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Abstract

tests.

Background: Epidemiological studies have indicated that maternal infection during pregnancy may lead to a
higher incidence of schizophrenia in the offspring. It is assumed that the maternal infection increases the immune
response, leading to neurodevelopmental disorders in the offspring. Maternal polyinosinic-polycytidilic acid (Polyl:C)
treatment induces a wide range of characteristics in the offspring mimicking some schizophrenia symptoms in
humans. These observations are consistent with the neurodevelopmental hypothesis of schizophrenia.

Methods: We examined whether suppression of the maternal immune response could prevent
neurodevelopmental disorders in adult offspring. Polyl:C or saline was administered to early pregnant rats to mimic
maternal infection, and the maternal immune response represented by tumor necrosis factor alpha (TNF-a,) and
interleukin-10 (IL-10) levels was determined by enzyme-linked immunosorbent assays (ELISA). The NF-xB inhibitor
pyrrolidine dithiocarbamate (PDTC) was used to suppress the maternal immune response. Neurodevelopmental
disorders in adult offspring were examined by prepulse inhibition (PPI), passive avoidance, and active avoidance

Results: Polyl:C administration to early pregnant rats led to elevated serum cytokine levels as shown by massive

increases in serum TNF-a. and IL-10 levels. The adult offspring showed defects in prepulse inhibition, and passive
avoidance and active avoidance tests. PDTC intervention in early pregnant rats suppressed cytokine increases and
reduced the severity of neurodevelopmental defects in adult offspring.

Conclusions: Our findings suggest that PDTC can suppress the maternal immune response induced by Polyl:C and
partially prevent neurodevelopmental disorders of adult offspring.
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Background

Epidemiological studies have indicated that maternal
bacterial and viral infections during pregnancy are asso-
ciated with the emergence of psychosis and related psy-
chopathology in offspring during post-pubescent or
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adult life [1-3]. Early epidemiological data suggested that
maternal infection in the second trimester of human
pregnancy conferred the maximum risk for schizophre-
nia in the offspring [4,5]. However, recent studies have
questioned whether the second trimester is exclusively
critical [6,7]. Brown et al. [2] showed that infection in
the first trimester was also influential. Hence, maternal
infections over a more extended period, from early- to
mid-pregnancy, can increase the risk of schizophrenia.
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However, it is the maternal immune response, rather
than direct infection of the fetus, that leads to increased
incidence of schizophrenia [8]. Several lines of evidence
support this hypothesis [9]. First, in addition to their
immunological roles, pro-inflammatory cytokines have
various neurodevelopmental effects [10]. Second,
increased maternal levels of the pro-inflammatory cyto-
kine tumor necrosis factor-o. (TNF-a) and the chemo-
kine interleukin-8 during pregnancy have been directly
associated with a higher risk for schizophrenia in the
progeny [11,12]. Third, experiments in animals confirm
that, in the absence of specific pathogens, prenatal expo-
sure to cytokine-releasing agents [13-18] is sufficient to
induce psychopathology in later life. Infection-induced
elevation of pro-inflammatory cytokines in the maternal
host may be one of the key events leading to enhanced
risk of neurodevelopmental disorders in the offspring [19].

Efforts are increasing to develop animal models of
schizophrenia. Although attempts to model human psy-
chiatric conditions in animals have always been met
with some skepticism, the hypothesized core dysfunc-
tions in schizophrenia are amenable to the development
of translational models across species—from mice to
human beings. One recently developed model allows the
link between maternal immune activation (MIA) and
the later development of schizophrenia in offspring to
be investigated while separating immune activation from
maternal infection [20]. This model uses a single sys-
temic administration of polyinosinic-polycytidilic acid
(PolyL:C) to induce MIA in pregnant animals. Systemic
exposure to Polyl:C results in an acutely intense eleva-
tion of inflammatory cytokines in the host without the
production of specific antibodies [20-22]. The offspring
of Polyl:C treated dames show largely normal behavior
as juveniles [17,23,24]. However, once these animals
reach adulthood a number of behavioral features of schi-
zophrenia are evident [18,23-25]. This model is consis-
tent with the neurodevelopmental hypothesis of
schizophrenia, which posits that maternal infection pro-
vokes an immune response leading to neurodevelop-
mental disorders in the offspring.

