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Abstract

Background: The deterioration of the central cholinergic system in aging is hypothesized to underlie declines in
several cognitive domains, including memory and executive functions. However, there is surprisingly little direct
evidence regarding acetylcholine’s specific role(s) in normal human cognitive aging.

Methods: We used short-latency afferent inhibition (SAI) with transcranial magnetic stimulation (TMS) as a putative
marker of cholinergic activity in vivo in young (n=24) and older adults (n=31).

Results: We found a significant age difference in SAI, concordant with other evidence of cholinergic decline in
normal aging. We also found clear age differences on several of the memory and one of the executive function
measures. Individual differences in SAl levels predicted memory but not executive functions.

Conclusion: Individual differences in SAI levels were better predictors of memory than executive functions. We
discuss cases in which the relations between SAl and cognition might be even stronger, and refer to other age-
related biological changes that may interact with cholinergic activity in cognitive aging.
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Background

Normal aging is associated with declines in several cognitive
domains, most notably episodic memory and executive
functions (for reviews, see [1-4]). These cognitive deficits
are associated with myriad brain changes, including struc-
tural and functional deterioration of prefrontal, basal gan-
glia, and medial temporal areas and their interconnections.
However, establishing a link between these changes and
cognitive decline in normal aging has proven surprisingly
difficult [2,5].

Alterations in two classic neurotransmitter systems
have drawn considerable attention in cognitive aging:
dopamine [6] and acetylcholine. For decades, acetylcholine
(ACh) was thought of primarily as a memory-related neuro-
transmitter, but this view has recently been revised, with
ACh now thought to play an equally if not more crucial role
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in executive functions (for reviews, see [7-9]). The integrity
of cortical cholinergic inputs appears to be critical for
modulating attention, by enhancing responsiveness to sen-
sory inputs to facilitate cue detection and orienting [10] (for
a review, see [9]). Cholinergic neuromodulation may also
play an important role in executive functions by selectively
enhancing task-relevant inputs via bottom-up thalamic pro-
cesses, while suppressing irrelevant stimuli via top-down
prefrontal modulation [11] (for other perspectives, see
[12,13]). This cholinergic-dependent interaction between
bottom-up and top-down processes appears to be affected
by aging, leading to difficulty in task-switching, handling
competition among several possible responses, and suppres-
sing unwanted responses [11]. In memory, optimal levels of
ACh may facilitate encoding by increasing the influence of
inputs into the hippocampus through enhanced potenti-
ation [9,14], and/or by providing the attentional “glue” to
bind together disparate elements of an episode into a uni-
fied memory trace [15,16].

Experimental and correlational animal studies, as well as
computational modelling, have yielded much information
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on the role of the cholinergic system in cognition. However,
the extent to which age-related changes in cholinergic neu-
romodulation contribute to cognitive decline in normal
human aging remains unclear. There are at least three rea-
sons for this: First, making inferences from animal and
computational models to humans has sometimes proven
surprisingly difficult (e.g., [17,18]). Second, much of what
we infer about the role of ACh in cognitive aging comes
from studies in which Alzheimer’s patients are treated with
cholinesterase inhibitors, including donepezil, galantamine,
and rivastigmine (e.g., [19]). Unfortunately, these patients
can be difficult to test and experience other confounding
factors including significant structural and functional brain
changes. Third, manipulation of ACh via agonist and antag-
onist drugs (e.g., scopolamine) has produced a vast amount
of data, but strictly speaking this line of research tells us
more about acute effects than it does about the long term
decline in cholinergic activity seen in normal aging. There is
thus a need to further examine the in vivo contribution of
age-related alterations in central cholinergic function to
declines in human cognition.

