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Abstract

processing following a unilateral LH lesion.

conditions.

LH resources and allow disinhibition of RH processing.

Background: During normal semantic processing, the left hemisphere (LH) is suggested to restrict right
hemisphere (RH) performance via interhemispheric suppression. However, a lesion in the LH or the use of
concurrent tasks to overload the LH's attentional resource balance has been reported to result in RH disinhibition
with subsequent improvements in RH performance. The current study examines variations in RH semantic
processing in the context of unilateral LH lesions and the manipulation of the interhemispheric processing
resource balance, in order to explore the relevance of RH disinhibition to hemispheric contributions to semantic

Methods: RH disinhibition was examined for nine participants with a single LH lesion and 13 matched controls
using the dual task paradigm. Hemispheric performance on a divided visual field lexical decision semantic priming
task was compared over three verbal memory load conditions, of zero-, two- and six-words. Related stimuli
consisted of categorically related, associatively related, and categorically and associatively related prime-target pairs.
Response time and accuracy data were recorded and analyzed using linear mixed model analysis, and planned
contrasts were performed to compare priming effects in both visual fields, for each of the memory load conditions.

Results: Control participants exhibited significant bilateral visual field priming for all related conditions (p < .05),
and a LH advantage over all three memory load conditions. Participants with LH lesions exhibited an improvement
in RH priming performance as memory load increased, with priming for the categorically related condition
occurring only in the 2- and 6-word memory conditions. RH disinhibition was also reflected for the LH damage
(LHD) group by the removal of the LH performance advantage following the introduction of the memory load

Conclusions: The results from the control group are consistent with suggestions of an age related hemispheric
asymmetry reduction and indicate that in healthy aging compensatory bilateral activation may reduce the impact
of inhibition. In comparison, the results for the LHD group indicate that following a LH lesion RH semantic
processing can be manipulated and enhanced by the introduction of a verbal memory task designed to engage

Background

Language processing is dynamic and requires the parti-
cipation of both cerebral hemispheres. The left hemi-
sphere (LH) is considered to be the language dominant
hemisphere, however, the right hemisphere (RH) is also
accepted to play an important role in language
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processing. The RH has been linked with processing of
discourse, comprehension of inferences, ambiguity and
metaphoric language, and underlying much of this, is its
role in lexical-semantic processing [see for a review of
RH language processing [1]]. According to dynamic
models of cognitive functioning bilateral lexical-seman-
tic processing will involve both interhemispheric activa-
tion and inhibition [2]. The language dominant LH is
suggested to inhibit aspects of RH participation in order
to maximize the efficiency of word level processing and
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meaning selection [2-4]. Interhemispheric inhibition has
been suggested to limit the RH’s ability to perform to its
maximum semantic processing capacity under normal
processing conditions, and to therefore have led to an
underestimation of the RH’s semantic processing ability
[5].

Conditions that overload the LH’s control mechanisms
and facilitate the RH’s release from inhibition are sug-
gested to allow the RH to exceed its traditional perfor-
mance on word level lexical-semantic tasks [6]. There is,
therefore, the potential for RH disinhibition to play a
role in the increases in RH activity observed in neuroi-
maging investigations of neural reorganization [7-12]
and improvements found for behavioral online RH
semantic processing performance [13-15] following LH
lesions. However, investigations of hemispheric contri-
butions to semantic processing following unilateral
lesions have not directly measured the impact of RH
disinhibition or residual LH suppression on the perfor-
mance of each hemisphere. Therefore, the current study
will reexamine hemispheric contributions to semantic
processing following LH lesions under conditions
designed to manipulate the degree of interhemispheric
activation and inhibition.

Existing theoretical insights into hemispheric perfor-
mance during semantic processing in healthy adults
under normal processing conditions (i.e., without
manipulation of RH disinhibition) suggest that both
hemispheres are capable of processing lexical-semantic
information, and that hemispheric differences relate to
an interaction between the strength of relatedness of
items and the time-course allowed for semantic access
[16]. This time-course hypothesis suggests that activa-
tion in the LH begins broadly and includes both
strongly and weakly related items, followed quickly by
the focusing of activation to include closely related
items only. Alternatively, the RH is slow to initiate, but
once activation is achieved, the RH will maintain that
activation for both closely and distantly related items
over time [16]. Accordingly, the RH’s role in semantic
processing appears to be to maintain activation of multi-
ple interpretations that can be called upon by the LH
when complex meaning integration is required [17].

Theories of hemispheric semantic activation are based
predominately on findings of divided visual field (DVF)
semantic priming investigations. Semantic priming refers
to the facilitation effect wherein a target word is
responded to more quickly and accurately when it is
preceded by a related word (prime), compared to an
unrelated one. Semantic priming is therefore a measure
of the spread of activation in the semantic system. The
DVF methodology is used in order to assess activation
in each hemisphere separately, via the presentation of
prime and/or target letter strings to the left visual field
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(LVF) or right visual field (RVF). Prime and target pairs
related via category membership and/or association have
been one focus for investigations into the time-course of
hemispheric activation. These stimuli represent a hierar-
chy of activation that can differentiate hemispheric pat-
terns of activation with respect to the interaction
between relationship strength and time-course of
semantic activation [e.g., [16,18]]. Particular patterns of
activation are suggested for each relationship type.

Items that are related via both category membership
and association (e.g., DOG-CAT) are suggested to be
the most strongly related pair type, compared to those
related via category membership or association alone.
This is due to the additive nature of the semantic (cate-
gory membership) and lexical (association) relationships,
and because these items are suggested to share the most
semantic features [e.g., [19]]. Evidence is accumulating
that items related by category membership and associa-
tion generally exhibit bilateral activation over time
[18-20].

Items related via association but not category mem-
bership (e.g.,, DOCTOR-HOSPITAL) are considered the
next most strongly activated due to the benefit of the
associative relationship [21]. Behavioral and event-
related potential priming studies have found predomi-
nately LH advantage for priming association only pairs,
prior to 500 ms stimulus onset asynchrony (SOA; time
between onset of prime and target) [22-24]. There have
been some suggestions that the RH is capable of prim-
ing this pair type at longer SOAs, in accordance with
the time-course hypothesis [22].

Finally, items that are related via category membership
but not association (e.g., CAMEL-DOG) represent the
weakest relationship. These items may share some
semantic features but do not benefit from the associative
boost, and often exhibit the weakest priming effect [21].
Investigations of items related via category membership
only suggest that the variation in hemispheric processing
patterns relate to underlying processing conditions, with
a LH asymmetry under automatic spreading activation
conditions [25-27] and a RH asymmetry under condi-
tions that encourage strategic processing [26-28] or at
long SOAs [16].

DVF priming investigations have provided insight into
the semantic processing of the healthy brain under nor-
mal processing conditions. However, the RH disinhibi-
tion hypothesis suggests that RH performance described
in such studies does not reflect its true capacity [5]. Spe-
cifically, the RH disinhibition hypothesis suggests that
the RH is less active and does not perform to capacity
when normal LH dominance remains, however when
this balance is modified the RH is able to demonstrate a
greater degree of semantic processing e.g., [29]. Support-
ing evidence for the RH disinhibition hypothesis has
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been derived from investigations of people with LH
lesions [30,31] and investigations that attempt to release
the RH from LH suppression via experimental manipu-
lations, such as short presentation times for lateralized
stimuli [30], incorporation of a secondary task to “over-
load” LH processing [5,6,29], or simulation of lesions
using rTMS [11]. These investigations have found it
possible to release the RH from unilateral suppression
by manipulating the attentional balance between the
hemispheres.

Manipulation of the interhemispheric attentional bal-
ance has been most specifically assessed using a combi-
nation of the dual task and DVF paradigms with healthy
participants. The dual task paradigm takes advantage of
functional task lateralization in order to either pre-acti-
vate or overload the attentional resources of a particular
hemisphere. The concurrence decrement effect, that
occurs when a particular hemisphere is overloaded, can
be explained using the multiple limited resources model
[32]. The multiple limited resource model dictates that
each hemisphere has a finite supply of attentional
resources which cannot be shared. Therefore, when two
sufficiently difficult concurrent tasks are performed by a
particular hemisphere, the resource demands overlap to
such an extent that the hemisphere becomes overloaded.
Dual task investigations of semantic processing have
used secondary verbal memory tasks in order to over-
load the LH’s resources and produce a RH disinhibition
effect and subsequent improvements in RH processing
[e.g., [5,6,29]]. The combination of DVF presentation in
a dual task experiment allows the direct investigation of
individual hemispheric performance following
disinhibition.