The transcription factor nuclear factor-kappa B (NF-
kB) regulates genes involved in cell differentiation, sur-
vival/apoptosis, and immune and inflammatory
responses [26]. Regulated genes include cytokines, cell
surface receptors, and antioxidant enzymes. NF-xB can
increase cytokine levels and amplify the inflammation
signal of cytokines by the interaction between cytokines
and NF-xB in schizophrenia [27]. Here, we examined
whether inhibition of NF-xB could suppress the
immune response induced by Polyl:C treatment of preg-
nant rats and thereby reduce neurodevelopmental disor-
ders in the adult offspring.
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Methods

Chemicals

PolyL:C (potassium salt) and PDTC were obtained from
Sigma-Aldrich (Switzerland). Polyl:C was dissolved in
phosphate-buffered saline in 5 mg/ml. PDTC was dis-
solved in physiological saline in 100 mg/ml on the day
of injection into rats.

Animals

Female and male Sprague-Dawley rats were obtained
from a specific-pathogen-free (SPF) breeding colony,
about ten weeks old, at the Experimental Animal Cen-
ter of Zhengzhou University (Zhengzhou, China). The
rats came from multiple litters. Littermates of the same
sex were caged together with four to five per cage.
Breeding began after two weeks of acclimation to the
new animal holding room. The procedures for breeding
and for verification of pregnancy were described by
Meyer [13]. All rats were housed in individually venti-
lated plastic cages at 22 + 2°C and 50 + 10% relative
humidity with a constant day-night cycle (light: 08:00-
20:00 h). Food and tap water were available ad libitum.
The Animal Care and Use Committee of the Henan
Key Lab of Biological Psychiatry (Xinxiang, China)
approved the use of rats and the experimental proto-
cols in this study.

Prenatal treatment

The rats were mated at an age of about 12 weeks. The
first day after copulation was defined as day 1 of preg-
nancy. Eighty pregnant rats were randomly divided into
four groups of 20, designated as intervention, model,
PDTC, and control groups. On gestation day 9, the rats
in the intervention and model groups were injected
with Polyl:C (5 mg/kg) intravenously through the tail
vein. The rats in the intervention group received PDTC
(100 mg/kg) by intraperitoneal injection 30 min prior
to Polyl:C injection, followed by PDTC via intraperito-
neal injection and vehicle solution by injection through
the tail vein. Those in the model group received intra-
peritoneal injections of physiological saline vehicle
solution instead. The rats in the control group received
two intravenous injections of vehicle solution. The
treatments of these four experimental groups are
showed in Figure 1. In all four groups, half of the rats
were retained to fulfill pregnancy; the other rats were
executed after injection.

On postnatal day 21, pups were weaned, housed four
to a cage by sex and litter, and maintained undisturbed
until three months of age. One of each littermates was
randomly selected for behavioral testing. The number of
subjects employed in the behavioral testing is summar-
ized in Table 1.
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Figure 1 The treatments of the four experimental groups.

Cytokine and NF-xB activation assay

Blood samples were taken from the orbital sinus of rats
under methoxyflurane (2,2-dichloro-1,1-difluoro-1-
methoxyethane; Pitman-Moore, Titusville, NJ) anesthesia
three hours after rats were injected with Polyl:C.
Approximately 1 ml of blood per animal was collected.
The blood from each animal was separated into serum
and white blood cell fractions.

The serum was divided into two parts to permit sto-
rage at -80°C until the cytokine assay was performed.
IL-10 and TNF-a levels were evaluated using an ELISA
kit (R&D Systems) according to the manufacturer’s
recommendations. The detection limits for IL-10 and
TNF-a were 10.0 and 5.0 pg/mL, respectively, with
inter-assay variation coefficients of 9.9% and 9.7% and
intra-assay variation coefficients of 4.6% and 5.1%,
respectively. Standard curve concentrations were calcu-
lated in triplicate for each plate.

Nuclear proteins were extracted from peripheral blood
mononuclear cells (PBMC) using a Nuclear Extract Kit
(Active Motif, Carlsbad, California) according to the
manufacturer’s instructions. Extracts were stored at 80°
C until assayed for the activation of transcription factor
NE-xB.

Activation of the NF-xB p65 subunit was determined
using an NF-xB p65 ELISA-based transcription factor
assay kit (TransAM assay; Active Motif) according to
the manufacturer’s protocol [28,29]. The NF-xB detec-
tion antibody recognizes an epitope on p65 that is
accessible only when NF-«B is activated. The detection
limit was 0.4 ng recombinant p50 protein per well.