Recent advances in the field of non invasive brain
stimulation have yielded new opportunities to examine
the neurophysiological correlates of aging using markers
of cortical excitability that can be linked with relative
confidence to specific neurotransmitter systems [20].
One such marker involves pairing afferent nerve stimula-
tion with transcranial magnetic stimulation (TMS) of the
motor cortex to modulate motor responses evoked in
contralateral hand muscles [21]. When applied at short
intervals (e.g., 18-20 milliseconds [ms]) before TMS
pulses, afferent nerve stimulation typically leads to a
period of inhibition of the motor evoked potentials
(MEPs). This short-interval afferent inhibition (SAI) is
mediated at the cortical level through cholinergic-
dependent GABA 4 receptor activation [22]. The implica-
tion of cholinergic action in mediating SAI is supported
by in vivo observations of its reduction or even abolition
by administration of a selective muscarinic cholinergic
receptor blocker (scopolamine) in healthy participants
[23]. Further, SAI is lower than expected in Alzheimer’s
patients but restored by cholinesterase inhibitors [22].
SAI is also reduced in other disorders characterized by
cholinergic dysfunction, including Lewy body dementia
[24], multiple sclerosis [25], and Wernicke—Korsakoff
syndrome [26], but it is normal in frontotemporal dementia,
a non-cholinergically mediated form of dementia [27]. To-
gether, these observations provide strong evidence that SAI
is a cholinergic-dependent marker of motor intra-cortical
excitability.

Given the clear decline in cholinergic modulation with
age [28,29], one would predict that SAI would be altered
in healthy older adults. Yet, very few studies have examined
this issue. Oliviero et al. [30] compared SAI levels in healthy
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young and older adults and found no age differences. More
recently, Degardin et al. [31] performed a similar study and
reached a similar conclusion. However, as we and others
[32] have argued previously, the use of varying test inten-
sities to obtain a constant MEP size across participants
might have contributed to masking any age effects in the
two studies above. In line with this, we recently found a
large and selective decrease in SAI in healthy seniors when
we used a constant TMS test intensity approach [33]. Fur-
ther, we found that age-related variations in SAI explained a
substantial proportion of the variance in timed motor tasks
assessing processing speed.

This study constitutes an extension of our previous
findings; data were derived from the same sample of partici-
pants as already described [33]. In the present study, we
examined possible relationships between SAI, as a putative
marker of cholinergic-dependent cortical inhibition, and
cognition in young and older healthy adults. Because mean
differences between young and older adult groups are often
small, especially relative to the extensive variability that can
be seen among healthy older adults (e.g., some perform
much more poorly than young people, whereas others are
indistinguishable from the young [34]), we capitalized on
the individual-differences approach used by Glisky and col-
leagues [35,36]. This approach allows the characterization
of each participant’s long-term memory and executive func-
tions using neuropsychological testing to construct aggre-
gate scores reflecting performance across several tasks in
each domain (for details, see Method). We hypothesized
that age-related differences in SAI levels would be asso-
ciated with age-related differences in memory and executive
functions. For memory, several investigators have empha-
sized ACh’s putative role in binding information in memory
[15], which we assessed using a canonical measure of paired
associate learning (Verbal Paired Associates from the
Wechsler Memory Scale-III; WMS-III [37]). We also exam-
ined face recognition from the WMS-III because recent
studies have also described cholinergic modulation of face-
memory-related activity in the fusiform gyrus [38]. Given
the emphasis in the recent literature on the crucial role of
ACh in modulating executive functions [19,39,40], we also
expected correlations between SAI and our aggregate ex-
ecutive function measure.

Method

Participants

The present data were derived from the same group of
participants previously described [33], with minor dif-
ferences in the current sample (i.e. one young adult
was excluded from the present study because of in-
complete cognitive data). We analyzed data from 24
young adults (age range=18 to 30 years; M=22.67,
SD=3.49; 13 females) and 31 community-dwelling
older adults (age range=65 to 82 years; M="70.29,
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SD =3.81; 18 females). The two age groups were simi-
lar in education (young: M=16.08 years, SD =1.89;
older adults: M=16.19, SD=2.83). All participants
were fluent English and/or French speakers with nor-
mal or corrected-to-normal vision (one participant was
blind in one eye, but had no difficulty with the visual
tasks) and hearing, and were screened for depression
(two participants were taking anti-depressants but their
depression screening scores, TMS, and cognitive data
were normal), dementia, psychiatric or neurological
disorders, drug or alcohol abuse, and counter-indications to
TMS. Participants’ medications were not altered for testing,
with many older adults taking drugs related to vascular
health (e.g, hypertension, statins cholesterol lowering
drugs). None of the participants was taking neuroactive
drugs such as neuroleptics, however one young adult and
one older adult were taking antidepressants (as mentioned
above, their TMS data were normal). Vascular risk factors
were assessed for each participant and consisted of a cumu-
lative score of 6 factors: body mass index with obesity
defined as being greater than 30 kg/m? current smoking
status, lack of physical activity, type-2 diabetes, history of
hypertension, and history of cardiac symptoms [41,42]. Vas-
cular risk factors for participants ranged from 0 to 3
(M =0.44) with the maximum possible score being 6, sug-
gesting generally good vascular health. All participants also
completed the Montreal Cognitive Assessment (MoCA;
[43]). Although some older adults (5/31) scored slightly
below the recommended cutoff (ie, >26), they were
deemed eligible for the study based on the interview and
their good performance on the other tasks, and on recent
evidence that this cut-off may be too high [44]. The results
of five additional participants were discarded because they
did not meet inclusion criteria and thirteen more (including
6 older adults) because of incomplete testing (10 could not
be reached for a second testing session resulting in missing
TMS-SAI data and 3 decided to stop before completion).
The Research Ethics Boards of the University of Ottawa
and Bruyere Continuing Care approved the study procedure
in accordance with the principles of the Declaration of Hel-
sinki. Informed consent was obtained from each participant
before the experimental session and all volunteers received
a minimal honorarium to defray expenses for participation.

