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Variation in regulator of G-protein signaling 17
gene (RGS17) is associated with multiple
substance dependence diagnoses
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Abstract

Background: RGS17 and RGS20 encode two members of the regulator of G-protein signaling RGS-Rz subfamily.
Variation in these genes may alter their transcription and thereby influence the function of G protein-coupled
receptors, including opioid receptors, and modify risk for substance dependence.

Methods: The association of 13 RGS17 and eight RGS20 tag single nucleotide polymorphisms (SNPs) was examined
with four substance dependence diagnoses (alcohol (AD), cocaine (CD), opioid (OD) or marijuana (MjD)] in 1,905
African Americans (AAs: 1,562 cases and 343 controls) and 1,332 European Americans (EAs: 981 cases and 351
controls). Analyses were performed using both χ2 tests and logistic regression analyses that covaried sex, age, and
ancestry proportion. Correlation of genotypes and mRNA expression levels was assessed by linear regression
analyses.

Results: Seven RGS17 SNPs showed a significant association with at least one of the four dependence traits after a
permutation-based correction for multiple testing (0.003≤Pempirical≤0.037). The G allele of SNP rs596359, in the
RGS17 promoter region, was associated with AD, CD, OD, or MjD in both populations (0.005≤Pempirical≤0.019).
This allele was also associated with significantly lower mRNA expression levels of RGS17 in YRI subjects
(P = 0.002) and non-significantly lower mRNA expression levels of RGS17 in CEU subjects (P = 0.185). No RGS20
SNPs were associated with any of the four dependence traits in either population.

Conclusions: This study demonstrated that variation in RGS17 was associated with risk for substance
dependence diagnoses in both AA and EA populations.

Keywords: RGS17 and RGS20, Multiple substance dependence, Genetic association, Haplotype analysis,
Regression analysis, Genotype-expression relationship
Background
Substance (alcohol or drug) dependence (SD) is a set of
complex disorders influenced by gene-gene and gene-en-
vironment interactions. Genes involved in dopaminergic,
serotonergic, GABAergic, glutamatergic, cannabinoid,
and opioidergic systems have been implicated in SD risk.
Mounting evidence suggests that variation in genes cod-
ing for dopamine, serotonin, GABA, glutamate, canna-
binoid, and opioid receptors may increase vulnerability
to SD and related phenotypes [1-4]. The function of
* Correspondence: huiping.zhang@yale.edu
1Departments of Psychiatry, Yale University School of Medicine, New Haven,
CT, USA
4VA Connecticut Healthcare System, West Haven, CT, USA
Full list of author information is available at the end of the article

© 2012 Zhang et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
these receptors, which belong to a large G protein-
coupled receptor (GPCR) family, is regulated by regula-
tors of G-protein signaling proteins (RGSs) [5,6].
Members of the RGS family are functionally related to

selective GPCR signal transduction pathways [7]. For ex-
ample, they participate in opioid receptor desensitization,
internalization, recycling and degradation [8,9]. In ana-
lyzing the function of RGS17 in mouse brain, Garzon
et al. [10] found that, when RGS17 expression was
reduced, the μ-opioid receptor (MOR)-mediated antino-
ciceptive response to morphine and [D-Ala2, N-MePhe4,
Gly-ol5]-enkephalin (DAMGO) was increased. Ajit et al.
[11] demonstrated that RGS17 interacted with protein
kinase C interacting protein (PKCI-1) and modulated the
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:huiping.zhang@yale.edu


Zhang et al. Behavioral and Brain Functions 2012, 8:23 Page 2 of 11
http://www.behavioralandbrainfunctions.com/content/8/1/23
signaling pathway of the MOR. Moreover, in membranes
from periaqueductal gray matter (PAG), both RGS17 and
RGS20 co-precipitated with the MOR [10]. By use of
intraventricular administration of antisense oligonucleo-
tides, Garzon et al. [12] demonstrated that a suppression
of RGS20 expression in mouse brain greatly increased
the supraspinal antinociceptive effect of the MOR ago-
nists. Together, these findings indicate that GPCRs
(e.g., MOR) are functionally linked to RGS proteins (e.g.,
RGS17 and RGS20).
RGS 17 and RGS20 are two members of the RGS-Rz

subfamily. They are closely related to opioid receptors in
both chromosomal location and cellular function. The
RGS17 gene (RGS17) is linked to the μ-opioid receptor
(MOR) gene (OPRM1) on chromosome 6 (distance:
about 0.9 Mb), and the RGS20 gene (RGS20) is linked to
the κ-opioid receptor (KOR) gene (OPRK1) on chromo-
some 8 (distance: about 0.6 Mb) [6]. Close genomic prox-
imity may reflect a coordinated transcription of the
linked genes or a shared regulatory mechanism for their
expression [9]. In other words, the transcription of RSG
17 (or RGS20) may influence the transcription of OPRM1
(or OPRK1) and vice versa. Genomic proximity may also
reflect a functional relationship between the RGS-Rz pro-
teins (RGS17 and RGS20) and opioid receptors.
Several studies, including ours, have shown a positive