Prepulse inhibition (PPI) testing
PPI is the normal suppression of a startle response when
a low intensity stimulus, which elicits little or no

behavioral response, immediately precedes an unex-
pected stronger startling stimulus. PPI was determined
by measuring the decrement in the startle response
when the acoustic startle-eliciting stimulus was preceded
by an auditory or visual prepulse (PP). The amount of
PPI is expressed as the percentage decrease in the
amplitude of the startle response caused by presentation
of the prepulse.

All test sessions were performed in a single chamber
startle apparatus (QMC-I, Kunming Institute of Zoology,
Chinese Academy of Sciences, China). One rat was
tested during each experimental session. The rat was
accommodated in a nonrestrictive Plexiglas cylinder (9
cm diameter, 18.5 cm long) mounted on a floor plate
inside a sound- and vibration-attenuating cabinet
equipped with a 15 W incandescent bulb and a fan for
ventilation. A piezoelectric accelerometer was attached
beneath the floor plate to detect and transduce the rat’s
motor response. A computer program delivered white
noise stimuli via an amplifier and a speaker mounted in
the chamber above the cylinder. At a rate of 1,000 Hz,
the computer sampled accelerometer signals from 200
ms before each acoustic stimulus to 2,300 ms after an
acoustic stimulus was delivered. The rats were moni-
tored by a video monitoring system during each test.

In the test session, the rats were acclimated in the
testing cylinder for five minutes, during which the rats
received only background noise of 70 dB SPL. The test
began with six trials of a pulse-alone startle stimulus,
consisting of a 40 ms burst of white noise of 120 dB
SPL. The session continued with 20 randomized trials,
which included five trials of a pulse-alone stimulus and
five trials for each of three types of prepulse startles. A
prepulse startle consisted of a prepulse (white noise at
2, 4 or 8 dB SPL above the 70 dB SPL background), a

Table 1 Sample size of each treatment group and experimental condition, and the sequence of behavioral testing

Experiments Control PDTC Prenatal Poly(l:C) treatment(5 mg/kg)

PDTC (100 mg/kg) Vehicle
Prepulse inhibition 5Q70 6Q50 5950 5950
Passive avoidance 6@50 5Q60 6Q@50 4950
Active avoidance procedure 5Q50 6@50 5Q50 5Q60
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100 ms interval, and a startle pulse (40 ms, 120 dB SPL
white noise). The interval length between the 20 rando-
mized trials varied randomly from 8 to 23 s with an
average of 15 s.

Startle responses were measured with the program
developed by Kunming Institute of Zoology, Chinese
Academy of Sciences, China. The peak value of the
motor response between auditory stimuli onset and
1,000 ms was automatically analyzed for each trial and
the average response was calculated for each type of sti-
mulus. The amount of prepulse inhibition (PPI) was
expressed as the percentage decrease in the amplitude
of the startle response caused by presentation of the
prepulse. The amplitude of the startle response without
a prepulse is p. When a weak stimulus is given prior to
the startle reflex stimulus, the amplitude for the startle
response is pp. The percentage of PPI for each rat was
calculated as (1-pp/p) x 100, which is proportional to
the inhibitory effect of PPI. Using this description of
PPI, a high degree of sensorimotor gating is reflected in
a high % PPI value, whereas lower or no gating results
in a small or negative % PPI value.

Passive Avoidance Test

The passive avoidance test is a fear-aggravated test used
to assess short-term or long-term memory on small
laboratory animals. In this test, subjects learn to avoid
an environment in which an aversive stimulus (such as
a foot-shock) was previously delivered. The recent mem-
ory of the rats was tested in a passive avoidance-condi-
tioning task. Two days after evaluation of general motor
activity, learning was evaluated in a single trial, passive
avoidance test. The conditioning and testing apparatus
consisted of a shuttle box (Ugo Basile model 7550,
Comerio, Italy) equipped with a door to restrict access
between illuminated and dark compartments of equal
size. In the acquisition trial, a rat was placed in the illu-
minated compartment. After 30 s, the door separating
the two compartments was opened. Some seconds later
(T1), the animal spontaneously entered the dark com-
partment. The door was shut 1 s after the crossing, and
the rat was given a 0.5 mA, 3 s duration foot shock.
Twenty-four hours later (retention trial), the same pro-
cedure was repeated without a delay period to open the
door and without an electric shock. The elapsed time to
enter the dark compartment was recorded as T2.