DVF dual task investigations have found improve-
ments in RH processing following disinhibition. Specifi-
cally these investigations have reported that RH
disinhibition results in the reduction of the traditional
LH processing advantage for lexical decision tasks, and
RH activation of items traditionally associated with LH
processing, such as long low imageable words [5,6].
Similarly, participants with partial disconnection
between the hemispheres have also exhibited an
enhanced RH semantic processing performance follow-
ing RH disinhibition under dual task conditions [29].

The findings from DVF dual task investigations [e.g.,
[5,6]], and in turn the RH disinhibition hypothesis, have
interesting implications for the study of changes in
hemispheric contributions to semantic processing for
people who have suffered lesions to the language domi-
nant LH. For instance, behavioral investigations of hemi-
spheric contributions to semantic processing for people
with LH lesions and subsequent aphasia, have found evi-
dence of improved RH lexical-semantic abilities follow-
ing LH lesions [13-15] and neuroimaging investigations
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have found increases in RH activation during language
tasks following LH lesions [7-12]. Furthermore, investi-
gations of spatial attention treatment for people with
LH lesions have explored the effect of manipulating the
participation of each hemisphere, and have found that
priming or recruiting attentional or intentional mechan-
isms in the intact RH (via orienting attention to the
hemispace or a complex left handed movement) can
improve language function in some people with aphasia
[33-35]. However, the potential influence of RH disinhi-
bition is yet to be fully explored in the context of the
individual hemispheric contributions to language proces-
sing following LH lesions.

The current investigation seeks to extend the exami-
nation of changes to RH language function post LH
lesion, in order to more directly explore the impact of
the lesion on RH disinhibition and to explore the impact
of RH disinhibition on RH performance. Therefore the
current investigation will compare hemispheric perfor-
mance on a DVF semantic priming task (primary task)
over three verbal memory load conditions (concurrent
task). Semantic priming effects may arise from one of
three mechanisms; automatic spreading activation, con-
trolled expectancy-based activation and controlled post-
lexical semantic matching [36]. The current investiga-
tion will encourage controlled activation by using a high
relatedness proportion (ratio of related word targets and
unrelated word targets; the higher the proportion the
more controlled) [36], as hemispheric differences appear
to occur under controlled processing conditions [16,37].
A shorter SOA (250 ms) was employed to allow post-
lexical controlled processing, as this onset asynchrony is
insufficient for the generation of expectancies. Post-lexi-
cal semantic matching occurs after the presentation of
the target and before the lexical decision is made [36]
and involves checking from target back to prime, to
assess semantic relatedness. The presence of a semantic
relationship indicates that the target is a real word and
therefore accelerates a word response [38].

The stimuli conditions (category and association, cate-
gory only and association only items) chosen for the
current primary semantic priming task were included
because of their sensitivity to hemispheric priming dif-
ferences [e.g., [19,22,25,39]]. In particular, the associa-
tion only condition is hypothesized to provide a
platform for the RH to exhibit an increase in priming
performance, with previous findings suggesting that the
RH exhibits some difficulty processing items related via
association only in healthy adults at shorter SOAs [22].
However, given that both hemispheres have access to
the same semantic network, following disinhibition the
RH will become more active and have the potential to
activate all of the related conditions. It is also noted that
association only stimuli have been found to prime
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during central priming investigations of people following
LH lesion [e.g., [40]], therefore it is plausible that the
RH is capable of activating these stimuli under condi-
tions that promote RH performance.

It is hypothesized that a different pattern of priming is
expected for each of the related stimuli conditions
depending on the degree to which RH disinhibition is
occurring. The related conditions are expected, under
normal processing conditions (ie. no disinhibition), to
exhibit bilateral priming for items related by category
membership and association, priming in the LH for the
association only condition and priming in the RH for
the category only condition, as well as exhibiting an
overall LH response time advantage. Under conditions
that elicit RH disinhibition it is expected that RH prim-
ing will increase to include significant priming of the
association only condition, and that the overall LH pro-
cessing advantage will be removed.

For control participants it is expected that the 6-word
concurrent memory task will sufficiently modify the
attentional balance between the hemispheres, and in
accordance with the RH disinhibition hypothesis, result
in an increase in RH priming. It is hypothesized that
performance by participants with a LH lesion will differ
from the control participants, as they will be more sus-
ceptible to the demands of the concurrent task, and to
the impact of the lesion itself on hemispheric control. If
the LH lesion results in disinhibition of RH semantic
processing, then participants with a LH lesion should
exhibit similar activation during both baseline and mem-
ory load conditions, including priming of all three
related conditions in the RH. Conversely, if the LH
lesion does not result in complete RH disinhibition,
then improvement in RH processing is expected to
improve under the 2- word and 6-word conditions, with
priming of association only stimuli occurring in the RH
when the concurrent load is sufficient to overload LH
resources.

Methods

Participants

Participation in this experiment was voluntary and writ-
ten informed consent was obtained from all participants
prior to participation. The research was approved by the
Medical Research Ethics Committee at The University
of Queensland, Brisbane, Australia.

Nine people with a single LH lesion (3 males, 6
females) and 13 healthy matched control participants (3
males, 10 females) took part in this investigation. Parti-
cipants in the LH damage (LHD) group exhibited
impaired language abilities compared to controls, with a
significant difference between groups for the Western
Aphasia Battery (WAB) [41] aphasia quotient, £(20) =
-5.356, p = .002, and with each participant in the LHD
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group scoring more than one standard deviation below
the control group mean aphasia quotient (M = 99.46;
SD = .7974). A summary of the LHD group participant
information is included in Table 1.

Participants in the LHD group had a mean age of 61.7
years (range 39-77; SD 12.3) and a mean of 12.4 years
of education (range 7-19; SD 4.48). The control group
had a mean age of 60.7 years (range 37-77, SD 10.77),
and a mean of 15 years of education (range 8-25, SD
4.89). t-tests comparing the LHD and control groups
revealed no significant difference with respect to age, ¢
(19) = .011, p = .991 (two-tailed), or education, £(17) =
-.963, p = .349 (two-tailed). Participants in the LHD
group met the following criteria (a) pre-morbidly right
handed; (b) native English speaker; (c) no reported his-
tory of traumatic brain injury, dementia, brain tumor,
aneurisms, cerebral abscess or alcoholism; (d) scored
within normal limits (> 3.5) on the Cognitive Linguistic
Quick Test [42] composite severity rating; (e) no visual
field deficit or other uncorrected visual or hearing defi-
cit; and (f) at least six months post lesion at the time of
testing. Control participants were right handed, native
English speakers, and were excluded if (a) they had
reported history of neurological impairment, brain injury
or alcoholism; or (b) had uncorrected visual or hearing
impairments.

Stimuli and design

The experiment was a 2 x 2 x 4 x 3 (Group x Target
Visual Field x Stimuli Condition x Memory Load)
mixed factor with group (control, LHD) as a between-
subjects factor, and target visual field (LVF and RVF),
stimuli condition (Category and Association, Category
Only, Association Only, Unrelated) and memory load
(0-, 2-, and 6-word) as within-subject factors. The sti-
muli employed in the lexical decision priming task
(LDT) (primary task) consisted of 320 visually presented
prime-target pairs. All primes were nouns, and targets
were either real word nouns or legally spelled non-
words. The ratio of real word to non-word targets was
1:1, in order to negate response bias. Critical pairs (with
real word targets), comprised four pair types. Category
and association (CA) prime-target pairs are related via
category membership [43,44] and are listed as primary
associates [45-50] (e.g., cat-dog). Category only (CO)
pairs are related via category membership [43,44], and
are not listed as associates (e.g., deer-pig). Association
only (AO) pairs are listed as primary associates in asso-
ciation norms [45-50], and are not categorically related
(e.g., bee-honey). Finally, unrelated (UNR) pairs were
formed with words that are not related via category
membership or association. The relatedness proportion
was 0.75 (number of related word targets/total number
of word targets).
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Table 1 Summary of Participants in the LHD group

Case Age Gender Education Lesion site Months post stroke AQ WAB classification cLQr
(years)