TMS procedure for short-afferent inhibition

The TMS procedure has been reported in detail previ-
ously [33]. In brief, motor evoked potentials (MEP) were
recorded using small pairs of auto-adhesive surface elec-
trodes (10 mm diameter, Ag-AgCl) placed over the first
dorsal interosseous (FDI) muscle of the right hand. Elec-
tromyographic signals were amplified (100-500 mV/div)
and filtered (bandwidth, 10 Hz to 1 kHz) with a polygraph
amplifier (RMP-6004, Nihon-Kohden Corp.; BNC-2090,
National Instrument Corp.). Magnetic stimulation was
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delivered with a Magstim Rapid® stimulator (Magstim Co.
Dyfed, UK) connected to a figure-eight coil (90-mm inside
loop diameter), held ~45° in the mid-sagittal plane. The
resting motor threshold (RMT) was determined using the
method of Mills and Nithi [45]: the RMT was defined for
each participant as the median intensity between the
upper and lower threshold values. The test TMS intensity
was fixed at 120% RMT for both unconditioned and condi-
tioned trials. Conditioning afferent stimulation was pro-
duced by applying 200 ps electrical pulses (S88
Stimulator, Grass Technologies, Astro-Med, Inc, West
Warwick, RI 02893 U.S.A.) on the median nerve at an
intensity just above the motor threshold to evoke a
minimal visible twitch of the thenar muscles [23,46].
SAI was measured by applying afferent stimulation
20 ms before the TMS pulse over the motor cortex.
Other inter-stimulus intervals (ISI; 25, 50 or 200 ms;
see [33]) were also investigated. Unconditioned MEP
amplitude was first determined for each participant by
eliciting 15 MEPs at rest (120% RMT). Following the
same procedure, blocks of trials were made for each
conditioned interval (order was counterbalanced across
participants). Trials for which unwanted contractions
were present were eliminated and repeated if necessary.

Analysis of MEP data

Mean individual values for conditioned and uncondi-
tioned MEP responses were measured off-line by aver-
aging the amplitude (peak-to-peak) and latency of each
trial. SAI level was determined in each participant in
terms of percent of unconditioned MEP responses (i.e.%
MEP Conditioned/MEPUnconditioned)'

Memory and executive functions

Participants underwent neuropsychological testing in a
quiet, well-lit room, in their language of choice. We cre-
ated two composite z scores for each individual, based
on previous factor analyses [35,36]. The first factor score
reflects long-term memory and is composed of five
scores: the Logical Memory I, Faces recognition I, and
Verbal Paired Associates I subtests of the WMS-III, Visual
Paired Associates I from the Wechsler Memory Scale—
Revised (WMS-R; [47]), and Long Delay Cued Recall from
the California Verbal Learning Test-II (CVLI-IL [48]). The
second factor score, reflecting executive function, is made
up of the number of categories achieved on the computer-
ized Wisconsin Card Sorting Test [49], the total number of
words produced to the cues F, A, and S on a phonemic flu-
ency test [50], and the Backward Digit Span and Mental
Control measures from the WMS-IIL. In previous studies
involving only older adults, the executive function factor
had also included Mental Arithmetic from the Wechsler
Adult Intelligence Scale—Revised (WAIS-R; [51]), but [35]
reported that this measure did not load significantly on the
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executive function factor in their young adults. Therefore,
we omitted this measure from the executive function z
score in both groups to allow for direct age group
comparisons.