Active Avoidance Test

The active avoidance task is a fear-motivated associative
avoidance test based on electric current as a source of
punishment. This task provides a simple way to assess
associative learning and memory of laboratory animals.
In a two-way shuttle box apparatus (Panlab, Barcelona),
the rats were trained to avoid an aversive unconditioned
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stimulus (US), an electric shock (0.3 mA) continuously
applied to through the floor, associated with the presen-
tation of a light (10 W), which served as a conditioned
stimulus (CS). The shuttle box had two compartments
(20 x 10 cm) connected by a 3 x 3 cm door. In the
compartment containing the mouse, the CS was pre-
sented for 5 s followed by concurrent presentation of
the CS and US for 25 s. At the end of the 30-s (total)
period, the CS and the US were automatically turned
off. A conditioned response was recorded when the ani-
mal avoided the US by moving to the empty compart-
ment within 5 s of the onset of the CS. If animals failed
to avoid the shock, they could escape it by crossing dur-
ing the US (25 s). Between each trial, there was an inter-
val of 30 s. The ratio of conditioned responses with
respect to the total number of changes of compartment
was also determined.

The rats received 100 trials per day for 5 consecutive
days [30]. Before the start of each session of trials, the
rats were placed in the shuttle box for 10 min and
allowed to explore. The final rate of active avoidance
conditioned response was calculated as (total number of
condition responses/500). Higher values indicated better
learning and memory.

Data analysis

Data analyses were conducted using SPSS 13.0 for Win-
dows. Test results were presented as means + standard
deviations (SD). Cytokine data were analyzed using one-
way analysis of variance (ANOVA). Active avoidance
and passive avoidance test data were analyzed using
repeated-measures ANOVA. PPI data were analyzed
using multivariate analysis of variance (MANOVA) fol-
lowed by least significant difference (LSD) post hoc
pair-wise comparisons for analysis of differences
between groups. Bonferroni corrections were performed
for multiple tests.

Results

Exposure of maternal rats to Polyl:C significantly
increased IL-10 and TNF-a protein levels in the mater-
nal serum (Table 2). Treatment effects were evident 3 h
after exposure. Intervention with PDTC partially sup-
pressed the increase in cytokine levels. Rats treated only
with PDTC showed no effects relative to control-treated
rats. NF-xB activation in maternal PBMC is not shown
because it was below the detection limit.

To determine whether adult offspring from mothers
with different treatments have PPI defects, PP2, PP4,
and PP8 were designated according to the decibel value
of prepulse startle stimuli (respectively 2, 4 or 8 dB SPL
above the 70 dB SPL background). As expected, the
level of prepulse inhibition increased with increasing
prepulse intensity for all treatment groups. Multi-factor
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Table 2 Serum Levels of IL-10 and TNF-a in animals

Control group PDTC Group Model group Intervention group F P
IL-10(pg/mL) 0.19 + 0.09* ° 0.15 + 0.09* P 1914 + 221° 1367 + 097 632.049 < 0001
TNF-a.(pg/mL) 1196 + 1.81* ° 9.22 + 300" P 12848 + 10.38° 33.19 + 291 983570 < 0001

One-way analysis of variance was used, P < 0.05. compared with model group,

(treatmentxprepulse intensities) ANOVA of %PPI
revealed a significant treatment effect (F = 58.867, P <
0.001) (Figure 2). While the PDTC group did not differ
from the control group, offspring from mothers injected
with Polyl:C exhibited significantly reduced %PPI relative
to controls (P < 0.05). The offspring from mothers trea-
ted with Polyl:C and PDTC had a higher %PPI (P < 0.05)
than the rats born to mothers treated with only Polyl:C.
Maternal exposure to Polyl:C significantly enhance PPI
defects of adult offspring, and this effect can be weakened
by treatment with PDTC after exposure.

PDTC treatment displays significant effect on the per-
formance reduction of the adult offspring from maternal
exposure to Polyl:C in a passive avoidance task (Figure
3). ANOVA showed a significant treatment effect (F =
135.010, P < 0.001). Offspring from the model group
(mothers treated with only Polyl:C) had a longer T1
than offspring from the control group (P < 0.001), as
well as a shorter T2 than offspring from the control

2P < 0.05; compared with intervention group, bp < 0.05.

group (P = 0.04). For the intervention group, this defect
was improved from the model group in both T1 (P =
0.004) and T2 (P = 0.014). These results demonstrate
improvements by PDTC treatment on memory impair-
ment in adult offspring from pregnant rats exposed to
PolyL:C.

