related areas.

Conclusions: These findings suggest that abnormal resting-state network activity may be related with the clinical
features of UHR subjects. Neurodevelopmental and anatomical alterations of cortical midline structure might
underlie altered intrinsic networks in UHR subjects.

Background
The ‘default mode’ is a term first coined by Raichle et al
[1] to describe resting-state brain function and may be
defined as a baseline condition of brain activity. The
default mode network (DMN) refers to a set of func-
tionally and anatomically organized neural regions that
are active during a behavioral resting state and deacti-
vated or suppressed during task performance [1,2]. The
DMN most commonly includes the medial prefrontal
cortex (mPFC) extending to ventral anterior cingulate
cortex (ACC), the posterior cingulate cortex (PCC)
extending to the precuneus (Pcu), and the lateral parie-
tal cortex (LPC) [1]. Midline structures within the DMN
have been implicated in self-referential cognitive and

emotional tasks [3,4] as well as spontaneous thought
processes known as mind wandering [5]. Self-referential
processing mediated by the so-called cortical midline
structures (CMS) is assumed to be the core of what is
referred to as ‘the self’ [6,7]. In contrast, lateral neocorti-
cal networks such as the dorsolateral prefrontal cortex
(DLPFC) are active during tasks that demand attention
and working memory [8,9]. Thus, these networks may
be referred to, respectively, as ‘task-negative’ and ‘task-
positive’ networks, which are negatively correlated or
anti-correlated [8].
The ability to understand another individual’s mental

state, called mentalizing or social cognition [10], is also
an important aspect of resting-state brain function
[11,12]. Human beings have a predisposition to engage
in self-referential thought or social cognition, and the
inclination to engage in such activity at rest (when not
performing a task) may be mediated by the default
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system of the brain; the DMN [13]. Certain regions
within the medial frontal lobe, including the ACC and
the lateral parietal lobule, have been shown to be related
to social cognition [14,15]. Functional imaging studies
consistently identify increases in medial prefrontal corti-
cal activity during social cognition tasks and have sug-
gested that among such regions, the mPFC plays a
predominant role in social cognition [16,17].
The social brain hypothesis [18,19] postulates that

schizophrenia is a disorder of functional and structural
connectivity within areas thought to regulate social cog-
nition, such as the fronto-temporal and fronto-parietal
cortical networks. Functional disintegration of these net-
works in patients with schizophrenia has been observed
during performance of several types of cognitive tasks
[20-22]. In addition, patients with schizophrenia consis-
tently show evidence of abnormal resting-state func-
tional connectivity [23-26], task-induced deactivation of
CMS, and anti-correlation between DMN and task-
related network (TRN) areas [25-27] when compared
with healthy controls.
Over the last decade, the pre-onset, or prodromal,

phase of schizophrenia has attracted considerable atten-
tion among researchers. Youths who are considered to
be putatively prodromal have been identified using
established criteria [28,29], and research on the charac-
teristics of individuals at ultra-high risk (UHR) for psy-
chosis has been conducted by several high-risk clinics.
Neuroimaging studies have revealed that prior to the
onset of psychosis, UHR youths already have brain
abnormalities similar to those present in patients with
schizophrenia [30-35]. These UHR youths also exhibit
wide-ranging neuropsychological deficits comparable to
those in patients with schizophrenia, although to a lesser
degree [36,37]. These deficits include impaired social
functioning and related problems with social skills
[38-40], which are significant predictors of psychosis
[41]. Recent studies from our group found that UHR
individuals perform significantly worse during theory of
mind (ToM) tasks, which measure the ability to concep-
tualize the mental state, beliefs, and intentions of other
individuals [42]. Another fundamental feature of the
prodromal phase of schizophrenia is self-disturbance
[43,44], which is considered to be a psychopathological
marker of psychotic vulnerability [45].
Therefore, the functionality of the DMN in UHR sub-