association between variation at OPRM1 [13-17] and
OPRK1 [18,19] and alcohol or drug dependence, al-
though negative results have been reported [20]. Add-
itionally, mouse genome scans have mapped a
quantitative trait locus (QTL) for morphine preference
to the μ-opioid receptor gene region (where RGS17 is
located) [21] and a QTL for alcohol consumption to the
κ-opioid receptor gene region (where RGS20 is located)
[22]. Considering the close relationship between the
RGS-Rz proteins and opioid receptors, and the associ-
ation between opioid receptor genes and alcohol or drug
dependence, we hypothesized that variation in RGS17
and RGS20 could affect vulnerability to various SD types.
To date, no published studies have examined the associ-
ation between RGS17 and RGS20 polymorphisms and
SD or other psychiatric disorders, although associations
between RGS2 variants and anxiety [23,24] and between
RGS4 variants and schizophrenia [25,26] have been
reported. We used a case–control association study ap-
proach to analyze the association of RGS17 and RGS20
variants and risk for four different SD diagnoses. We also
examined the correlation between genotypes of SD-
associated variants and gene expression levels.

Methods
Recruitment and ascertainment
Unrelated case and control subjects were recruited
from substance abuse treatment centers and through
advertisements at the University of Connecticut
Health Center (n = 1,394), Yale University School of
Medicine (APT foundation) (n = 1,256), the University
of Pennsylvania School of Medicine (n = 304), and
the Medical University of South Carolina (n = 283).
Subjects gave informed consent as approved by the
institutional review board at each clinical site, and
certificates of confidentiality were obtained from the
National Institute on Drug Abuse and the National
Institute on Alcohol Abuse and Alcoholism. All sub-
jects were interviewed using an electronic version of
the Semi-Structured Assessment for Drug Depend-
ence and Alcoholism (SSADDA) [27] to derive diag-
noses for lifetime alcohol, cocaine, opioid or
marijuana dependence (AD, CD, OD or MjD, re-
spectively) according to DSM-IV criteria [28]. Con-
trol subjects were screened to exclude individuals
with any of these four SD traits. Additionally, case
and control subjects with a lifetime major psychotic
disorder (schizophrenia or bipolar disorder) were
excluded. The clinical characteristics (including SD
comorbidity information) of participants are pre-
sented in Table 1. There were 1,562 unrelated AA
cases: AD (n = 1,064, 68.1%), CD (n = 1,309, 83.8%),
OD (n = 358, 22.9%) and/or MjD (n = 531, 34.0%) and
343 unrelated AA controls. There were 981 unrelated
EA cases: AD (n = 671, 68.4%), CD (n = 696, 70.9%),
OD (n = 577, 58.8%) and/or MjD (n = 318, 32.4%) and
351 EA unrelated controls.

Genotyping
Thirteen tag single nucleotide polymorphisms (SNPs) in
RGS17 and eight tag SNPs in RGS20 were selected from
public sources such as the NCBI dbSNP database
(http://www.ncbi.nlm.nih.gov/SNP), the HapMap Gen-
ome Browser (http://www.hapmap.org), and the
SNPbrowser software v 4.0 (Applied Biosystems), based
upon their minor allele frequencies and linkage disequi-
librium (LD) information (Table 2). The TaqMan method
[29] was used to genotype SNP markers at the Yale Uni-
versity School of Medicine. Eight percent of genotypes
were repeated for quality control; any mismatches trig-
gered repeats of all genotypes on a given plate.

Statistical analysis
Data analysis was conducted separately in AAs and EAs
based on self-reported race. To verify the self-reported
race, we used a Bayesian model-based clustering method
implemented in the program STRUCTURE [30] to esti-
mate the African and European ancestry proportions of
individual subjects, using genotype data from 41 ancestry
informative markers (AIMs), including 36 short tandem
repeat markers and five SNPs, as described previously
[31,32]. This clustering produced two distinct groups
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Table 1 Clinical characteristics of case–control samples

African Americans (AAs) European American (EAs)

SD cases (n =1,562) Contols (n = 343) SD cases (n =981) Contols (n = 351)

AD, n (%) 1064 (68.1%) 0 (0%) 671 (68.4%) 0 (0%)

CD, n (%) 1309 (83.8%) 0 (0%) 696 (70.9%) 0 (0%)

OD, n (%) 358 (22.9%) 0 (0%) 577 (58.8%) 0 (0%)

MjD, n (%) 531 (34.0%) 0 (0%) 318 (32.4%) 0 (0%)

AD+CD+OD+MjD, n(%) 87 (5.6%) 0 (0%) 131 (13.4%) 0 (0%)