Maternal exposure to Polyl:C significantly reduced the
performance of adult offspring in an active avoidance
task (Figure 4). The offspring showed fewer conditioned
responses compared to controls from the first training
session. The performance deficit in offspring was
reduced by treatment of pregnant rats with PDTC after
exposure to Polyl:C. Repeated measures ANOVA
revealed a significant main effect of day of training (F =
434.264, P < 0.001), a significant effect of the treatment
(F =17.222, P < 0.001), and a significant interaction
between these two factors (F = 6.934, P < 0.001).

Total conditioned response times were significantly
different among offspring from the four treatment
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Figure 2 The effects of PDTC in prenatal Polyl:C administration on PPI of the adult offspring. PP2, PP4, and PP8 were designated
according to the intensity of the prepulse (i.e, 2, 4 or 8 dB SPL above the 70 dB SPL background). Multivariate analysis of variance was used,
LSD examination was used for Post hoc analysis, compared with control group, *P < 0.05; compared with intervention group, #p < 0.05.
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Figure 3 The effects of PDTC in prenatal Polyl:C administration on passive avoidance behavior of the adult offspring. Acquisition (T1)
and retention 24 h later (T2) were recorded. Multivariate analysis of variance was used, LSD examination was used for Post hoc analysis,
compared with control group, *P < 0.05; compared with intervention group, *P < 0.05.
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Table 3 Active avoidance of adult offspring (x £ s)
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Control group PDTC Group Model group Intervention group
Total reflex times 2859 + 42.36™ 279.36 + 38.19% 182.00 + 21.97 205.00 + 5245
Total reflex rate 0.57 + 0.085%° 0.56 + 0.076°° 0.36 + 0.043 041 + 0.105

One-way analysis of variance was used, P < 0.05. compared with model group, ®P < 0.05; compared with intervention group, P < 0.05.

groups (F = 17.22, P < 0.001; one-way ANOVA) (Table
3). The average reflex time was higher for the control
group than intervention and model groups (P < 0.001
for both). No statistical difference was found between
intervention group and model group. There were signifi-
cant differences in total response rates among offspring
from the four groups; the rate was higher in offspring
from the control group compared to the intervention
and model groups (P = 0.002, P < 0.001). No statistical
difference was found between the intervention group
and the model group.

Discussion

Both epidemiological and animal experimental studies
have demonstrated that during early pregnancy, mater-
nal immune response mediated by pro-inflammatory
cytokines is associated with higher risk for neuropsy-
chiatric disorders in the offspring [31,32]. It was
reported that the NF-xB inhibitor, which blocked the
NEF-xB signaling pathway and reduced cytokine release,
was effective in many related diseases [33-35]. In this
study, Polyl:C was administered to rats in early preg-
nancy to stimulate the release of pro-inflammatory cyto-
kines. Maternal cytokine levels and the behavior of adult
offspring were measured to explore the role of the cyto-
kine-mediated immune response during pregnancy in
the development of psychiatric disorders. We also exam-
ined the effects of intervention with an NF-xB inhibitor,
PDTC.

In this study, serum levels of IL-10 and TNF-a in the
model group (pregnant rats treated with Polyl:C)
increased significantly compared to levels in the control
group. This imitated inflammatory reactions mediated
by cytokines in maternal hosts after infection. Gayle et
al. [36] reported that Polyl:C, as well as LPS, could
increase the cytokine level in the amniotic fluid and the
placenta of the maternal host. Increased cytokines could
enter the circulatory system of the fetus.

In our previous study, schizophrenic patients showed
activation of NF-xB and elevated levels of cytokines
[27]. In the present study, activated NF-xB was below
the detection limit in our assays. In the intervention
group, NF-xB activation was inhibited through injection
of PDTC and serum levels of IL-10 and TNF-a were
suppressed relative to the model group. These results
provide indirect evidence that NF-xB activation was suc-
cessfully reduced in the intervention group. All the

above indicated that PDTC, a kind of NF-xB inhibitor,
can interfere with the inflammatory reactions mediated
by cytokines.

Behavioral deficits occurred in offspring from mother
rats that had an immune response induced by Polyl:C
treatment. The offspring of the model group showed
weakened PPI and weakened latent inhibition. These
findings are consistent with Meyer [13], who reported
that administration of Polyl:C to pregnant mice led to a
loss of PPI, loss of latent inhibition, and multiple schizo-
phrenia-like neuropathologic manifestations in the off-
spring. Behavioral abnormalities were less severe in
offspring from the intervention group compared to
offspring from the model group, demonstrating that
inhibition of NF-xB during pregnancy reduced neurode-
velopmental disorders in the offspring.