1 71 M 7 Occipital 36 984 Nonaphasic 4.0

3 63 F 17 Parietal 180 984 Nonaphasic 4.0

11 60 F 10 Temporal-Parietal 18 914 Unclassified residual 4.0

13 39 F 12 Parietal & Striato capsular 82 95.8 Nonaphasic 4.0

14 49 F 19 Fronto-Tempo-Parietal 13 89.9 Anomic 38

20 77 F 7 Parietal 68 97.6 Nonaphasic 4.0

21 58 M 16 Fronto-Parietal 57 93 Unclassified residual 38

23 76 M 9 Parietal 10 91.3 Anomic 4.0

58 64 F 15 MCA territory 50 89.7 Anomic 38

Abbreviations: LHD Left hemisphere damage, AQ Western Aphasia Battery Aphasia Quotient, WAB Western Aphasia Battery, CLQT Cognitive Linguistic Quick Test

overall score, MCA middle cerebral artery

Primes and targets were three to six letters in length.
Stimuli were matched between the related conditions
and between the related and unrelated conditions, with
no significant difference (p > .1) found for the variables
of word length, frequency [51] or imageability [52-54].
Conditional means for each of these stimuli features are
presented in Table 2. Targets were also matched across
stimuli types for lexical decision response time (RT);
each target’s average RT (when presented for single
word lexical decision) was accessed from the English
Lexical Project website [55] and matched to ensure that
any RT differences are due to priming effects and not
underlying differences in lexical decision time. Non-
word and real word targets were matched for word
length, £(318) = -.603, p = .547 (two-tailed).

Primes were centrally presented. Targets were pre-
sented at 2° of horizontal visual angle from central fixa-
tion. Half of the targets were presented to the left visual
field (LVF) and half to the right visual field (RVF). The
total list of 320 pairs seen by participants is made up of
80 real word target pairs (20 in each related condition
and 20 unrelated) and 80 non-word target pairs, and in
order for each of the target items to be presented to
both visual fields over the course of the experiment,
pairs are repeated in a mirror image list [as per
[18,19,27,37,39,56]]. The order of initial visual field of

Table 2 Summary of Stimuli Features

presentation for each target was counterbalanced
between participants. The same stimuli were used for
the primary priming task in each of the three memory
condition experiments, presented in three separate
sessions.

The verbal memory stimuli and distracter items
employed in the secondary verbal memory task included
words with low frequency and low imageability, in order
to target LH processing. Stimuli items were between 3
and 13 letters in length (x = 7; SD 2.5), had a mean fre-
quency of 19.2 (range 1-91; SD 20.3) [51] and a mean
imageability of 382.5 (range 216-499; SD 58.5) [52-54].
No memory or recognition items were repeated within a
session.

The practice list for the zero word memory session
incorporated 10 word and 10 non-word targets for the
LDT. The practice lists for the two and six word mem-
ory sessions included both the memorization and LDT
stages. The practice tasks did not include any items
used in the actual experiment.

Procedure

Participants were seated 60 cm from the laptop compu-
ter monitor, and provided with a chin rest to control
head movement and assist with maintenance of central
fixation. All stimuli were written in black 24 point

Stimuli Type Number of Letters Frequency® Imageability® LD RT (ms)*

Prime Target Prime Target Prime Target Prime Target
Category and Association 4.8 44 67.3 61.8 594.6 594.4 602.1 5986
Category Only 45 4.5 485 80.2 5838 589.6 599.8 6089
Association Only 4.5 45 494 86.4 585.7 582.7 609.9 596.2
Unrelated 48 4.5 66.3 822 587.1 5885 603.6 599.8

Mean number of letters, mean frequency, mean imageablity and mean lexical decision response time for the prime and target items in each condition. t-tests
between each condition for each feature reveal no significant differences (p > .1). Abbreviations LD RT Single word lexical decision response time in milliseconds;
2 = Sourced from Kucera & Francis, 1967 [51]; ® = Sourced from Gilhooly & Logie, 1980, Pavio, Yuille & Madigan, 1968, and Toglia & Battig, 1978 [52-54]; © =

Sourced from The English Lexicon Project website [55]
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courier new font lowercase letters, presented on a white
background. Stimuli presentation, timing and data col-
lection was controlled by E-Prime experimental software
version 1.1 (Psychology Software Tools), and responses
were recorded via the PST serial response box (Psychol-
ogy Software Tools).

Each participant took part in three sessions, in order
to complete each of the memory conditions; zero, two
and six words. The sessions were separated by at least
two weeks and session order was counterbalanced
between participants. The first session began with an
additional DVF LDT, designed to determine the opti-
mum target duration time for each participant [14]. Ten
trials (none of which were included in the experiment)
were presented, half to each visual field, with the partici-
pant asked to make a lexical decision for each trial,
while maintaining central fixation. The timing of target
presentation was modified according to the individual’s
accuracy and eye movement. The first run of 10 trials
was conducted at 180 ms target duration, followed by
subsequent runs of trials (different stimuli each run) at
durations increasing by 50 ms each run (e.g., 180, 230,
280 ms etc.), until the participant achieved the pass
score of 70% correct on trials with no eye movement.

After determining optimum target duration, the parti-
cipant would begin with the practice block. Experimen-
tal trials for the zero word condition were split into
eight blocks of 40 LDT priming trials (described below).
Participants were encouraged to take a short break
between blocks. The two- and six-word memory condi-
tion trials were also split into eight blocks; each block
included five segments, and each segment was made up
of the following three stages:

Stage 1- Memorization

Memory lists were either two or six words in length.
Each memory word was centrally presented, one-at-a-
time, for 1000 ms. The list was repeated, so that each
participant saw each word twice. Participants were
instructed to read the words silently and memorize
them for a subsequent recognition task.

Stage 2- LDT

Eight priming trials were presented per segment. Trials
were pseudo-randomized to ensure that a single target
type or visual field was not sequentially presented for
more than three trials. Each trial began with the presen-
tation of the central fixation cross, which remained
throughout the entire trial, and after 2000 ms the cen-
tral prime was presented one line above fixation for 150
ms. Prime and target presentation was separated by 100
ms (250 ms SOA). Targets appeared in-line with central
fixation (height of 1.4° of a visual angle), pseudo-ran-
domly to the LVF or RVF, stimuli subtended 2° (inner
edge)- up to 7.6° (outer edge) of visual angle horizon-
tally from the centre point. Targets were presented for
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between 180 ms and 380 ms, as determined by the indi-
vidualized assessment of optimal target duration. The
LHD group had a mean target duration of 327 ms
(range 230-430 ms), and the control group had a mean
target duration of 251 ms (range 180-330 ms). Following
target presentation the fixation cross remained on
screen for 5000 ms, to allow time for a response. Partici-
pants were instructed to record their lexical decisions by
pressing one of two response buttons, to indicate a
word or non-word response. Accuracy and RT were
recorded and stored for analysis. Participants responded
with their current dominant hand. Participants were
instructed to maintain central fixation throughout the
trials and eye movement was recorded online by the
investigator; a video camera was trained on the partici-
pant’s eyes and trials with eye movement were recorded
and later discarded from analysis.

Stage 3- Recognition of Memorized list

Following the LDT, participants were presented with a
four (two word memory condition) or a 10 (six word
memory condition) word recognition list, presented one
word at a time. The recognition items were centrally
presented and participants were asked to indicate
whether the item had been part of the memory list. The
recognition words remained on screen until a response
was made by pressing yes/no response buttons. The
recognition lists were made up of all of the items pre-
sented in the memorization stage plus novel distracter
items, inserted randomly within the presentation order.
The recognition task was included to ensure the partici-
pants maintained memorization throughout the LDT.
Accuracy was recorded for analysis.

Statistical analysis

Analyses were conducted using Predictive Analytic Soft-
Ware (PASW Statistics 18). Statistical analyses were car-
ried out on RT and accuracy data corresponding to real
word targets that were free from eye movement. Group
differences in semantic priming effects (for RT and
accuracy) were analyzed using Linear Mixed Model
(LMM) analysis, with group (LHD, Control) as a
between-subjects factor, and target visual field (LVF,
RVF), stimuli condition (CA, CO, AO, UNR) and mem-
ory load (0-, 2-, 6-word) as fixed factors. Target dura-
tion and target repetition were treated as covariates.
Data were then split according to memory load, in order
to explore the effects of the secondary memory task on
the primary LDT, and analyzed using LMM with group
(LHD, Control) as a between-subjects factor, and target
visual field (LVF, RVF) and stimuli condition (CA, CO,
AO, UNR) as fixed factors. Target duration and target
repetition were treated as covariates. LMM is used in
order to account for variance between items, as well as
between participants [57]. Pearson correlations were
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carried out between accuracy scores from memory
recognition task and the accuracy scores from the LDT.
The alpha level for statistical significance was set at 0.05
throughout.