AD+CD+OD, n(%) 196 (12.5%) 0 (0%) 283 (28.8%) 0 (0%)

AD+OD+MjD, n(%) 90 (5.8%) 0 (0%) 141 (14.4%) 0 (0%)

AD+CD+MjD, n(%) 360 (23.0%) 0 (0%) 195 (19.9%) 0 (0%)

CD+OD+MjD, n(%) 116 (7.4%) 0 (0%) 182 (18.6%) 0 (0%)

AD+CD, n(%) 854 (54.7%) 0 (0%) 476 (48.5%) 0 (0%)

AD+OD, n(%) 217 (13.9%) 0 (0%) 321 (32.7%) 0 (0%)

AD+MjD, n(%) 424 (27.1%) 0 (0%) 232 (23.6) 0 (0%)

CD+OD, n(%) 303 (19.4%) 0 (0%) 436 (44.4%) 0 (0%)

CD+MjD, n(%) 454 (29.1%) 0 (0%) 260 (26.5%) 0 (0%)

OD+MjD, n(%) 123 (7.9%) 0 (0%) 206 (21.0%) 0 (0%)

Male, n (%) 786 (50.5%) 153 (44.6%) 485 (49.4%) 190 (54.1%)

χ2 = 3.45, df = 1, P= 0.063 χ2 = 1.70, df = 1, P= 0.192

Age, years 39 ± 9 39± 9 38 ± 12 41± 13

t =−1.029, P= 0.304 (2-tailed) t = 4.76, P= 2.2 × 10-6 (2-tailed)

SD, substance (alcohol, cocaine, opioid, and/or marijuana) dependence.
AD, alcohol dependence; CD, cocaine dependence; OD, opioid dependence; MjD, marijuana dependence.
Symbol " + " means comorbidity.
Sex differences between cases and controls were analyzed by the Chi-square test.
Age differences between cases and controls were analyzed by the t-test.
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that were highly concordant with self-reported AA and
EA group membership. Hardy-Weinberg equilibrium
(HWE) analysis was carried out in control subjects for
each of the 21 RGS17 and the eight RGS20 SNPs using
the Chi-square test. Allelic association analyses were per-
formed using the Pearson’s χ2 test. To adjust for the mul-
tiple tests performed and obtain an empirical null
distribution of association test P values (Pempirical), we
conducted 10,000 permutations in the case–control sam-
ple. The association of SNP markers and SD traits was
further evaluated using the multivariate logistic regres-
sion analysis under the additive model with consider-
ation of possible confounding factors, which were sex,
age, and ancestry proportion of subjects. The Cochran-
Mantel-Haenszel (CMH) test was used to calculate the
overall genetic effect of SNPs by combining data from
AA and EA populations. The above four types of ana-
lyses were implemented using PLINK v.1.07 (http://pngu.
mgh.harvard.edu/purcell/plink/) [33]. Haplotype analyses
were carried out using the program Haploview v.4.2.
[34]. Haplotype blocks were defined according to the cri-
teria of Gabriel et al. [35].
Bioinformatics and genotype-expression analysis
DNA sequences harboring SNP markers that showed a
significant association with SD phenotypes were queried
for predicted transcription factor (TF) binding sites using
the computational tool of the Transcription Element
Search System (TESS, http://www.cbil.upenn.edu/cgi-
bin/tess). To assess the functional effect of SD-asso-
ciated RGS17 and RGS20 variants on gene expression,
whole genome Illumina lymphoblastoid cell line gene
expression data from 120 unrelated HapMap indivi-
duals (60 from the CEU population and 60 from the
YRI population) were extracted from the GSE6536
series data set in the Gene Expression Omnibus (GEO)
site (http://www.ncbi.nlm.nih.gov/geo). Expression data
(or mRNA levels) of RGS17 (determined by probe
GI_21361404-S), RGS20 (determined by probe
GI_13654234-A), and OPRM1 (determined by probe
GI_4505514-S) were included in the genotype-expres-
sion association analyses. Genotype data of RGS17 and
RGS20 SNPs from 60 unrelated CEU individuals and
60 unrelated YRI individuals were downloaded from
the HapMap genome browser (http://www.hapmap.org/

http://pngu.mgh.harvard.edu/purcell/plink/
http://pngu.mgh.harvard.edu/purcell/plink/
http://www.cbil.upenn.edu/cgi-bin/tess
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http://www.ncbi.nlm.nih.gov/geo
http://www.hapmap.org/cgi-perl/gbrowse/hapmap_B36


Table 2 Characteristics of SNPs in RGS20 and RGS17

ID SNPs Chromosome Gene Allele

Position (hg18) Location MAF (AAs) MAF (EAs)

RGS17_1 rs9397578 153371201 RGS17 3' near gene A/G 0.27 (A) 0.26 (A)