jects is of primary interest, as it holds the potential to
reveal any abnormalities in the activity of neural sub-
strates regulating self-referential and social cognitive
processing. It is possible that alterations in DMN func-
tion contribute to social cognitive deficits, such as
diminished ToM capabilities, and to social dysfunction,
such as social withdrawal and impairment of life-role
functioning. However, whether UHR subjects exhibit

normal connectivity in the default network remains
unknown. Thus, this study investigated DMN function
in two carefully matched groups of UHR subjects and
healthy controls. Because UHR subjects show impair-
ments in social cognition and self-referential processing
regulated by the DMN as well as in neurocognitive abil-
ities moderated by the TRN, it is hypothesized that
DMN and/or TRN functional connectivity is altered in
UHR subjects compared with healthy controls.

Methods
Participants
A total of 23 subjects at UHR for psychosis and 39
healthy volunteers underwent a resting-state functional
magnetic resonance imaging (fMRI) scan. Four UHR
subjects were excluded after MRI scanning; one with-
drew consent, another was assessed as having transi-
tioned to psychosis prior to scanning, the third was
scanned in an open-eye state, and the fourth showed
excessive head motion. The remaining 19 UHR subjects
fulfilled the following diagnostic criteria for at least one
of three UHR groups according to the Comprehensive
Assessment of At-Risk Mental States (CAARMS) instru-
ment [29]: (1) attenuated psychosis group (n = 17), (2)
brief limited intermittent psychotic symptoms (n = 0),
(3) vulnerability group (n = 5). Three subjects fulfilled
the criteria for groups (1) and (3) concurrently. From
among the 38 healthy volunteers (one was excluded as
scanned in an open-eye state), 20 age-and gender-
matched subjects were selected for between-group
comparisons.
UHR subjects were recruited from the Seoul Youth

Clinic (for detailed recruitment procedure and clinical
assessments, see Chung et al [42] and Shin et al [35]).
Seven subjects reported a family history of psychotic
disorders; three had one first-degree relative with schi-
zophrenia. Five UHR subjects were taking one or two
psychotropic medications at the time of scanning,
including anxiolytics (n = 4) and atypical antipsychotics
(n = 3). The mean prodromal period for the 19 UHR
subjects was 2.0 years (± 1.9), and three subjects have
since converted to psychosis during follow-up monitor-
ing with a mean of 83.7 days (± 53.9) after fMRI scan-
ning. The healthy controls were recruited from an
internet advertisement and screened using the Struc-
tured Clinical Interview for DSM-IV, non-patient edition
[46]. All reported no personal or familial (i.e., first-to
third-degree biological relatives) history of psychiatric
disorders.
Participants were excluded if they had any lifetime

diagnosis of substance abuse or dependence, neurologi-
cal disease or brain injury, evidence of significant medi-
cal illness, or IQ less than 70. Several subjects had
participated in previous studies from our group (one
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UHR subject and one control participated in Chung
et al [42], two UHR subjects and five controls in Shin
et al [35]). All participants provided written informed
consent, including parental consent for those younger
than 18 years of age. This study was approved by the
Institutional Review Board at Seoul National University
Hospital, and all procedures were performed in accor-
dance with the current version of the Declaration of
Helsinki.

Image acquisition
Functional images were acquired using a 1.5 T MAG-
NETOM Avanto scanner (Siemens, Erlangen, Germany).
Whole brain functional scans during a behavioral resting
state were acquired in 25 contiguous axial slices
approximately parallel to the anterior-posterior commis-
sure plane with interleaved multi-slice echo-planar ima-
ging according to the following parameters: TR = 2.34 s,
TE = 52 ms, field of view = 22 cm, flip angle = 90°,
voxel size = 3.44 × 3.44 × 5 mm, slice thickness = 5
mm, no inter-slice gap. For each participant, a total of
120 volumes during 4.68 min were acquired. fMRI scan-
ning was carried out in darkness, and the participants
were explicitly instructed to keep their eyes closed,
relax, and move as little as possible. T1-weighted high-
resolution structural images using a magnetization-pre-
pared rapid acquisition gradient echo (MPRAGE)
sequence were acquired in 176 contiguous axial slices
for co-registration and normalization of the echo-planar
images to the Montreal Neurologic Institute (MNI) tem-
plate. Imaging parameters for the structural images were
as follows: TR = 1.16 s, TE = 4.76 ms, field of view 23
cm, flip angle 15°, voxel size = 0.45 × 0.45 × 0.90 mm,
slice thickness = 0.9 mm, no inter-slice gap.
An average gap of 8.7 days (± 10.0) occurred between

clinical evaluation and fMRI scanning for all participants.