Results

Response time analysis

Trials were excluded from RT analysis if responses were
incorrect (LHD: 19.7%; Control: 10.8%), if eye move-
ment was observed (LHD: 14.6%; Control: 12.4%), if RT
deviated from the individuals conditional mean by more
than two standard deviations, and if RT was extreme (>
2000 ms) and remained following removal of outliers,
(LHD: 11.3%; Control: 5.5% of correct eye movement
free trials). As the data violated assumptions of normal
distribution, a logarithmic transformation was employed.
All data analysis was then carried out on the trans-
formed data; however, for ease of comprehension, raw
data will be reported for descriptive purposes. Table 3
lists the group mean RT data in each condition for each
memory load.

The LMM revealed significant main effects for group
[F (1,21) = 7.564, p = .012], memory load [F (2, 7464) =
9.549, p < .001], stimuli condition [F (3, 7464) =
216.500, p < .001], and target visual field [F (1, 7464) =
14.642, p < .001], and significant interactions between
group and memory load[F (2, 7464) = 5.478, p = .004]
and between target visual field and stimuli condition [F
(3, 7464) = 4.316, p = .005]. The group main effect
reflected that overall, the control group (767 ms) was
significantly faster than the LHD group (1013 ms). The
target visual field main effect reflected the overall RVF
RT (879 ms) advantage over the LVF (901 ms). The
memory load main effect reflected that when groups
were combined the 0-word condition (876 ms) was sig-
nificantly faster than both the 2-word (904 ms) [p <
.001] and the 6-word (890 ms) [p = .007] conditions,
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with no difference between the 2- and 6-word condi-
tions [p = .711]. When the groups were separated
(group x memory load interaction) the control group
was found to be significantly faster in the 0-word (751
ms) than both the 2-word (769 ms)[p = .002] and 6-
word (780 ms) [p < .001] memory load conditions, with
no difference between the 2- and 6- word conditions [p
= .772]. The LHD group exhibited a different pattern
with the 2-word condition (1038 ms) being significantly
slower than both the 0-word (1002 ms) [p = .030] and
6-word (999 ms) [p = .037] conditions, which did not
differ from each other [p > .1]. The target visual field
and condition interaction reflected a significant advan-
tage for RVF/LH RT (874 ms) compared to LVF/RH
(924 ms) for the CO condition [p < .001], with no hemi-
spheric differences for either the CA or AO conditions

p>.1].

Semantic priming effects by memory load

The transformed RT data from the zero-word memory
condition were subject to the LMM analysis described
above, and revealed significant main effects for group [F
(1, 21) = 7.805, p = 0.11], stimuli condition [F (3, 2526)
= 67.229, p < .001], and target visual field [F (1, 2527) =
9.660, p = .002], and a significant interaction between
target visual field and stimuli condition [F (3, 2526) =
4.901, p = .002]. The group main effect reflected the
control groups RT advantage (755 ms) over the LHD
group (995 ms). The target visual field main effect
reflected a RT advantage for the RVF/LH (859 ms) com-
pared to the LVF/RH (890 ms). Planned contrasts of
hemispheric advantage were also carried out for each
group separately, in order to assess changes in hemi-
spheric dominance between memory load conditions.
The LHD group comparison revealed a RVF/LH (973
ms) advantage, compared to the LVF/RH (1015 ms) [p
= .02], and the control group comparison revealed no

Table 3 Estimated Marginal Mean RT for LHD group and Control group participants

Condition 0 word memory 2 word memory 6 word memory
LHD Control LHD Control LHD Control
LVF RVF LVF RVF LVF RVF LVF RVF LVF RVF LVF RVF
CA 95861 913.44 691.78 667.34 940.44 955.35 710.29 698.88 919.31 932.00 708.04 696.42
(74.79) (75.21) (59.65) (59.69) (79.24) (79.59) (63.39) (63.30) (78.72) (79.00) (63.04) (63.04)
CcO 1050.75 959.56 77873 730.75 1094.82 1023.89 783.86 76241 104049 944.13 79414 76552
(75.37) (75.22) (59.88) (59.71) (79.35) (79.86) (63.60) (63.40) (78.97) (79.23) (63.29) (63.05)
AO 964.22 962.06 715.62 754.11 101991 1005.18 744.52 736.34 985.17 959.19 74755 749.65
(75.20) (75.20) (59.85) (59.67) (79.38) (79.49) (63.60) (63.39) (79.07) (78.99) (63.29) (63.03)
UNR 1090.40 1058.32 87230 826.94 1166.77 1103.68 846.83 855.92 1095.71 1062.84 862.42 872.90
(75.36) (75.84) (60.08) (59.97) (79.69) (80.44) (63.73) (63.56) (79.43) (7947) (63.62) (63.29)

Estimated marginal mean response times in milliseconds with standard error in parentheses. Covariates for the estimated marginal means are Target Duration
and Repetition (as per LMM analysis). Abbreviations: CA Category Association, CO Category Only, AO Association Only, UNR Unrelated, RT reaction time, LHD Left
Hemisphere Damage group, Control Control group, LVF Left visual field, RVF Right visual field
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significant difference between the visual fields (LVF: 765
ms; RVF: 745 ms) [p = .118]. Conditional differences in
each visual field were explored via planned contrasts for
both groups. The LHD group exhibited bilateral priming
for the CA [LVF: p < .001; RVF: p < .001] and AO
[LVE: p < .001; RVF: p = .005] conditions, with CO
priming reaching significance in the RVF only [p =
.003]. The control group exhibited significant bilateral
priming for all related conditions [p < . 001]. The prim-
ing effects (difference between means: UNR condition -
related condition) for each group are presented in Fig-
ure 1.

In order to further explore differences in priming mag-
nitude (UNR RT - Related RT) between the conditions
and visual fields, a series of related sample t-tests were
carried out. The comparisons for the LHD group
revealed that the CA (135 ms) [¢ (8) = 3.524, p = .008]
and AO (115 ms) [£(8) = -2.579, p = .021] conditions had
a significantly larger priming effect than the CO condi-
tion (25 ms) for LVF targets. There were no significant
differences between priming effects in the LH for the
LHD group. Contrasts for the control group similarly
revealed that LVF/RH priming effects for the CA (193
ms) [£(13) = 6.439, p < .001] and AO (168 ms) [£(13) =
-4.162, p = .001] conditions were significantly larger than
the CO condition priming effect (104 ms). In the RVF/
LH, control participants exhibited a significantly larger
priming effect for the CA condition (168 ms) compared
to both the CO (99 ms) [£(13) = 5.110, p < .001] and the
AO (71 ms) [£(13) = -4.610, p < .001] conditions. Com-
parisons between visual fields revealed a significantly lar-
ger priming effect for the AO condition in the LVF/RH
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Figure 1 Reaction time priming effects for LHD and Control
groups in the zero-word memory condition. lllustrated priming
effects represent the mean of individual priming effects in
milliseconds (Unrelated - Related condition RT) for each condition.
Error bars represent +/- 1 Standard Error. LHD = Left hemisphere
damage group; Control = Control group; CA = Category
Association; CO = Category only; AO = Association only; UNR =
Unrelated; LVF = Left visual field; RVF = Right visual field; * p < .05;
** p < 001.
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(168 ms), compared to the RVF/LH (71 ms) [£(13) =
3.724, p = .003]. No other contrasts reached significance.

The LMM for the two-word memory condition
revealed significant main effects for group [F (1, 21) =
7.847, p = 0.11], stimuli condition [F (3, 2434) = 80.197,
p < .001], and target visual field [F (1, 2435) = 5.062, p
= .025]. The group main effect reflected the control
group’s RT advantage (767 ms) compared to the LHD
group (1039 ms). The target visual field main effect
reflected the pattern of RVF targets (893 ms) being
responded to significantly faster than LVF targets (913
ms). Planned contrasts of hemispheric advantage were
also carried out for each group separately, and revealed
no significant difference between the visual fields for
either group (LHD: LVF 1055 ms, RVF 1022 ms; Con-
trol: LVF 771 ms, RVF 763 ms) [LHD p = .057; Control:
p = .293]. The interactions did not reach significance.
The lack of interaction between group and stimuli con-
dition suggests no group differences in the pattern of
priming effects at the two word memory condition.
Planned contrasts between stimuli conditions found that
both groups exhibited bilateral priming for all related
conditions [p < .01] as illustrated in Figure 2.