Statistical methods

Independent t-tests, with adjusted p values for multiple
comparisons (i.e. p=0.0125), were used to examine age
group differences on baseline measures of excitability.
Mixed analysis of variance (ANOVA) and independent
t-tests were used to examine differences between age
groups. We adjusted p values to correct for multiple
comparisons in the between-group t-tests on the cogni-
tive tasks (p=0.05/8, that is, p=0.00625). We used
Pearson’s correlations to examine associations among
SAI levels and memory and executive function scores.
All statistical tests were performed using the PASW soft-
ware version 18.0 for Windows® (Chicago, IL, USA). The
figure was prepared with GraphPad Prism version 5.00 for
Windows (GraphPad Software, San Diego California USA,
www.graphpad.com).

Results

TMS and SAI

The TMS procedure was well tolerated and no participants
experienced adverse effects. A thorough analysis of the
physiological data has been reported previously [33] (see
Table 1 for baseline TMS measurements). Briefly, young
adults generally exhibited marked MEP suppression in re-
sponse to afferent conditioning leading to high levels of SAI
(18.13 £15.74). In contrast, seniors exhibited more variable
afferent-induced inhibition with a substantial proportion of
subjects (14/31) showing either low or absent inhibition
(MEP_onq = 50% suppression). Accordingly, SAI levels esti-
mated in seniors (51.36 +34.62) were significantly lower
than in young adults (p < 0.001).

Table 1 Hand dominance and baseline measures of
excitability in the two age groups (mean + SD)

Young Senior

(n=24) (n=31)
Hand Dominance (L/R) 2/22 1/30
Resting MT (% output) 66.00+11.55 7255+12.71
Test MT (% output) 79.17+13.82 86.97+15.15
Resting MEP amplitude (uV) 9266177434 427.22 +540.59%
Resting MEP latency (ms) 2227+1.88 2403 +1.87*
Intensity MNS' 64.17+1.80 7287 +172

Key: MEP, motor evoked potential; MNS, median nerve stimulation; MT, motor
threshold.

! Conditioning intensity for median nerve stimulation (MNS).

*Significant difference at adjusted p-values (p =0.0125) for multiple
comparisons (see [33] for a more elaborate analysis of these age differences).
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Age differences in cognition

The young adults performed significantly better on sev-
eral of the memory and executive function tasks than the
older adults did (ANOVA: main effect of Age:
F15,=6.86, p=0.01, significant Age X Task interaction:
F, 357,=3.22; p=0.003"). At the adjusted p value, post-
hoc t tests showed that the young significantly outper-
formed the older adults on memory for Verbal Paired
Associates I (t53 =4.03, p =0.0002) and Faces I (¢, = 3.89,
p=0.0003), and number of categories on the Wisconsin
Card Sorting Test (£55 =4.10, p=0.0001). Although the
two age groups could not be compared on the Visual
Paired Associates II measure using parametric methods
because of ceiling effects in the young adults (that is, all
the young adults scored 6 out of 6, whereas the older
adults ranged from 4 to 6), a Chi-Squared analysis sug-
gested a significant advantage for the young adults
(X%:9.82, p=0.007). The factor scores, by definition,
reflected the individual test scores: The young had sig-
nificantly higher scores than the older adults on the
memory factor z score (ts3=4.53, p <0.0001), but the
groups were not significantly different from one another
on the executive function factor z score (ts3=1.65,
p=0.11). The mean levels of performance on the individ-
ual cognitive tasks and the factor scores are shown in
Table 2.

Correlations between SAl and cognition

When we performed an analysis across all individuals
[52,53]; but see [54,55], SAI significantly predicted the
memory factor score (r=-0.31, p=0.02), whereas it did
not predict the executive function z score (r=-0.09,
p=0.51; see Figure 1). The correlation between SAI and
memory was modest in size (**=10%), and when we

Table 2 Cognitive performance in the two age groups
(mean + SD)