RGS17_2 rs7750874 153372161 RGS17 3' near gene A/T 0.29 (A) 0.34 (A)

RGS17_3 rs503366 153375243 RGS17 Intron 4 C/T 0.47 (C) 0.49 (C)

RGS17_4 rs610614 153383477 RGS17 Intron 4 C/T 0.42 (C) 0.31 (C)

RGS17_5 rs545323 153387002 RGS17 Intron 4 C/T 0.05 (C) 0.33 (C)

RGS17_6 rs516557 153395551 RGS17 Intron 2 C/T 0.47 (T) 0.47 (C)

RGS17_7 rs9371276 153410854 RGS17 Intron 1 C/T 0.48 (T) 0.30 (C)

RGS17_8 rs1933258 153419500 RGS17 Intron 1 C/G 0.49 (G) 0.3 (C)

RGS17_9 rs9397585 153438568 RGS17 Intron 1 C/T 0.49 (C) 0.37 (C)

RGS17_10 rs685826 153452948 RGS17 Intron 1 C/T 0.46 (T) 0.44 (C)

RGS17_11 rs6931160 153472144 RGS17 Intron 1 C/G 0.50 (G) 0.44 (C)

RGS17_12 rs1281962 153473069 RGS17 Intron 1 C/G 0.24 (G) 0.46 (G)

RGS17_13 rs596359 153498746 RGS17 5' near gene A/G 0.33 (G) 0.48 (G)

RGS20_1 rs1384797 54956481 RGS20 intron 1 A/G 0.40 (G) 0.02 (G)

RGS20_2 rs2220093 54963880 RGS20 intron 1 A/G 0.36 (A) 0.10 (G)

RGS20_3 rs1483537 54980301 RGS20 intron 1 A/G 0.35 (G) 0.01 (G)

RGS20_4 rs7824575 54984872 RGS20 intron 1 A/G 0.24 (G) 0.27 (A)

RGS20_5 rs2128821 55006166 RGS20 intron 1 C/G 0.42 (C) 0.26 (G)

RGS20_6 rs9298496 55018233 RGS20 intron 2 C/T 0.37 (C) 0.34 (C)

RGS20_7 rs6981243 55029044 RGS20 intron 3 A/C 0.42 (A) 0.41 (C)

RGS20_8 rs7009781 55035764 RGS20 downstream C/T 0.27 (T) 0.17 (C)

Chromosome positions are based on Homo sapiens chromosome 6 genomic contig NT_025741.14 (RGS17) and chromosome 8 genomic contig NT_008183.18
(RGS20). MAF (AA), minor allele frequency in our African American (AA) sample; MAF (EA), minor allele frequency in our European Americans (EA) sample.

Zhang et al. Behavioral and Brain Functions 2012, 8:23 Page 4 of 11
http://www.behavioralandbrainfunctions.com/content/8/1/23
cgi-perl/gbrowse/hapmap_B36). The correlation of SNP
marker genotypes and mRNA expression levels was
assessed by linear regression analyses assuming an
additive model and adjusted by sex.
Results
Allelic association
There were no deviations from HWE for genotype distri-
butions of any of the 13 RGS17 and eight RGS20 SNPs
in either AA or EA controls (the P value for statistical
significance was set at P> 0.05/21 = 0.002) (data not
shown). As shown in Figure 1, Table 3 and Additional
file 1: Table S1, seven RGS17 SNPs showed significant
association with at least one of the four SD traits after
permutation-based correction for multiple testing
(0.003≤Pempirical≤0.037). Detailed information about gen-
etic association results of 13 RGS17 SNPs, RGS17 phys-
ical position on Chromosome 6, and recombination rate
in the gene region is presented in Additional file 1:
Figures S1 and S2. SNP rs596359 (in the promoter re-
gion) was associated with AD, CD, OD and MjD in both
AAs and EAs (0.005≤Pempirical≤0.019). Six other SNPs
(rs6931160 in Intron 1, rs9397585 in Intron 1, rs1933258
in Intron 1, rs9371276 in Intron 1, rs516557 in Intron 2
and rs545323 in Intron 4) were associated with one or
more of these four SD traits in AAs and/or EAs
(0.003≤Pempirical≤0.037). Logistic regression analyses
using sex, age and ancestry proportion as covariates con-
firmed the association of the seven RGS17 SNPs with
multiple SD traits in AAs and/or EAs (0.002≤ Pad-
justed≤0.053) (Table 3). Combining data from both AAs
and EAs via meta-analysis showed that five RGS17 SNPs
(rs596359, rs6931160, rs1933258, rs9371276, and
rs545323) were associated with at least one of the four
SD traits (1.7 × 10-4≤Pmeta≤0.045). None of the eight
RGS20 SNPs was associated with any of the four SD
traits in either AAs or EAs (Figure 1 and Additional file
1: Table S2).
Haplotype association
The association of RGS17 variants with SD was further
analyzed using the haplotype association analysis ap-
proach. As shown in Figure 2, RGS17 SNPs were located
in three haplotype blocks (I, II, and III) (Block II harbors
three SNPs in AAs but four SNPs in EAs). Table 4 lists
the haplotypes that were associated with one or more of
the SD phenotypes (Pobserved ≤ 0.05). In AAs, two haplo-
types (GATTC and GTTCT) comprised of alleles of five
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Table 3 Association of seven RGS17 SNPs and four substance dependence (SD) Traits