Priming magnitude was also compared for each group
using related ¢-tests in the two-word memory condition.
Contrasts for the LHD group revealed that for LVF/RH
targets the CA condition had a significantly greater
priming effect (214 ms) than the CO condition (61 ms)
[£(8) = 5.361. p = .001] and the AO condition (141 ms)
[£(8) = -2.662. p = .029]. In the RVF/LH the CA condi-
tion (146 ms) was found to have a significantly larger
priming magnitude than the CO condition (85 ms) [£(7)
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Figure 2 Reaction time priming effects for LHD and Control
groups in the two-word memory condition. lllustrated priming
effects represent the mean of individual priming effects in
milliseconds (Unrelated - Related condition RT) for each condition.
Error bars represent +/- 1 Standard Error. LHD = Left hemisphere
damage group; Control = Control group; CA = Category
Association; CO = Category Only; AO = Association Only; UNR =
Unrelated; LVF = Left visual field; RVF = Right visual field; SOA =
stimulus onset asynchrony; * p < .05; ** p < .001.
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= 3.498, p = .010]. Comparisons between visual fields
revealed an advantage for CA priming magnitude in the
LVF (214 ms) compared to the RVF (146 ms) [£(8) =
2.667, p = .032] for the LHD group. Control group com-
parisons revealed a significant difference between the
priming magnitude for the CA condition (145 ms) and
the CO condition (69 ms) in the LVF/RH [#(13) = 4.145,
p = .001]. Similarly in the RVF/LH the CA condition
(158 ms) had a significantly larger priming magnitude
than the CO condition (94 ms) [#(13) = 3.625, p = .003],
and the AO condition (110 ms) [#(13) = -2.19, p = .047].

The LMM for the six-word memory condition data
revealed significant main effects for group [F (1, 21) =
5.902, p = .024], and stimuli condition [F (3, 2462) =
86.426, p < .001]. The interactions did not reach signifi-
cance in the six word memory condition. The group
main effect reflected that the control group was signifi-
cantly faster at responding (775 ms) than the LHD group
(999 ms). Planned contrasts between stimuli conditions
were carried out, and revealed significant bilateral prim-
ing for each of the related conditions [p < .05] for both
groups; priming effects are illustrated in Figure 3.
Planned contrasts of hemispheric advantage were also
carried out for each group separately, and revealed no
significant difference between the visual fields for either
group (LHD: LVF 1010 ms, RVF 987 ms; Control: LVF
778 ms, RVF 771 ms) [LHD: p = .453; Control: p = .374].

Contrasts exploring differences in priming magnitude
revealed a significant difference in priming effect
between the CA (240 ms) and the CO (110 ms) condi-
tions in the LVF for the LHD group [£(7) = 2.719, p =
.030]. The control group comparisons revealed that the
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Figure 3 Reaction time priming effects for LHD and Control
groups in the six-word memory condition. lllustrated priming
effects represent the mean of individual priming effects in
milliseconds (Unrelated - Related condition RT) for each condition.
Error bars represent +/- 1 Standard Error. LHD = Left hemisphere
damage group; Control = Control group; CA = Category
Association; CO = Category Only; AO = Association Only; UNR =
Unrelated; LVF = Left visual field; RVF = Right visual field; SOA =

stimulus onset asynchrony; * p < .05; ** p < .001.
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CA condition (170 ms) had a significantly larger priming
effect than both the CO (77 ms) [£(12) = 4.555, p =
.001] and AO (129 ms) [£(12) = -3.471, p = .005] condi-
tions in the LVF, and a greater priming effect for the
CA (204 ms) condition compared to the CO (132 ms)
in the RVF [£(13) = 3.249, p = .006]. The between visual
field comparisons did not reach significance.

Priming magnitude was also compared between mem-
ory loads for both groups. Each stimuli condition in
each visual field was compared between zero- and two-
word memory load conditions, between two- and six-
word memory load conditions and between zero-word
and six-word memory load conditions. None of the
comparisons reached significance for either the control
group or the LHD group [p > .05].

Impact of memory task on priming performance

In order to determine if the dual task memory condition
impacted the priming effects, Pearson correlations were
carried out between memory task accuracy and mean
RT priming effects (UNR - related RT). Correlations
between memory accuracy and priming effects in each
condition did not reach significance [p > .05], indicating
that there was no trade-off between memory accuracy
and priming performance for either group.

Accuracy analysis

The LMM revealed main effects for target visual field [F
(1, 9512) = 66.133, p < .001], and condition [F (1, 9501)
= 132.226, p < .001]. The LMM also revealed a two-way
interaction between group and target visual field [F (1,
9512) = 7.316, p = .007]. Both groups exhibited an
advantage for RVF/LH accuracy (Control: 91.9%; LHD:
81.8%) compared to the LVF/RH (Control: 84.2%; LHD:
78%) [LHD: p = .001; Control: p <.001]. The control
group performing significantly better than the LHD
group targets in the RVF (Control: 91.9%; LHD: 81.7%)
[p = .003], and the group difference in the LVF just
reached significance [p = .043] (Control: 84.2%; LHD:
78%). The LMM also revealed an interaction between
target visual field and condition [F (3, 9501) = 11.884, p
< .001], and three-way interactions between group,
memory condition and visual field [F (2, 9501) = 4.819,
p = .008], and between group, target visual field and
condition [F (3, 9501) = 3.122, p = .025]. In order to
explore these higher order interactions, the data were
analyzed for each memory condition separately to
explore group, condition and target visual field factors.
Table 4 lists the mean error rates for both groups in
each condition and each memory load.

Accuracy analysis by memory load
The zero word memory condition accuracy data were
analyzed using a LMM with group (LHD, Control),
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Table 4 Estimated marginal means of proportion accuracy for LHD group and Control group participants

Condition 0 word memory 2 word memory 6 word memory
LHD Control LHD Control LHD Control
LVF RVF LVF RVF LVF RVF LVF RVF LVF RVF LVF RVF
CA 903 957 951 950 885 854 927 971 893 837 977 974
(.038) (.040) (030) (030) (.038) (039) (031) (031) (.038) (039) (031) (031)
CcO 736 846 839 931 811 768 830 931 785 .786 859 929
(038) (039) (030) (.030) (.038) (039) (031) (031) (037) (039) (031) (.030)
AO 761 917 859 954 801 895 853 945 737 880 836 972
(038) (039) (030 (030) (038) (.040) (031) (031) (038) (039) (031) (031
UNR 687 71 744 814 701 658 759 818 660 707 670 838
(.038) (039) (030) (031) (038) (039) (031) (031) (037) (039) (031) (031)

Estimated marginal means proportion correct, with standard error in parentheses. Covariates for the estimated marginal means are Target Duration and
Repetition (as per LMM analysis). Abbreviations: CA Category Association, CO Category Only, AO Association Only, UNR Unrelated, LHD Left Hemisphere Damage

group, Control Control group, LVF Left visual field, RVF Right visual field

target visual field (LVF, RVF) and stimuli condition (CA,
CO, AO, UNR) as factors, and target duration and tar-
get repetition as covariates. The LMM revealed a main
effect for target visual field [F (1, 3219) = 38.245, p <
.001], with both groups exhibiting RVF advantage for
accuracy (LHD: 85.8%; Control: 91.8%) compared to the
LVF (LHD: 77%; Control: 85.1%) [p < .001]. The LMM
also revealed a main effect for stimuli condition [F (3,
3205) = 47.413, p < .001], and an interaction between
target visual field and stimuli condition [F (3, 3205) =
3.807, p = .010]. In order to explore the pattern
improvement between each of the related conditions
and unrelated conditions, planned contrasts were carried
out for both groups for each condition and in each
visual field. Differences in error rate between related
and unrelated conditions (priming) are illustrated in Fig-
ure 4. The contrasts revealed that the control group
exhibited significantly more accurate performances in
the CA [LVF and RVF: p < .001], CO [LVF: p = .001;
RVEF: p < .001], and AO [LVF and RVF: p < .001] condi-
tions bilaterally, compared to the UNR condition. The
LHD group exhibited better performance bilaterally for
CA [LVF and RVE: p < .001] and AO [LVE: p = .048;
RVF: p < .001] conditions, compared to UNR condi-
tions. The CO condition was significantly different from
UNR in the RVF only [p = .001] for the LHD group.
Priming magnitude for accuracy data (Unrelated error
rate - Related error rate) was compared between condi-
tions and visual fields using Wilcoxon Signed Ranks
tests. Tests for the LHD group revealed a significantly
greater priming effect for the CA condition (21%) com-
pared to the CO (5%) [z = -2.547; p = .011] and AO
(7%) [z = -2.310; p = .021] conditions in the LVF. In the
RVF, the CA condition (23%) had a significantly greater
priming effect than the CO condition (12%) [z = -2.310;
p = .021]. The control group also exhibited a greater
error rate priming for the LVF CA condition (21%)

compared to both the CO (10%) [z = -2.760; p = .006]
and AO conditions. (11%) [z = -2.970; p = .003]. No
other comparisons reached significance.