fMRI preprocessing
Functional imaging analysis was performed using SPM5
software (Wellcome Dept. of Imaging Neuroscience,
London, UK: http://www.fil.ion.ucl.ac.uk/spm) and in-
house software running under the MATLAB environ-
ment (Mathworks, Inc.). For each subject, the first four
images were discarded to eliminate the non-equilibrium
effects of magnetization. The remaining functional
images were corrected for differences in slice acquisition
timing, which was followed by realignment to the mid-
dle image in the initial scan to correct for inter-scan
movement and to remove signals correlated with head
motion. Spatial normalization into the standard MNI
template was performed and then smoothed using a
Gaussian kernel of 6 mm full-width half-maximum to
account for residual inter-subject differences.

fMRI analysis
First-order analysis
The intrinsic organization (i.e., functional connectivity
map) was separately reconstructed in the UHR subjects
and healthy controls using the PCC as a seed region [8]
and then analyzing the functional connectivity pattern
during rest. As a major research interest with regard to
resting-state fMRI is in slow-changing temporal activa-
tion, the fMRI data were temporally band-pass filtered
(0.01-0.08Hz) [25,47] using finite impulse response filter
to control for low-frequency drift and high-frequency
noise. Generally, fMRI time series suffer from spurious
correlations induced by partial volume effects of white
matter, cerebrospinal fluid, and whole-brain functional
activations. To account for this, multiple nuisance regres-
sors [48] were generated from the segmentation results of
T1 MPRAGE image using SPM5 software. A threshold
value of 0.8 was applied for these segmentation maps,
and “pure” white matter and cerebrospinal fluid masks
that were less contaminated by other kinds of tissue were
then extracted. For the generation of a whole-brain mask,
a skull-stripping module called Brain Extraction tool in
MRIcro software http://www.sph.sc.edu/comd/rorden/
mricro.html was used. Movement nuisance regressors
were also estimated using the realignment parameters
provided by SPM5 software. Subsequently, the nuisance
regressors were fitted using the least squares method for
the fMRI time series in each voxel and were then
regressed out using equation 1.
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Here, y is the observed time series of fMRI, H is the
estimated nuisance regressors (y_csf, y_wm, and y_wb
denote the average fMRI time series of CSF, skeletal
white matter, and whole brain, respectively. tx, ty, tz
and rx, ry, rz are translational and rotational movement
regressors, respectively), μ is the mixture (coefficients)
matrix of the nuisance regressors, and ε is the residual
time series that was extracted as the true fMRI activa-
tion free from nuisance confounds. Assuming normality

of the residual signal, a least square estimator ̂ of μ

was used in order to estimate ̂ , the estimator of true
fMRI activation ε that has no nuisance confounds.
The PCC, utilized as a seed region, was labeled using