Young Adults  Older Adults

(n=24) (n=31)
Logical Memory | 3046 + 4.04 29.00 + 6.77
Visual Paired Associates Il 6.00 + 0.00 550 £ 0.77 ***
Verbal Paired Associates | 2663 £ 559 19.00 + 7.84 ***
Faces | 38.71 £ 431 3467 + 334 %%
CVLT-Il Long-Delay Cued Recall' 1367 =181 1239+ 270
Verbal Fluency (FAS) Test 40.25 + 981 4100 +12.20
Backward Digit Span 767 + 267 742 + 280
Wisconsin Card Sorting Test 425+ 085 283 £ 1.51 ¥
Mental Control 2713 £4.74 2639 £ 4.10
Memory factor (z score) 039 + 0.39 —0.31 £ 0.68 ***
Executive function factor (z score) 0.16 £ 0.50 -0.12 £ 0.71

' California Verbal Learning Test-Il.
Significant difference at adjusted p-values (p =0.006) for multiple comparisons
*** p <0.001.
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examined the correlation separately within each age
group it failed to obtain significance. Although in the
young group alone a significant correlation between SAI
levels and the executive function z score emerged in our
initial analysis (r=-0.56, p=0.004), visual inspection
suggested that this was driven by two data points; in-
deed, if we deleted these two cases the correlation was
rendered non-significant.

Based on the hypotheses outlined at the end of the
introduction, we also examined associations between SAI
and specific individual subtest scores. First, we found a
significant correlation between SAI and Verbal Paired
Associates I (r=-0.35, p=0.008), a canonical measure of
memory binding, although this correlation became non-
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Figure 1 Scatter plots showing the associations between SAI
levels and composite z scores of (A) memory and (B) executive
functions. SAl levels correspond to the modulation of motor evoked
potentials (MEP) induced by afferent conditioning at an inter-stimulus
interval (ISI) of 20 ms (% Conditioned MEP/Unconditioned MEP).
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significant when we examined each age group on its own
(r<0.21|). Note that although Visual Paired Associates II is
also a canonical measure of this ability, it was not explored
further because of the ceiling-level scores in data, especially
for the young adults. Second, we found a significant correl-
ation between SAI and memory for faces (Faces I; r=-0.31,
p=0.02), although, again, it disappeared when analyses were
performed separately within each age group (r < ]0.17]).

We also performed all analyses while excluding the five
older adults who had MoCA scores lower than the
recommended cutoff. This did not yield any changes in
the results.

Discussion

Deficits in central cholinergic activity are thought to
underlie age-related cognitive decline, but evidence
regarding the specific role(s) of ACh in human cognitive
aging is still scarce. We investigated the relation of SAI,
a putative neurophysiological marker of cholinergic ac-
tivity, to memory and executive functions in aging.

Age differences in SAI

Consistent with reports of impaired cortical inhibition with
age [56], as a group, our senior participants exhibited
reduced intra-cortical inhibition, as reflected in the overall
decrease in afferent-induced inhibition. The fact that SAI
has been linked with cholinergic activity in the motor cortex
in pharmacological and patient studies (e.g., [22,23,57]; but
see below) provides further converging in vivo evidence of a
decline in central cholinergic function in normal human
aging (e.g., [58]for reviews, see [28,59]).

Associations between SAl and cognition

The young adults outperformed their older counterparts
on several measures of memory, consistent with numerous
previous reports [1-4]. Although memory was clearly
impaired in the older adults, executive function was not.
This finding is concordant with a similar study to ours [35],
which noted that others too have found this pattern. For ex-
ample, Lamar and Resnick [60] reported no age differences
in verbal fluency, mental control, and digit span, which were
included in the present executive function factor score.

SAI predicted individual performance in memory, al-
though, contrary to expectations, it did not predict execu-
tive functioning. These results are consistent with some
studies [61], but not with others [19,39,40] and may stem
from the poor vascular health of the patients included in
those studies. (This issue will be discussed further below.)
The association between SAI and memory is also consistent
with Duzel et al. [52], who recently reported that a magnetic
resonance imaging estimate of the structural integrity of the
basal forebrain (the major source of cholinergic input into
the cortex and hippocampus) predicted verbal memory in a
mixed sample of young and older adults.
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In the present study, SAI levels explained approxi-
mately 10% of the variance in memory. Although this is
comparable in size to the explanatory power of Duzel
et al.’s [52] measure of basal forebrain integrity, we sus-
pect that the relation between SAI and cognition might
be even stronger under different circumstances. First,
pharmacological studies indicate that ACh must decline
past a certain threshold before changes in cognition are
detectable [62-66]. Although we studied a representative
group of older adults, only a small number of them
exhibited relatively low SAI levels. Given that cholinergic
function declines with age, one future possibility would
be to recruit older seniors (i.e., over 80 years of age) with
the expectation that stronger correlations with cognition
would emerge. Also, one important putative cause of
cholinergic decline in aging is microvascular damage to
the ascending cholinergic pathways from the midbrain to
the cortex [67,68]. Our older participants were in rela-
tively good vascular health. Were we to focus on recruit-
ing people in poorer vascular health, we might find
stronger correlations between cholinergic function and
cognition [39,40].