The LMM for the two-word memory condition accu-
racy data revealed significant main effects for target
visual field [F (1, 3112) = 10.507, p = .001], with the
RVF (86.0%) advantage for accuracy compared to the
LVF (82.3%). The LMM also revealed a main effect for
stimuli condition [F (3, 3101) = 38.246, p < .001], as
well as significant interactions between group and target
visual field [F (1, 3112) = 7.991, p = .005], and between
target visual field and condition [F (3, 3101) = 2.726, p
= .043]. Group differences for target visual field perfor-
mance were explored using planned contrasts between
the visual field accuracy data for each group separately.
The contrasts revealed a difference between the groups
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Figure 4 Priming effects for error rate for LHD and Control
groups in the zero-word memory condition. lllustrated priming
effects represent the mean of individual priming effects (Unrelated -
Related condition error rate) in each condition. Error bars represent
+/- 1 Standard Error. LHD = Left hemisphere damage; CA =
Category Association; CO = Category only; AO = Association only;
UNR = Unrelated; LVF = Left visual field; RVF = Right visual field; * p
< .05 * p < .001.
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for RVF performance, with the control group exhibiting
significantly more accurate responses (92.2%) than the
LHD group (79.7%) [p = .016]. A hemispheric difference
was revealed for the control group, with the RVF targets
responded to more accurately (92.2%) than the LVF tar-
gets (84.9%) [p < .001]. The difference between visual
fields did not reach significance for the LHD group [p =
.830]. Planned contrasts were then carried out for each
group between the conditions in each visual field to
explore the pattern of performance for each condition at
this memory condition. The planned contrasts revealed
significant bilateral difference from UNR for each of the
related conditions for both the control group; CA [LVF
and RVEF: p < .001], CO [LVE: p = .017; RVE: p < .001],
and AO [LVF: p = .002; RVF: p < .001], and the LHD
group; CA [LVF and RVF: p < .001], CO [LVF: p = .003;
RVF: p = .006], and AO [LVF: p = .005; RVF: p < .001].
Mean difference in error rates are illustrated in Figure 5.

In the two-word memory load condition, the compari-
sons for the LHD group found a significant difference in
accuracy error rate priming effect between the CA
(18%) and AO (10%) conditions in the LVF [z = -2.100;
p = .036] and between the CO (8%) and AO (20%) con-
ditions in the RVF [z = -2.103; p = .035]. The LHD
group had a RVF advantage (20%) for priming the AO
condition compared to the LVF (10%) [z = -2.310; p =
.021]. The control group comparisons revealed a signifi-
cantly greater priming effect for the CA condition (18%)
compared to both the CO (8%) [z = -2.669; p = .008]
and AO conditions (10%) [z = -2.481; p = .013] in the
LVEF.

The LMM for the six word memory condition accu-
racy data revealed significant main effects for the factors
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Figure 5 Priming effects for error rate for the LHD and Control
groups in the two-word memory condition. lllustrated priming
effects represent the mean of individual priming effects (Unrelated -
Related condition error rate) in each condition. Error bars represent
+/- 1 Standard Error. LHD = Left hemisphere damage; CA =
Category Association; CO = Category only; AO = Association only;
UNR = Unrelated; LVF = Left visual field; RVF = Right visual field; * p
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target visual field [F (1, 3157) = 24.876, p < .001], and
stimuli condition [F (3, 3150) = 48.3, p < .001], and sig-
nificant interactions between target visual field and con-
dition [F (3, 3150) = 9.713, p < .001], and between
group and target visual field [F (1, 3157) = 6.331, p =
.012]. The target visual field main effect reflected an
overall accuracy advantage for the RVF (87.9%) com-
pared to the LVF (80.4%). Group differences in hemi-
spheric performance were explored using planned
contrasts between visual fields for each group separately.
The contrasts revealed a significant difference between
the groups for RVF/LH performance, with the control
group (93.6%) exhibiting significantly more accurate
responses than the LHD group (80.3%) [p = .011]. There
was also a significant hemispheric difference revealed
within the control group, with the RVF targets
responses (93.6%) being significantly more accurate than
the LVF targets (84.2%) [p < .001]. The hemispheric dif-
ference did not reach significance for the LHD group [p
=.099]. The condition by target visual field interaction
was explored for each group via planned contrasts
between the conditions for each visual field, and the dif-
ference in accuracy performance are illustrated in Figure
6. The contrasts revealed significant bilateral differences
from UNR for both groups in each of the related condi-
tions; CA [LHD: LVF p < .001, RVF p = .001; Control:
LVF and RVF p < .001], CO [LHD: LVF p = .001, RVF
p = .044, Control: LVF p < .001, RVF p = .003], and AO
[LHD: LVF p = .032, RVF p < .001, Control: LVF and
RVF p < .001].

Comparisons of magnitude of improvement in accu-
racy (between unrelated and related targets) for the
LHD group found a significant difference in the error
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Figure 6 Priming effects for error rate for LHD and Control
groups in the six-word memory condition. lllustrated priming
effects represent the mean of individual priming effects (Unrelated -
Related condition error rate) in each condition. Error bars represent
+/- 1 Standard Error. LHD = Left hemisphere damage; CA =
Category Association; CO = Category only; AO = Association only;
UNR = Unrelated; LVF = Left visual field; RVF = Right visual field; * p
< .05, ** p < .00.
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rate priming effect between the CA condition (23%) and
both the AO (8%) [z = -2.666; p = .008] and CO (12.6%)
[z = -2.073; p = .038] conditions in the LVF, and a LVF
advantage for the CA condition (23%) error rate priming
effect, compared to the CA RVF (12%) [z = -2.192; p =
.028]. The control group comparisons revealed a signifi-
cantly greater priming effect for the CA condition (33%)
compared to the CO (21%) [z = -3.296; p = .001] and
the AO (18%) [z = -3.180; p = .001] conditions in the
LVF, and a significant difference between priming effects
for the CO (10%) and AO (14%) conditions in the RVF
[z = -2.100; p = .036]. Comparisons of conditions
between visual fields revealed a LVF advantage for both
the CA (LVE: 33%; RVF: 13%) [z = -2.982; p = .003] and
CO conditions (LVF: 21%; RVF: 10%) [z = -2.605; p =
.009], compared to the RVF for the control group.

Discussion

The current investigation combined the dual task and
DVF paradigms in order to explore the application of
the RH disinhibition hypothesis to language processing
following a LH lesion. In the current investigation, RH
priming performance for individuals in the LHD group
differed between the single task and dual task condi-
tions, with increased RH priming found following the
introduction of the concurrent memory loads. A similar
change in performance was not evident for participants
in the control group, with bilateral priming observed for
all related conditions throughout the zero-, two-, and
six-word memory load conditions.

Priming performance in healthy aging

During the zero-word memory load condition it is pos-
sible to observe the baseline hemispheric semantic prim-
ing performance for the control group. In accordance
with past investigations of young healthy controls, it is
expected that the category association condition will
exhibit bilateral activation [e.g., [18,20]], while category
only stimuli can be expected to prime in the RH under
post-lexical priming conditions [26-28], and the associa-
tion only stimuli are expected to show LH priming at
250 ms SOA [e.g., [22]]. The bilateral priming pattern
found for the current control group differs from the
expected unilateral priming for the category only and
association only conditions.