a Brodmann area (BA) atlas available in MRIcro soft-
ware, which refers to the bilateral posterior cingulate as
BA 23. The blood oxygen level-dependent (BOLD) time
series of the voxels within this seed region were aver-
aged to generate the reference time series. A correlation
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map was produced by computing the correlation coeffi-
cients between the reference time series and the time
series from all other brain voxels. The resulting
rho-maps were converted to z-values using a Fisher’s
rho-to-z transform to improve normality. Statistical
maps of the intrinsic networks for UHR subjects and
healthy controls were created by entering the single-sub-
ject intrinsic network component into a voxel-wise one-
sample t-test using a criterion of p < 0.001 (uncorrected
for multiple comparisons) for each group. All results
were depicted on the surface, which was extracted by
FreeSurfer software using a canonical brain provided by
MRIcro software. An image-processing technique
termed maximum intensity projection was used to
visualize the most significant voxel at each location
between two brain surfaces (i.e., the white and pial sur-
faces, which are the boundaries between the white and
gray matter and between the gray matter and cerebrosp-
inal fluid, respectively).
Second-order analysis
The intrinsic networks for each subject from the first-
level analysis were entered into a second-level random
effects analysis using two-sample t-tests. Between-group
comparisons of two intrinsic networks were restricted to
the regions belonging to the intrinsic networks of con-
trol group with a threshold at p < 0.001 (uncorrected)
and a cluster size greater than 50 voxels.

Results
Demographic and clinical characteristics
Demographic and clinical characteristics for each group are
provided in Table 1. All participants were right-handed,
and the two groups were statistically similar in terms of
parental socioeconomic status and IQ. However, compared
to UHR subjects, healthy controls had a significantly higher
number of educational years (U = 84.00, p = 0.002**) and
scored significantly higher in the Global Assessment of
Functioning scale (GAF; U = 12.50, p < 0.001**) and the
Social Functioning Scale (SFS; t = -4.80, p < 0.001**).

Functional connectivity of the DMN and TRN
Default mode activity was observed in brain regions pre-
viously defined as within the DMN (Figures 1 and 2) for
both groups including the ACC, mPFC, Pcu, LPC, and
the inferior temporal region. Although the default mode
spatial maps look similar for UHR subjects and healthy
controls, significant differences were observed in specific
subregions of these areas (Figure 3). A two-sample t-test
revealed that UHR subjects had significantly greater
positive connectivity than did controls between the PCC
seed region and other areas in the bilateral ACC, mPFC,
Pcu, and LPC (cluster-level p < 0.001) (see Figure 4 for
details). Healthy controls did not show greater positive
connectivity than UHR subjects in any brain area.

Task-related or anti-correlated networks (Figures 1
and 2) and between-group differences (Figure 3) are also
reported. The TRN areas are similar to previous reports
[23,25] and include the DLPFC, supplementary motor
area, the inferior parietal lobule, and middle temporal
cortex. For the between-group comparison, the bilateral
DLPFC, the inferior parietal lobule, middle temporal
cortex, and left supplementary motor area are signifi-
cantly more (i.e., farther from zero) anti-correlated with
the PCC in controls than in UHR subjects (cluster-level
p < 0.001) (see Figure 5 for details). Healthy controls
did not exhibit a significantly reduced anti-correlation
compared to UHR subjects.

Discussion
To our knowledge, this is the first study directly investi-
gating resting-state functional connectivity of UHR sub-
jects versus healthy controls. During a resting state,
UHR subjects exhibited hyperconnectivity within DMN
regions as well as reduced anti-correlations between the

Table 1 Demographic and clinical characteristics of
subjects

Variables UHR subjects
(n = 19)

Healthy
controls
(n = 20)

Analysis

Mean SD Mean SD T/U/X 2 p

Male/Females 11/8 11/9 0.03a 0.86

Age (yrs) 20.8 4.1 21.7 2.1 -0.77b 0.45

Handedness (R/L)e 19/0 20/0

Parental SES 3.0 1.2 3.2 1.2 165.00c 0.63

Educational years 12.2 2.0 13.9 1.3 84.00c 0.002**

IQf 109.2 17.7 106.4 12.7 176.50c 0.70

GAF 52.3 11.6 89.8 2.0 12.50c < 0.001**

SFSg 100.39 10.21 115.09 6.76 -4.80d < 0.001**

PANSS 57.4 14.6

BPRS 43.5 8.6

SAPS 11.6 8.4

SANS 28.4 16.5

CAARMSh 46.5 18.8
aPearson’s chi-square test; bWelch’s t test; cMann-Whitney U test; dStudent’s t
test.
eAssessed using Annett hand preference questionnaire [62].
fEstimated by Korean-Wechsler Adult Intelligence Scale-Revised (K-WAIS-R)
[63].
gAverage scores of the seven subscales, each of which was standardized and
normalized with a mean of 100 and a SD of 15.
hScored by adding the intensity rating scores.

