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Non-targeted metabolite profiling 
reveals changes in oxidative stress, tryptophan 
and lipid metabolisms in fearful dogs
Jenni Puurunen1, Katriina Tiira2,3, Marko Lehtonen4,5, Kati Hanhineva1,5 and Hannes Lohi2,3*

Abstract 

Background: Anxieties, such as shyness, noise phobia and separation anxiety, are common but poorly understood 
behavioural problems in domestic dogs, Canis familiaris. Although studies have demonstrated genetic and environ-
mental contributions to anxiety pathogenesis, better understanding of the molecular underpinnings is needed to 
improve diagnostics, management and treatment plans. As a part of our ongoing canine anxiety genetics efforts, this 
study aimed to pilot a metabolomics approach in fearful and non-fearful dogs to identify candidate biomarkers for 
more objective phenotyping purposes and to refer to potential underlying biological problem.

Methods: We collected whole blood samples from 10 fearful and 10 non-fearful Great Danes and performed a liquid 
chromatography combined with mass spectrometry (LC–MS)-based non-targeted metabolite profiling.

Results: Non-targeted metabolomics analysis detected six 932 metabolite entities in four analytical modes [RP and 
HILIC; ESI(−) and ESI(+)], of which 239 differed statistically between the test groups. We identified changes in 13 
metabolites (fold change ranging from 1.28 to 2.85) between fearful and non-fearful dogs, including hypoxanthine, 
indoxylsulfate and several phospholipids. These molecules are involved in oxidative stress, tryptophan and lipid 
metabolisms.

Conclusions: We identified significant alterations in the metabolism of fearful dogs, and some of these changes 
appear relevant to anxiety also in other species. This pilot study demonstrates the feasibility of the non-targeted 
metabolomics and warrants a larger replication study to confirm the role of the identified biomarkers and pathways in 
canine anxiety.
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Background
Anxiety-related disorders, including compulsions, fear-
fulness, noise phobia, generalized anxiety and separation 
anxiety, are common but complex and poorly understood 
behavioural problems in domestic dogs (Canis familiaris) 
[1–3]. Clinical, ethological and pharmacological stud-
ies suggest that the underlying biochemical mechanisms 
are shared in dogs and humans. This is demonstrated, 
for example, by a successful treatment of the dogs with 

human anxiolytes [4]. Given the biological similar-
ity of canine and human anxiety, dogs with a particular 
genomic system could serve as a feasible gene discovery 
model for human anxiety and improve the molecular 
understanding of the disease in general. Breed-specificity 
of many anxieties, such as canine compulsive disorder, 
suggests genetic susceptibility [4–6]. However, environ-
mental factors, such as negative experiences and poor 
socialization during puppyhood, affect also behavior [7–
9] and complicate gene discoveries, which are still rare 
[10–14].

One of the challenges in anxiety research concerns 
objective behavioural measurement to establish valid 
research cohorts for gene discovery. Current approaches 
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rely on behavioural questionnaires and tests, which 
appear to correlate well [2] but have intrinsic limitations 
related to subjectivity and temporality, respectively. There 
is a need for more objective measures such as physiologi-
cal biomarkers, which could help not only phenotyping 
but could also refer to the underlying affected molecular 
pathways. High-throughput –omics technologies such as 
metabolomics could facilitate discovery of biomarkers 
for research, diagnostics and treatment options. Non-
targeted metabolite profiling offering a hypothesis-free 
approach can detect molecular biosignatures and has 
been successfully applied to identify genetic and envi-
ronmental contributions to diseases [15–17]. For exam-
ple, metabolic profiling of schizophrenia has revealed 
changes in glutamine and arginine metabolism, which 
may reflect genetic susceptibility to this neuropsychiatric 
disorder [18].

In this pilot study, we aimed to compare metabolite 
profiles of fearful and non-fearful dogs to identify fear-
related pathways and biomarkers for more objective 
phenotyping. We have previously developed a validated 
approach for anxiety phenotyping in dogs [2] to select 
10 fearful and 10 non-fearful Great Danes. We analysed 
whole blood samples using a non-targeted LC-qTOF-MS 
metabolomics method to compare the metabolic profiles. 
Our results reveal changes in several anxiety-relevant 
components in fearful dogs and warrant a larger metabo-
lomics study in canine anxiety to replicate the findings in 
this pilot study.

Methods
Animals and study design
The dogs were selected from our previously established 
anxiety research cohort [2], which included a validated 
owner-filled anxiety questionnaire and a behavioural test 
for part of the dogs (4 out of 10 controls and 3 out of 10 
cases). The questionnaire survey included both general 
questions concerning dog’s behavior in various situations 
(such as meeting unfamiliar people, dogs, and behavior 
in new situations, and when exposed to loud sounds) 
and daily routines, and also several more specific back-
ground questions concerning the early experiences of the 
dog, related to e.g. puppy period and socialization [2]. 
Based on the data from the questionnaire, several behav-
ioral variables were derived and used to select dogs to 
the study groups. The variables that we were interested 
the most were fear towards unfamiliar people (human 
fear_frequency, human fear_intensity), fearfulness total 
and noise sensitivity. Human fear_frequency was sim-
ply the owner reported frequency of dog showing fear-
ful reaction when meeting a stranger (frequency scoring 
0 = never; 1 = 0–40 % of the occasions; 2 = 40–60 % of 
the occasions; 3 = 60–100 % of the occasions: 4 = always 