The control group’s pattern of bilateral priming in all
of the related conditions may be the result of the cur-
rent investigations use of central primes and controlled
post-lexical priming conditions and/or because of the
age difference between the participants in the current
investigation and the young healthy controls involved in
previous investigations. The use of a central prime in
DVF investigations has been associated with bilateral
priming [e.g., [19,20]], particularly under controlled
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priming conditions. This is suggested to be because of a
bilateral spread of semantic activation following the pre-
sentation of the prime. The incorporation of a central
prime was important in the current investigation, as it
provides a more realistic estimation of hemispheric con-
tributions under normal reading conditions, compared
to lateralized prime presentations [17].

Another possible explanation for the bilateral pattern
of priming observed for the control group is that it is
the result of to an age related reduction in hemispheric
asymmetry for semantic processing. The Hemispheric
Asymmetry Reduction in Older adults (HAROLD)
model suggests that healthy older people experience a
reduction in lateralization of processing on a range of
cognitive tasks, compared to young healthy controls
[58]. This is based on consistent findings of bilateral
hemispheric activation of the pre-frontal cortex for
older healthy adults, compared to lateralized activation
in young healthy controls when performing the same
tasks [see [58]]. Recent evidence extends the applicabil-
ity of the HAROLD model specifically to behavioral
semantic priming, with findings of a bilateral priming
pattern for older controls and unilateral priming for
young controls on an affective priming task [59]. There-
fore, the bilateral pattern of priming found in the cur-
rent investigation, compared to unilateral activation in
previous young healthy control investigations [26-28]
could reflect an age related compensatory mechanism of
bilateral recruitment during semantic processing. This
explanation would be strengthened by a direct compari-
son with a young healthy control group.

Healthy aging and inhibitory control

The control group’s pattern of bilateral priming in all of
the related conditions continued into the two- and six-
word memory load conditions. The consistency of RH
priming performance, as the memory load increased,
may indicate that neither the two- nor the six-word
memory loads was sufficient to overload the healthy
LH’s attentional capacity and disinhibit RH processing.
However, changes evident in hemispheric processing
advantages across memory load conditions and hypoth-
eses of age related decline in working memory suggest
that a lack of LH overload may not be the best
explanation.

The verbal memory load is designed to tax the
resources of the LH and remove its processing advan-
tage. Aging is widely accepted to reduce a person’s
working memory capacity [see [60,61] for reviews] due
to a reduction in processing capacity [e.g., [60,62]], or a
decline in the ability to inhibit activation of irrelevant
information [e.g., [63-65]]. This deficit should increase
the likelihood that older healthy adults would be more
susceptible to the interference of the secondary memory
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load conditions, compared to young healthy adults. In
previous investigations, a six-word verbal memory load
has been sufficient to overload the LH’s attentional
resources and remove the no-load condition RVF/LH
advantage for young healthy controls [6,66]. In contrast,
the current control participants did not exhibit the
expected RVF/LH RT advantage in the zero-, two- or
six-word conditions. The lack of hemispheric advantage
can be interpreted to reflect the age related reduction in
processing asymmetry, compared to young healthy con-
trol participants.

A further hemispheric difference was evident for the
control group at the zero-word memory load condition,
with comparisons of priming magnitude revealing a RH
advantage for priming the association only condition.
DVF investigations with young healthy participants sug-
gest that the association only condition should elicit
priming in the LH only [e.g., [22]]. While bilateral acti-
vation may occur because of the central prime, the RH
advantage cannot be similarly explained. The current
investigation hypothesized that priming of the associa-
tion only condition in the RH would provide an indica-
tion of RH disinhibition. Accordingly, the observed RH
advantage for this condition reflects RH performance
that exceeds the expected performance at the zero-word
memory load condition.

Taken together, the advantage for RH priming perfor-
mance in the association only condition, and the lack of
a RVF/LH RT advantage overall, suggest a reduction of
both LH dominance and RH inhibition. However, this
“disinhibited” processing is occurring not only under
memory load conditions, but also prior to the introduc-
tion of any memory loads. The occurrence of disinhibi-
tion in the no-load condition may also be related to the
age of the current participants. Previous studies have
found that healthy aging can result in a similar cognitive
performance and similar pattern of PET brain activity to
that observed for young healthy adults when their atten-
tional resources are reduced by a divided attention task
[e.g., [67]]. Similarly, the resource perspective of cogni-
tive aging [e.g., [62,68]] suggests that aging reduces the
supply of attentional resources available to the dominant
hemisphere for processing. If this is the case, a memory
load condition may not be necessary to facilitate the
recruitment of additional processing resources from the
non-dominant hemisphere in healthy older adults. Con-
sistent with the HAROLD model, it is plausible that
older controls will need to recruit more neural areas,
such as the non-dominant hemisphere, in order to have
access to an equivalent supply of attentional resources
as young healthy controls and maintain similar perfor-
mance accuracy [69]. In order to access resources from
the non-dominant hemisphere it will need to be released
from interhemispheric inhibition, similar to the
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modification of hemispheric attentional balance that
underlies RH disinhibition within the dual task para-
digm [2,5].

The benefit of the bilateral recruitment mechanism is
suggested to be the maintenance of performance accu-
racy, despite the cognitive limitations of aging. In the
current investigation there was a LH accuracy advantage
evident in all three of the memory load conditions. This
may reflect the compensatory nature of the bilateral
processing, which serves to maintain performance accu-
racy comparable with younger controls [58]. However
direct comparison with younger participants would be
able to better verify and determine the nature of this
potential compensatory mechanism.

The control group in the current investigation does
not appear to require the secondary memory task in
order to overload the LH and release the RH from inhi-
bition, with evidence suggesting disinhibition of RH pro-
cessing in the no-load condition. The similarities
between the patterns of priming performance over the
three memory load conditions are therefore speculated
to result from a continuation in the strategic reduction
in interhemispheric inhibition to continue to facilitate
compensatory bilateral recruitment in older adults in
each of the memory load conditions.

Hemispheric semantic and associative priming following
LHD

The LHD group exhibited hemispheric differences in
priming performance during the zero-word memory
load condition, with LH priming observed for all related
conditions and RH priming for the category and associa-
tion, and the association only conditions, but not the
category only condition. To the authors’ knowledge
there are no previous relevant behavioral DVF investiga-
tions of semantic and/or association priming with peo-
ple following LH lesions with which to compare the
current hemispheric performances. Traditional priming
studies, with a centrally presented prime and target,
have found that people with LH lesions are able to
prime items related via association and/or semantic
category membership under automatic priming condi-
tions [e.g., [70,71]].

Bilateral activation of the category association condi-
tion reflects findings from investigations of young
healthy participants [e.g., [20]], and from the current
investigation’s control group. However, bilateral priming
for the association only condition and the lack of prim-
ing for the category only condition in the RH do not
reflect the a priori hypotheses of the current investiga-
tion. Bilateral activation in the association only condi-
tion does, however, mirror the performance of the
control group in the current experiment, is consistent
with hypotheses of bilateral activation for older
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participants [58], and fits with previous central prime
DVF investigations [23].

The pattern of LH but not RH priming for the cate-
gory only condition was not expected in the current
investigation. According to the time-course hypothesis,
however, priming of category only targets can be found
unilaterally in the LH at particularly short SOAs (e.g.,
150 ms) and under automatic processing conditions
[16]. Activation in the LH only for the category only
condition at 250 ms SOA may therefore reflect an
increase in the time it takes for the damaged LH to
focus activation on strongly related items, or may reflect
a more general reduction in the ability to focus activa-
tion. Current results from priming magnitude compari-
sons in the LH reflect broad unfocused activation, with
no significant differences found between the three
related conditions. An advantage for the category and
association condition over the other related conditions
is expected for the LH, with this broad activation pat-
tern associated with the RH in healthy controls [72]. In
contrast, current findings suggest a RH advantage for
priming targets with an association relationship, with
both the category membership and association, and
association only conditions exhibiting greater priming
magnitude than the category only condition. This sug-
gests that following a LH lesion the RH is benefiting
from an association boost in the zero-word memory
load condition. An association boost refers to the reduc-
tion in processing required to activate associated stimuli,
therefore making them easier to process, compared to
the weaker category only relationship [21]. In older indi-
viduals with lesions, it is assumed that there would be
limited processing resources compared to young healthy
controls. The resource limitations, in combination with
interhemispheric suppression, would result in the RH
being unable to perform to its full processing capacity.
Therefore, it is hypothesized that the RH would only
have sufficient processing resources to activate asso-
ciated items. Overall, it appears that following a LH
lesion, hemispheric no-load priming patterns reflect a
broad spread of activation in the LH and processing in
the RH appears to require an association boost in order
to activate, potentially due to interhemispheric inhibi-
tion and resource limitations.