Latent inhibition exists in all classical and instrumen-
tal conditioned reflexes, such as passive and active
avoidance. Baruch et al. [37] first reported latent inhibi-
tion loss in schizophrenia patients, finding that acute
schizophrenic patients lost latent inhibition, while
chronic patients treated with antipsychotics presented
with normal latent inhibition. Several clinical studies
[38-40] further supported this result. Salgado [41]
reported that the dopamine antagonist amphetamine
could cause loss of latent inhibition in normal healthy
people, and conversely, antipsychotics could enhance
latent inhibition. Similar results occurred in animals
[42]. In addition, individuals from schizophrenic parents
showed abnormal latent inhibition. These studies
showed that abnormal latent inhibition in patients with
schizophrenia could be regarded as a stable manifesta-
tion and a cognitive deficit in behavior. In active avoid-
ance tests, the total conditioned reflex time in offspring
from the control group was significantly higher than in
the offspring from model group (Polyl:C-treated), imply-
ing that latent inhibition abnormality, impaired learning,
and impaired memory occurred in offspring from model
group. In passive avoidance tests, the T1 and T2 in
model group offspring were also significantly different
from those in control group offspring, indicating that
memory was impaired. These results are consistent with
previous studies [13-15]. In the active avoidance test, a
significant effect of the treatment was found. However,
for total conditioned response times, the performance of
offspring from the intervention group and model group
were not significantly different, demonstrating that NF-
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xB inhibition did not improve all behavioral outcomes
in offspring from the intervention group.

The neurodevelopmental hypothesis of schizophrenia
posits a correlation between the disease and neurodeve-
lopmental disorders. It has been suggested that the
maternal immune response to viral infections in preg-
nancy may interfere with normal fetal brain develop-
ment. Motivated by this hypothesis, researchers have
created many animal models to study the effects of pre-
natal and perinatal environments on schizophrenia.
Meyer [13] et al. reported that the Polyl:C treatment
model in rats shared a wide range of characteristics with
humans, and Polyl:C treatment effects manifested in
post-pubescent offspring were consistent with the neural
development hypothesis. We demonstrated that prenatal
treatment with Polyl:C could elevate maternal cytokines
and cause reduced PPI and reduced latent inhibition in
adult offspring, confirming Meyer’s results. Current stu-
dies concentrate on cytokines as a neurodevelopmental
disorder trigger in maternal hosts after infection. Pro-
inflammatory cytokines released by the maternal
immune system may disrupt fetal brain development.
Transfer of maternal cytokines to fetuses is not the only
means of elevating cytokine levels in fetal brains [43];
the response of fetal immune systems to increased
maternal cytokines might be an alternate mechanism
[43]. The influence of enhanced anti-inflammatory cyto-
kine signaling on early brain development should be
also emphasized [44]. Disruption of the balance between
pro- and anti-inflammatory cytokine signaling in fetal
brains may be a key mechanism precipitating schizo-
phrenia-related pathology following prenatal maternal
infection [45]. In our study, the NF-xB inhibitor in the
intervention group evidently suppressed cytokine release
induced by Polyl:C and improved behavioral outcomes
in adult offspring. The results suggest cytokines play an
important role in neurodevelopmental disorders in this
model, and provide evidence for the correlation between
increased cytokines in maternal hosts and abnormal
behavior of offspring. Activated NF-xB was not detected
in this study. Thus, there is no direct evidence of a rela-
tionship between NF-xB activity and abnormal behavior
of offspring. The exact mechanism needs further study.

Conclusions

Our findings suggest that PDTC treatment during preg-
nancy can partially reduce neurodevelopmental disor-
ders of adult offspring by suppressing the maternal
immune response induced by Polyl:C.

List of abbreviations

Polyl:C: polyinosinic-polycytidilic acid; TNF-a: necrosis factor alpha; IL-10:
interleukin-10; ELISA: enzyme-linked immunosorbent assay; PDTC:
pyrrolidinedithiocarbamate; PPI: prepulse inhibition; MIA: maternal immune
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conditioned stimulus; LSD: least significant difference; PBMC: peripheral
blood mononuclear cell; PPI: prepulse inhibition.
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