Second, it is possible that cholinergic modulation sup-
ports only relatively specific aspects of memory and execu-
tive functions and that these processes were not optimally
assayed or taxed by the current neuropsychological battery.
A general assertion is that for ACh to be significantly impli-
cated in cognitive tasks, these tasks must be difficult and re-
quire effortful attention [11,59]. The tasks in the current
study all fit this description. However, based on techniques
that can target specifically the cholinergic system in animals
(e.g., the immunotoxin 192 IgG-saporin), it has recently
been argued that ACh is particularly important for certain
memory functions, including encoding more so than re-
trieval, and remembering relational and contextual informa-
tion in particular [15,69]. Consistent with the strong
involvement of Ach in attention, studies have also suggested
that the cholinergic system is more important for strategic
and effortful processing of information to be remembered
rather than when it is automatic [70]. Regarding executive
functions, cholinergic activity may be especially important
for task-switching, handling competition among possible
responses, and suppressing unwanted responses [11]. Al-
though we did measure several of these putative processes
(e.g, memory binding with the visual and verbal paired
associates subtests; switching and suppression with the
Wisconsin Card Sorting Test), we are currently developing
a new battery to probe some of these memory and execu-
tive sub-processes more specifically. Combined with our
previous observation of an association between SAI and
complex motor tasks (i.e. Grooved Pegboard Test, complex
reaction times, go/no-go) but not with simple reaction
times in aging [33], this study suggests that SAI may be a
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better predictor of memory than executive functions, but an
even stronger indicator of motor performance and informa-
tion processing speed.

Third, recent microdialysis studies have described
phasic cholinergic release during attention-related tasks
in rats [71,72]. These studies suggest that indices of rela-
tively tonic ACh levels (including SAI, positron emission
tomography, and magnetic resonance spectroscopy) in
the brain will need to be supplemented with methods
that have higher temporal resolution when they become
available in humans. Finally, like most studies, this one
was cross-sectional. Complementary longitudinal studies
of within-subject changes must be completed to yield a
more complete understanding of the relationship be-
tween the onset and course of cholinergic dysfunction
and cognitive decline in normal and pathological aging
(e.g., [73]ct. [74,75]).

Strong evidence that SAI is a reliable marker of cholin-
ergic function comes from pharmacological and patient
studies [22,23,57], but gamma-aminobutyric acid
(GABA), dopamine, and serotonin may also contribute
to the signal (e.g., [76,77]). For example, as we have
noted previously [33], our older adults showed greater
inter-individual variability in SAI than did our young
adults, with approximately half the seniors exhibiting
either poor or absent intra-cortical inhibition. These
older adults were indistinguishable from the other
seniors in terms of age and vascular health, and there
was no evidence that these individuals were in a preclinical
stage of dementia. One possibility, however, is that these
individual differences in intra-cortical inhibition are
related to variability in changes in motor cortex GABA,
receptors in aging [78,79]. Future pharmacological and
neuroimaging work must verify that SAI is strongly, al-
though perhaps not exclusively, reflective of activity in the
cholinergic system.

Conclusion

We found that individual differences in episodic memory
could be explained in part by SAI, a putative marker of
central cholinergic functioning. However, cholinergic de-
cline is only one of many brain changes that occur in aging
[80-82]. The goal of future research on the biological bases
of cognitive aging should be to combine multiple methods
to increase explanatory power, for example by combining
multiple neuroimaging methods (e.g., [83,84]) with genetic
information (e.g., [52,85]). The short afferent inhibition
marker of cholinergic integrity reported in this study is a
minimally-invasive, relatively inexpensive, significant pre-
dictor of cognition. Combining it with neuroimaging, gen-
etic, and other cognitive neuroscience methods should
prove useful in future studies.
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Endnote

*Three older adults each did not complete one cognitive
measure (Faces I, Wisconsin Card Sorting Test and Visual
Paired Associates II); their factor z scores were calculated
by computing the mean of the remaining tests.
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