Disinhibition following a LH lesion

The current investigation aimed to directly explore sug-
gestions that a LH lesion will result in RH disinhibition
[30,31], by experimentally manipulating RH disinhibition
for these participants. Individuals in the LHD group
exhibited an increase in RH participation under dual
task conditions. At baseline (no-load condition) the
LHD group exhibited an overall LH advantage for pro-
cessing and no priming for the category only condition
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in the RH. Following the introduction of a verbal mem-
ory load the LHD group were found to significantly
prime all related conditions in the RH, to exhibit a
priming magnitude advantage in the RH for the category
association condition (two-word memory load), and no
longer exhibited the LH processing advantage that had
been present at baseline. As in previous investigations of
healthy controls [e.g., [6,73]], the removal of LH proces-
sing advantage under dual task conditions indicates that
the additional verbal memory task was successful in
overloading the attentional resources of the LH, and
resulted in disinhibition of RH processing.

The impact of verbal memory load on LHD group
processing is in contrast to findings of the current con-
trol group, particularly as it indicates RH inhibition in
the no load condition. A LH lesion will result in the
reorganization of hemispheric contributions to language
processing, and the possible use of different compensa-
tory mechanisms. These mechanisms are discussed in
the remainder of this section. The LHD group findings
also differ from previous investigations that have found
evidence of RH disinhibition following LH lesions
[30,31], and from investigations that have found RH dis-
inhibition following simulated rTMS lesions in the LH
[11].

The current cohort of participants differed from LHD
participants in previous investigations, who either had
significantly large lesions [31], severe language deficits
[30], or ‘acute’ simulated lesions [11]. Lesion size is sug-
gested to influence disinhibition, with Landis et al. [31]
suggesting that RH disinhibition following a LH lesion
requires the complete isolation of the RH, and that this
most likely occurs only following particularly large
lesions. Landis et al. [31] went on to speculate that if a
lesion was not significantly large enough, the dominant
LH may maintain inhibition of RH language processing,
as may be the case for the current LHD group.

Another possible explanation for the lack of sponta-
neous RH disinhibition for LHD participants in the cur-
rent investigation is that the extent of spontaneous
disinhibition is relative to either the degree of continu-
ing language impairment. The current participants were
considered to exhibit high levels of residual or recovered
language abilities, with current classifications of either
mild residual aphasia or no residual aphasia on the
WAB [41]. This average profile compares with the parti-
cipant discussed by Landis and Regard [30] who contin-
ued to experience severe global aphasia at 1 year post
lesion and demonstrated continuing evidence of RH dis-
inhibition. The extent of LH inhibition may be related
to the extent of continuing language impairment, either
because a lack of recovery has not allowed the LH to
regain inhibitory control, or because successful recovery
results from the reintroduction of LH control.
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Hierarchical theories of language reorganization and
recovery following LH lesion have combined these argu-
ments somewhat, by suggesting that success of recovery
may be linked to an interaction between lesion size,
damage to key functional networks and the subsequent
degree of intra- and interhemispheric disinhibition [8].
Specifically, Heiss and Theil [8] suggest that the most
successful recovery of language ability is associated with
the restoration of function in the original language pro-
cessing regions of the LH, and that this is only possible
for particularly small lesions. Following that, intrahemi-
spheric compensation can be employed following
damage to key LH language areas, via the reduction of
intrahemispheric inhibition within the dominant hemi-
sphere. This reorganization is suggested to encourage
potentially incomplete, but satisfactory recovery. Finally,
severe damage to a large region of LH networks is sug-
gested to reduce interhemispheric inhibition and encou-
rage reorganization to homologous RH language
regions, which is associated with the least successful lan-
guage recovery [8].

Alternatively, the extent of interhemispheric disinhibi-
tion following a unilateral lesion may relate to the
amount of time elapsed since lesion. This may explain
the differences in findings between investigations of
rTMS induced lesions, which indicate the potential for
RH disinhibition in the acute stages of a simulated
lesion and the findings of the current investigation,
whose participants are in the chronic stages with at least
10 months since lesion onset. There is the potential
therefore that RH disinhibition post lesion may be short
lived, with a return of LH control in the chronic phases.
Findings from a series of longitudinal single case studies
by Ansaldo and colleagues [13-15,74] provide support
for the relationship between recovery time-course and
the degree of RH disinhibition observed, although disin-
hibition was not the focus of the investigation or expla-
nation provided by Ansaldo and colleagues. Ansaldo and
Arguin [13] described an initial advantage for RH pro-
cessing, with an extension of processing abilities beyond
those associated with RH processing in a non-lesioned
brain. The extension of processing abilities in the RH at
this early stage may reflect an initial release from LH
inhibition. Following the initial RH advantage, an
improvement of LH function was observed, and the
hemispheres appeared to perform equivalently at one
year post lesion. The improvements observed in LH
functioning as recovery progressed [13], in combination
with the findings of reduced RH processing abilities for
the participants in the LHD group during the single task
condition in the current investigation, may suggest that
following sufficient time post lesion or sufficient degree
of recovery the LH is able to regain its control of RH
processing. The suggested changes to RH disinhibition
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over time following LH lesion is also supported by find-
ings from neuroimaging investigations that suggest an
upregulation of RH homologues for language processing
during the acute/subacute phases, that is followed,
under certain circumstances (depending on lesion size
etc.), by language processing being carried out in ipsile-
sional LH regions coupled with a return of LH control
[e.g., [75]]. The LHD participants in the current study
are in the chronic stage post lesion, and the observed
inhibition of the RH is speculated to be important to
facilitate the reintroduction of LH dominance for lan-
guage processing over time.

Limitations and future directions

Methodological limitations may have influenced the
priming patterns that were found in the current inves-
tigation. In particular, the use of individualized presen-
tation times for lateralized stimuli, that exceeded 200
ms in some cases, may have increased the likelihood of
eye movement and therefore access to a target via
both visual fields, although the likelihood of this
occurring was minimized with monitoring. In addition,
due to the nature of the task there was a considerable
amount of data lost due to observed eye movement
and a high rate of error, particularly for the LHD
group. This may have influenced the RT results
reported. The current methodology did not counterba-
lance the response hand for the lexical decision task
between participants. This is an issue for two reasons.
Firstly, because the majority of participants responded
with their right hand and this may have caused an
advantage for LH processing. Secondly, because the
use of the post-morbid dominant left hand for some
LHD patients may have similarly caused a RH advan-
tage in that group. Finally, interpretation of results
may have benefited from the inclusion of more specific
lesion information, such as etiology and lesion size, for
each of the individuals in the LHD group.

Future investigation of RH disinhibition would benefit
from comparing a larger cohort of individuals with vary-
ing lesion sizes, in order to directly explore the effect of
particular lesion characteristics on RH disinhibition.
Future investigations should also consider case-by-case
analysis to provide insight into differences in disinhibi-
tion between individuals. Measuring language recovery
over time (from acute to at least 1 year post lesion) in
combination with the experimental manipulation of dis-
inhibition, would allow more direct examination of RH
disinhibition over time and language recovery. Finally, it
would be interesting and theoretically relevant to
directly compare older and younger controls on tasks
that manipulate hemispheric inhibition in order to learn
more about the impact of aging on interhemispheric
control.
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Conclusions

Overall, the current investigation provides evidence that
RH contributions to semantic processing following LH
lesions can be manipulated and enhanced by introdu-
cing a secondary task that engages the processing
resources of the LH. However, for these participants the
LH lesion alone did not appear to result in RH disinhi-
bition at the time of testing. This finding has implica-
tions for theories of hemispheric inhibition following
lesions and over recovery. Investigations that directly
explore language recovery and incorporate a dual task
paradigm with participants following LH lesions have
the potential to expand the current knowledge regarding
the dynamic interaction between the hemispheres dur-
ing language processing and recovery following unilat-
eral LH lesions.
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