Data were not available for some participants in parental SES (control n = 1)
and SFS (control n = 5).

**p < 0.01

UHR: ultra-high risk; SES: Hollingshead socioeconomic status (highest = 1,
lowest = 5); IQ: intelligence quotient; GAF: Global Assessment of Functioning
[64]; SFS: Social Functioning Scale [65]; PANSS: Positive and Negative
Syndrome Scale [66]; BPRS: Brief Psychiatric Rating Scale (modified 24-item
version, rating items 1-7) [67]; SAPS: Scale for the Assessment of Positive
Symptoms [68]; SANS: Scale for the Assessment of Negative Symptoms [69];
CAARMS: Comprehensive Assessment of At-Risk Mental States.
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PCC and TRN regions compared with healthy
volunteers.
Despite inconsistent findings with respect to func-

tional connectivity in resting-state networks of patients
with schizophrenia, the current results agree with those
of Whitfield-Gabrieli et al [26] and Zhou et al [25]. In
these studies, the majority of participants were also in
their early twenties and in the early phase of schizophre-
nia with acute psychotic symptoms. Chronic schizophre-
nia subjects with mild psychotic symptoms (mean
duration ~10 years) exhibited reduced connectivity
between areas of the default network [23]. Together,
these results demonstrate that the DMN is hypercon-
nective during the prodromal and early psychotic stages
of the disease, in which subjective discomfort and psy-
chotic symptoms manifest and prevail, and that the
DMN areas become progressively less synchronized, as

aging and illness is progressing. A recent fMRI study
utilizing the n-back task found that patients with
chronic schizophrenia show reduced activation in the
right DLPFC and other frontal areas, but greater activa-
tion in the ACC and mPFC compared with controls
[49]. This finding demonstrates a failure to effectively
deactivate the ACC and mPFC, and implies that those
with schizophrenia are inefficient in their resource allo-
cation when moving away from internal mentation to
perform difficult tasks in the external world [49,50].
However, greater task-induced deactivation in the mPFC
in schizophrenia subjects was also reported, and the
magnitude of this change was associated with task per-
formance [24,27]. Thus, the hyperconnectivity of the
DMN and the reduced anti-correlation between the
DMN and TRN may be involved in the impaired neuro-
cognitive function of UHR subjects [36,37]. An inability to

Figure 1 Default mode and task-related maps for ultra-high risk subjects. On a green background, the default mode network is
highlighted in warm colors (red and yellow) and the task-related network is highlighted in cold colors (blue and light blue) depending on the
p-value of one sample t-test.
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synchronize the modulation between two anti-correlated
areas may also mediate these impairments.
In social phobia patients, a significantly lower deacti-

vation in the posterior cingulate regions and Pcu was
found during a face perception task compared with the
resting condition [51]. This suggests that the failure of
social phobia patients to deactivate the DMN plays an
important role in their persistent fear of social situations
and their self-focused attention. Social cognitive deficits,
social anxiety (heighted sensitivity to interpersonal
cues), and other social impairments are also common in
UHR individuals. However, the present study focused
solely on functional connectivity in midline default
areas, and functional activation during ToM tasks was
not measured. Future fMRI studies may be considered
combining the resting-state and ToM tasks to investi-
gate the relationship between altered midline default

mode connectivity and impaired social cognition in
UHR subjects.
The presence of structural abnormalities in the mPFC

and ACC are well established in schizophrenia [52]. Simi-
larly, UHR individuals also exhibit neurodevelopmental
anomalies in midline brain structures such as the ACC
and cavum septi pellucid [30,31]. In addition, compared
to healthy controls, these subjects exhibit significant cor-
tical thinning in the prefrontal cortex, ACC, and LPC
[53] as well as reduced gray-matter volume of the PCC
and Pcu [32]. These structural and functional abnormal-
ities of the default mode-related areas may be significant
in the altered functional connectivity of the default mode
in UHR subjects in the current study.
Basic self-disturbances, or anomalies of self-experience,

are a prominent feature during the prodromal stage of
psychosis, and it is suspected this is the core disturbance