SNPs Trait Race RA Frequency χ2 Pobs OR (95%CI) Padj OR (95%CI) Pemp

rs545323 AD AA C 0.06\0.03 6.70 0.010 1.96 (1.17−3.30) 0.013 1.96 (1.16−3.32) 0.010

CD AA C 0.05\0.03 6.74 0.009 1.95 (1.17−3.25) 0.015 1.95 (1.16−3.28) 0.009

OD AA C 0.07\0.03 11.27 0.001 2.55 (1.45−4.49) 0.002 2.51 (1.41−4.46) 0.003

MjD AA C 0.06\0.03 7.30 0.007 2.10 (1.21−3.64) 0.009 2.10 (1.20−3.67) 0.009

rs516557 AD AA T 0.49\0.43 4.78 0.029 1.25 (1.02−1.52) 0.035 1.23 (1.02−1.50) 0.018

rs9371276 OD EA C 0.33\0.27 7.47 0.006 1.34 (1.09−1.66) 0.008 1.33 (1.08−1.63) 0.008

MjD EA C 0.33\0.27 5.11 0.024 1.32 (1.04−1.62) 0.053 1.26 (1.00−1.58) 0.032

rs1933258 CD EA C 0.31\0.27 4.54 0.033 1.25 (1.02−1.54) 0.04 1.25 (1.01−1.54) 0.037

OD EA C 0.33\0.27 8.51 0.004 1.37 (1.11−1.70) 0.004 1.36 (1.10−1.68) 0.005

MjD EA C 0.33\0.27 5.63 0.018 1.34 (1.05−1.70) 0.036 1.29 (1.02−1.63) 0.024

rs9397585 OD EA C 0.40\0.35 4.39 0.036 1.24 (1.01−1.51) 0.02 1.27 (1.04−1.56) 0.028

MjD EA C 0.41\0.35 4.36 0.037 1.27 (1.02−1.59) 0.035 1.28(1.02−1.61) 0.030

rs6931160 MjD AA G 0.47\0.53 6.35 0.012 0.78 (0.64−0.95) 0.015 0.79 (0.65−0.95) 0.016

OD EA C 0.48\0.42 5.14 0.023 1.25 (1.03−1.51) 0.019 1.26 (1.04−1.54) 0.018

CD AA G 0.49\0.53 4.56 0.033 0.83 (0.7−0.99) 0.036 0.83 (0.70−0.99) 0.028

rs596359 AD AA G 0.35\0.29 7.82 0.005 1.31 (1.08−1.58) 0.008 1.29 (1.07−1.56) 0.005

AD EA G 0.50\0.44 6.37 0.012 1.27 (1.05−1.52) 0.011 1.27 (1.06−1.53) 0.014

CD AA G 0.34\0.29 6.77 0.009 1.28 (1.06−1.54) 0.011 1.27 (1.06−1.53) 0.009

CD EA G 0.51\0.44 6.91 0.009 1.28 (1.06−1.54) 0.008 1.29 (1.07−1.56) 0.006

OD AA G 0.35\0.29 6.50 0.011 1.34 (1.07−1.69) 0.023 1.31 (1.04−1.63) 0.019

OD EA G 0.5\0.44 5.54 0.019 1.26 (1.04−1.52) 0.01 1.29 (1.06−1.57) 0.013

MjD AA G 0.35\0.29 8.05 0.005 1.35 (1.10−1.67) 0.008 1.33 (1.08−1.63) 0.006

MjD EA G 0.51\0.44 5.70 0.017 1.30 (1.05−1.62) 0.015 1.31 (1.05−1.63) 0.013

AA, African Americans; EA, European Americans. AD, alcohol dependence; CD, cocaine dependence; OD, opioid dependence; MjD, Marijuana dependence.
Pobs, observed P values using Pearson’s Chi-square tests; Padj, adjusted P values using multivariable logistic regression analyses after adjustment for sex, age and
ancestry proportion under the additive model; Pemp, empirical P values using permutation-based tests to correct for multiple testing.
RA, reference alleles; 95% CI, 95% confidence interval.
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RGS17 SNPs (rs9397578-rs7750874-rs503366-rs610614-
rs545323) (Block I in Figure 2) were associated with all
four dependence traits (0.002 ≤ Pobs ≤ 0.024). The asso-
ciation between GATTC (potentially a risk haplotype)
with OD and GTTCT (potentially a protective haplo-
type) with MjD remained significant after correction
for multiple testing by permutation tests (GATTC with
OD: Pempirical = 0.026; GTTCT with MjD: Pempirical

=0.048). Two haplotypes (CCT and TGT) comprised of
alleles of three RGS17 SNPs (rs9371276-rs1933258-
rs9397585) (Block II in Figure 2) and one haplotype
(CC) comprised of alleles of two RGS17 SNPs
(rs6931160-rs1281962) (Block III in Figure 2) were
only nominally associated with OD or MjD (0.021 ≤
Pobs ≤0.042). In EAs, three haplotypes, GTCTT com-
prised of alleles of five RGS17 SNPs (rs9397578-
rs7750874-rs503366-rs610614-rs545323) (Block I in
Figure 2), CCCC comprised of alleles of four RGS17
SNPs (rs9371276-rs1933258-rs9397585-rs685826)
(Block II in Figure 2) and CC comprised of alleles of
two RGS17 SNPs (rs6931160-rs1281962) (Block III in
Figure 2) were associated with one or more of these
four dependence phenotypes (0.004≤Pobs≤0.044); only
the association of CCCC (potentially a risk haplotype)
with OD withstood permutation-based multiple testing
correction (Pempirical = 0.028). Detailed haplotype ana-
lysis results are presented in Additional file 1: Tables
S3 and S4.

Transcription factor binding sites and correlation of
genotypes with expression
RGS17 promoter SNP rs596359, which was strongly
associated with multiple SD traits in both AAs and EAs,
was predicted to be located in the binding site of tran-
scription factor AML1a (core binding site: TGTGGT,
corresponding to the G allele but not the A allele). Logis-
tic regression analysis (assuming an additive model) indi-
cated that genotypes of four RGS17 SNPs (rs9371276,
rs9397585, rs6931160, and rs596359, which were signifi-
cantly associated with one or more SD traits), were sig-
nificantly associated with RGS17 mRNA expression
levels in the YRI (rs9371276: T =−2.32, P= 0.024;
rs9397585: T =−2.05, P= 0.045; rs6931160: T = 3.13,
P= 0.003; rs596359: T =−3.25, P= 0.002) or the CEU



Figure 1 Allelic association of 13 RGS17 and eight RGS20 SNPs with four substance dependence traits. X axis: RGS17 and RGS20 SNPs; Y
axis: minus log10 P values. AA: African Americans; EA: European Americans. AD: alcohol dependence; CD: cocaine dependence; OD: opioid
dependence; and MjD: marijuana dependence.
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subjects (rs9371276: T =−1.65, P= 0.105; rs9397585:
T =−2.73, P= 0.009; rs6931160: T = 2.40, P= 0.020;
rs596359: T =−1.34, P= 0.185) (Figure 3 and Additional
file 1: Table S5. No significant association was observed
between genotypes of the 13 RGS17 SNPs and the
expression level of the physically linked gene, OPRM1
(Additional file 1: Table S6).

Discussion
RGS17 (RGS-Z2) and RGS20 (RGS-Z1) are two mem-
bers of the RGS-Rz subfamily of GTPase-activating pro-
teins (GAP) that efficiently deactivate GalphazGTP
subunits, and thereby turn off the signaling pathway of
G protein-coupled receptors (GPCRs), including opioid
receptors. Considering their intimate interactions with
opioid receptors (mainly the mu-receptor) and their gene
locations (RGS17 is in the vicinity of OPRM1 and RGS20
is in the vicinity of OPRK1), the two genes (RGS17 and
RGS20) encoding them are both positional and func-
tional susceptibility candidate loci for SD. We found that
multiple RGS17 SNPs were associated with multiple SD
phenotypes in both AAs and EAs. However, none of the
eight RGS20 SNPs were associated with any of the four
dependence traits.
Although variation in RGS17 influences susceptibility

to multiple dependence traits in both AAs and EAs, our
results suggest that different mechanisms may be opera-
tive in some cases. SNPs rs596359 (in the promoter
region) and rs6931160 (in intron 1) were associated with
at least one of the four dependence traits in both popula-
tions. SNPs rs9397585, rs1933258 and rs9371276, which
are all located in intron 1 and the same haplotype block
(Block II) (Figure 2), were associated with one of the four
dependence traits only in EAs. SNPs rs516557 (in intron
2) and rs545323 (in intron 4) were associated with one
of the four dependence traits in only AAs (Table 3).
Analyses of haplotypes harboring these SNPs supported
the individual SNP findings. Haplotypes GATTC and
GTTCT, containing alleles (underlined) of SNP rs545323
(Figure 2, haplotype Block I) were associated with OD
and MjD, respectively, only in AAs, after permutation
tests to correct for multiple comparisons. Haplotype
CCCC, containing alleles (underlined) of the three SNPs
(rs9397585, rs1933258 and rs9371276) located in intron
1 and haplotype Block II (Figure 2) was associated with
OD only in EAs, after permutation tests to correct for
multiple comparisons. These findings suggest that the
population-specific associations were dependent on the
location of variants in RGS17.
The most statistically significant result was obtained

for SNP rs596359, which is located in the promoter re-
gion of RGS17. Chi-square tests, logistic regression ana-
lyses, and permutation tests all showed a positive
association between SNP rs596359 and all four SD phe-
notypes in both populations (Table 3). Further, meta-
analyses that combined data from both AAs and EAs