Figure 2 Default mode and task-related maps for healthy controls. The color codes for default mode and task-related networks are the
same as for Figure 1.
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in the emergence of schizophrenia-spectrum disorders
[44,54,55]. In addition, reality distortion, or the impair-
ment of socioemotional information processing, was
associated with medial prefrontal cortical hyperactivity
during viewing of aversive pictures in schizophrenia or
schizoaffective patients [56]. From this perspective,
hyperconnectivity of midline default areas in UHR sub-
jects seems to be related to the so-called prodromal self-
disturbance. However, further studies are necessary to
apply a cognitive paradigm to subjective self-disturbance
in UHR subjects to validate our assumption.
This study had several limitations. First, the interpre-

tation of observed anti-correlations in resting state
BOLD data is not straightforward [8]. Removal of spon-
taneous BOLD fluctuations common to the whole brain
(the so-called global signal) mathematically mandates

negative correlations, raising questions regarding the
appropriateness of global signal regression and the inter-
pretation of emerged anti-correlated networks [57].
However, anti-correlated networks were reported to be
observed in the resting state without global regression
[58], so cannot be fully explained as an artifact of global
signal regression [57]. Although removal of the global
signal facilitates the observation of true physiological
relationships, great caution is required when comparing
differences in anti-correlations between different clinical
populations. Second, various conditions of internal men-
tation can influence resting-state brain activity, but the
thoughts and feelings of subjects during the fMRI scan-
ning period were not evaluated. Third, task paradigms
including social cognition, self-reference, and subjective
scales were not applied, limiting the analysis of the

Figure 3 Differences between UHR subjects and healthy controls in the resting state functional networks. Default mode areas with
increased connectivity in UHR subjects versus controls are shown in warm colors, and task-related areas with reduced anti-correlation in UHR
subjects versus controls are shown in cold colors at the threshold of p < 0.001 (uncorrected) and cluster size greater than 50 voxels. UHR: ultra-
high risk.
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findings. Fourth, the reported conversion-to-psychosis
rate (16%) is much lower than that of UHR cohorts
(over 40%) tested in initial studies [59]. UHR status is
not equivalent to being in the prodromal stage of schi-
zophrenia or psychosis, so caution is needed in interpre-
tation of these results. Finally, it is possible that
medication could have influenced resting-state connec-
tivity. However, 15 of 20 UHR subjects were drug-free,
and the majority of previous studies investigating rest-
ing-state networks were conducted on medicated
patients.
Several recent neuroimaging studies comparing UHR

subjects who converted to psychosis (converters) with
those who did not (non-converters) found that conver-
ters had less regional gray matter at baseline and greater
gray matter reduction in longitudinal follow-ups than
non-converters had [32,60,61]. Baseline ACC morpholo-
gic differences between converters and non-converters
also predicted time-to-psychosis onset independent of
symptomatology [33]. Similar to these comparison
studies, longitudinal follow-up investigations of the cur-
rent resting-state fMRI results may reveal differences

within resting-state networks between converters and
non-converters. This may provide valuable information
about the properties of resting-state networks in terms
of illness progression.

Conclusions
The current findings demonstrate significant alterations
(i.e., functional pathology) of resting-state networks in
UHR subjects and suggest that hyperconnectivity of the
DMN and reduced anti-correlation between the DMN
and TRN may play an important role in the clinical fea-
tures of these subjects. Regions previously identified to
be abnormal in UHR subjects also showed clear
abnormalities in the DMN. Further resting-state fMRI
studies that include social cognition tasks and subjective
rating scales are necessary to further validate the inter-
pretation of the present results.
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