Figure 2 Pairwise linkage disequilibrium (LD) between genotyped RGS17 SNPs. Within each box is the pair-wise estimate of D’.
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showed that SNP rs596359 yielded an odds ratio from
1.28 to 1.33 for risk of all four SD traits (data not
shown). Specifically, the G allele of SNP rs596359 was
significantly more frequent in cases than in controls in
both populations (Additional file 1: Tables S1 and S2).
Thus, this promoter variant may increase the risk for SD
by influencing RGS17 transcription. To validate the func-
tional effect of this promoter variant on RGS17



Table 4 Association of RGS17 haplotypes and four substance dependence (SD) traits

LD Blocks Haplotypes Phenotypes Frequencies χ2 Pobs Pemp

(AAs) (Case/control)

RGS17_I GATTC AD 0.053\ 0.032 5.09 0.024 0.319

GATTC CD 0.053\ 0.032 5.41 0.020 0.267

GATTC OD 0.067\ 0.032 9.25 0.002 0.026

GATTC MjD 0.057\ 0.032 5.95 0.015 0.178

GTTCT AD 0.015\ 0.029 5.83 0.016 0.222

GTTCT CD 0.016\ 0.029 5.44 0.020 0.265

GTTCT OD 0.010\ 0.029 6.65 0.010 0.106

GTTCT MjD 0.010\ 0.029 8.44 0.004 0.048

RGS17_II CCT OD 0.056\ 0.032 4.49 0.034 0.375

TGT OD 0.437\ 0.491 4.16 0.042 0.436

TGT MjD 0.440\ 0.491 4.35 0.037 0.405

RGS17_III CC MjD 0.528\ 0.472 5.35 0.021 0.240

LD Blocks Haplotypes Phenotypes Frequencies χ2 Pobs Pemp

(EAs) (Case/Control)

RGS17_I GTCTT AD 0.211\ 0.258 5.75 0.017 0.159

GTCTT CD 0.206\ 0.258 7.14 0.008 0.070

GTCTT OD 0.210\ 0.258 5.56 0.018 0.169

RGS17_II CCCC CD 0.302\ 0.260 4.07 0.044 0.387

CCCC OD 0.324\ 0.260 8.26 0.004 0.028

CCCC MjD 0.309\ 0.260 3.98 0.046 0.345

RGS17_III CC OD 0.471\ 0.420 4.56 0.033 0.317

AD, alcohol dependence; CD, cocaine dependence; OD, opioid dependence; MjD, marijuana dependence.
Pobs, observed P values using Pearson’s Chi-squared tests.
Pemp, empirical P values using permutation-based tests for multiple testing corrections.
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transcription, we analyzed the correlation of rs596359
genotypes and RGS17 mRNA expression levels in lym-
phoblastoid cell lines from both CEU and YRI subjects
recruited for the HapMap project
(http://hapmap.ncbi.nlm.nih.gov/). The G allele of SNP
rs596359 showed a dose-related decrease in RGS17 tran-
scription by decreasing mRNA expression levels
(Figure 3). Moreover, bioinformatic analyses indicated
that substitution of the A allele for the G allele at
rs596359 site generated a transcription binding site in
the promoter region of RGS17 for transcription factor
AML1a. This transcription factor has a higher affinity for
DNA-binding than AML1b, but lacks the putative tran-
scriptional activation domain that is possessed by
AML1b. Thus, AML1a dominantly suppresses the tran-
scriptional activity exerted by AML1b [36]. Several other
studies have demonstrated that AML1a inhibited eryth-
roid or granulocytic differentiation [37,38]. Based on
these findings, we would speculate that rs596359 G allele
carriers have lower RGS17 activity and thus greater syn-
aptic neurotransmission and rewarding function
mediated by GPCRs such as opioid receptors. To test
this hypothesis, the influence of SNP rs596359 on RGS17
promoter activity should be measured using other
approaches (e.g., luciferase reporter gene assays).
None of the eight RGS20 SNPs showed significant as-

sociation with any of the four SD phenotypes in either
AAs or EAs. There are three possible explanations for
this lack of association. First, the RGS20 SNPs selected
for this study may have a minor or undetectable effect
on SD. Fine-mapping of this gene could identify variants
showing a stronger association with SD traits. Second,
RGS20 may have a weak effect on susceptibility to SD
due to its being physically linked to OPRK1, which has a
less important role than OPRM1 (which is physically
linked to RGS17) in mediating the rewarding effects of
alcohol or drugs [17,19]. Third, similar to OPRK1, which
mediates the psychotomimetic effects of some drugs
[39], RGS20 may mainly regulate other biological activ-
ities than SD. Further studies are warranted to determine
whether RGS20 is a susceptibility gene for SD.
The present study has several limitations. First, our

finding is limited by the relatively small size of the con-
trol sample. Moreover, we did not control for prior geno-
typing performed on this sample in multiple testing
corrections because we were concerned that overly

http://hapmap.ncbi.nlm.nih.gov/


Figure 3 Association of genotypes of four RGS17 SNPs and RGS17 mRNA expression levels. The association between four RGS17 SNPs
(rs9371276, rs9397585, rs6931160 and rs596359, which were significantly associated with substance dependence) and RGS17 mRNA expression
levels was examined in 60 CEU (a) and 60 YRI (b) unrelated subjects. P values were calculated by linear regression analysis and adjusted by sex.
The ends of the vertical lines indicate the minimum and maximum values. The lower hinge of the boxes indicates the 25th percentile, the upper
hinge of the boxes indicates the 75th percentile, and the line in the boxes indicates the median value. “+” in the boxes refers to the mean
expression level. X axis: RGS17 SNP genotypes; Y axis: RGS7 mRNA expression levels (mean ± SEM).
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conservative results might be obtained. Second, SD fre-
quently co-occurs with Axis I disorders (e.g., depression
and anxiety disorders) and Axis II disorders (i.e., person-
ality disorders). Thus, our findings of an association be-
tween RGS17 variants and SD may be cofounded by
comorbid disorders. Third, given the close relationship
between the RGS-Rz (RGS17 and RGS20) and opioid re-
ceptor (OPRM1 and OPRK1, respectively) genes, gene-
gene interaction analyses should be conducted. We
would speculate that strong gene-gene interaction effects
(e.g., of OPRM1 and RGS17) on SD would be detectable.
Even though variation at RGS20 did not show significant
association with SD in individual gene analysis, inter-
action effects of that gene with OPRM1 or OPRK1 on
SD risk may exist. Fourth, in this study, we ignored poly-
morphisms in exonic regions because they are rare in
the genes examined. There is only one known SNP
rs2295230 (synonymous) in RGS17 exon 2 that had a
minor allele frequency greater than 5% in AA and EA
populations. Exonic SNP rs2295230 is in tight LD with
intronic SNP rs9371276 (which was included in this
study) (CEU: D’= 0.96, r2 =0.92; YRI: D’= 0.86, r2 = 0.54,
using genotyping data from the 1000 Genomes Project).
It is also situated close to SNP rs2295230. Thus, exonic
SNP rs2295230 was not considered in the present study.
As we know, rare variants in coding regions may have a
larger impact on disease risk (in the few individuals who
carry them) than common non-coding variants (which
may have a greater impact at the population level). Re-
cent genome-wide association studies using common
genetic variants have identified specific loci and/or gen-
omic regions that contribute to the etiology of certain
disorders. However, only a small proportion of the herit-
ability of complex disorders, such as SD, can be
accounted for by common variants [40,41]. Therefore, it
is necessary to sequence exons of target genes (such as
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RGS17 and RGS20) or perform exomic sequencing using
next-generation sequencing technology to identify new
rare variants and analyze their association with SD. Fifth,
given the incomplete penetrance of susceptibility genes
for alcohol or drug dependence in monozygotic twins
[42], epigenetic mechanisms should be studied to deter-
mine their contribution to SD risk. Altered DNA methy-
lation levels in a number of genes (e.g., OPRM1) have
been found in patients with alcohol or opioid depend-
ence [43,44]. Altered methylation of RGS17 and RGS20
(especially in their promoter regions) could increase the
risk for SD. Therefore, epigenetic studies may provide
further evidence about the role of RGS17 and RGS20 in
the etiology of SD.

Conclusions
In summary, we found that RGS17 polymorphisms were
associated with multiple SD phenotypes in both AA and
EA populations. Our findings suggest that lower tran-
scription levels of RSG17 due to certain genetic variants
(e.g., the promoter SNP rs596356) may modulate the re-
inforcing effects of alcohol or drugs that are mediated by
GPCRs such as opioid receptors and thus influence the
vulnerability to SD. Given the fact that RGS17 is signifi-
cantly expressed in striatal regions including the nucleus
accumbens and putamen [45], if our findings are vali-
dated, RGS17 and its protein product could be good tar-
gets for medications to treat SD.
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