when meeting unfamiliar people). Human fear_inten-
sity was calculated as follows: the frequency of showing 
fearful reaction when meeting unfamiliar people was 
multiplied with the sum of owner recorded fearful behav-
ioral reactions. Each type of behavior equaled 1, except 
the avoidance-reaction which was weighted by multi-
plying it with 5. Fearfulness variable was calculated as a 
sum of frequencies of showing fearful behavioural reac-
tions towards unfamiliar people (see scoring above 0–4), 
unfamiliar dogs (0–4) and in new situations (0–4), and 
thus the score varied between 0 and 12. In addition, we 
calculated a variable describing the dog’s fear of loud 
noises (noise sensitivity), by calculating a sum of fre-
quencies of showing a fearful reaction towards thunder 
(see scoring above 0–4), fireworks (0–4) and gunshot 
(0–4). The behaviour of seven of the dogs was verified 
by a short 5-min test conducted by same person for all 
the dogs—not all dogs were tested as some had already 
died between the blood sampling and behavioral test-
ing, or lived too far. Shortly, test consisted of three parts; 
meeting an unfamiliar person, exploration in the novel 
space, and novel object test. More details of the test can 
be found from Tiira and Lohi, 2014.

We selected 10 fearful and 10 non-fearful Great Danes 
for the study, and detailed information about all the 
individual dogs is presented in Table  1. Our criteria for 
non-fearful dogs was that all the variables (human fear_
frequency, human fear_intensity, fearfulness total and 
noise sensitivity) had to have score 0. In the case group, 
our main inclusion criterion was that the dog had to 
show fear towards unfamiliar people at 40–100  % of all 
situations (human fear_frequency score 2–4). In addi-
tion, dog’s needed to have fearfulness score >2. Addi-
tionally to these criteria, we used matched pairs with 
approximately same age for blood samples between 
case and control groups. We aimed, at first, to get only 
males, however, in order to keep the age of blood sam-
pling approximately same in both control and case 
groups we also had to include two females for both 
groups. EDTA-blood samples were collected from each 
dog and stored in −20 degrees. The blood samples were 
collected from the privately owned Finnish dogs with 
owners consent under a valid ethical license (Finnish 
National Animal Experiment Board, ELLA, license num-
ber ESAVI/6054/04.10.03/2012).

Dietary information
The owners were retrospectively asked to report the diet 
of the dog at the time of blood sampling to help us con-
sider possible nutritional effects on metabolite profiles. 
Dietary information was collected from 17 out of 20 dogs 
(two cases and one control missing). Comparison of the 
diet profiles indicated only minor differences between 
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the test groups. The diets contained equally a mix of raw 
food, commercial dry foods, homemade food and differ-
ent dietary supplements in both test groups. However, 
the dietary profiles varied greatly within the test groups 
but similar variations were observed in both groups. The 
basic contents of all commercial dry foods fed to the dogs 
were rice, chicken meal, pork meal, maize, fish oil, animal 
fat, vegetable fibre, and beet pulp in addition to miner-
als, such as calcium (Ca) and phophorus (P), micronutri-
ents, such as iron (Fe), copper (Cu), zinc (Zn) and iodine 
(I), and vitamins, such as vitamins A, D3 and E. Interest-
ingly, there were minor differences in the intake of pulses 
between case and control dogs, since the commercial dry 
foods eaten by a few control dogs but not cases contained 
soybean oil, soybean meal and pea bran meal.

Non‑targeted LC–MS metabolite profiling analysis
The non-targeted LC-qTOF-MS-analysis and pre-
processing of raw data were performed in the LC–MS 
Metabolomics Center at Biocenter Kuopio (University 
of Eastern Finland). For metabolite extraction, 400 µL of 
acetonitrile was added to 100 µL of whole blood sample, 

and mixed in vortex at maximum speed 15 s. The samples 
were incubated on ice bath for 15 min, and centrifuged at 
16000×g for 10 min in order to collect the supernatant. 
The supernatants were filtered into HPLC vials using 
0.2 μm Acrodisc® Syringe Filters with a PTFE membrane 
(PALL Corporation, Ann Arbor, MI) prior subjecting to 
the LC–MS analyses. From every extracted sample, ali-
quots of 10 µL was taken and combined in one tube, and 
used as the quality control (QC) sample in the analysis.

The whole blood samples were analysed by the 
UHPLC-qTOF-MS system (Agilent Technologies, Wald-
bronn, Karlsruhe, Germany) that consisted of a 1290 LC 
system, a Jetstream electrospray ionization (ESI) source, 
and a 6540 UHD accurate-mass qTOF spectrometer. 
The samples were analyzed using two different chro-
matographic techniques, i.e. reversed phase (RP) and 
hydrophilic interaction chromatography (HILIC) to 
maximize metabolome coverage. The RP chromatogra-
phy was performed on Zorbax Eclipse XDB-C18 column 
(100 × 2.1 mm, 1.8 µm, Agilent Technologies, Palo Alto, 
CA, USA). The temperature of the column was kept on 
50  °C, and the flow rates of mobile phases were set as 

Table 1 Demographics of the dogs

Detailed information, including age, sex, behavioral scores and diet, is provided for each individual dog. Dogs numbered from 1 to 10 are fearful dogs, whereas dogs 
numbered from 11 to 20 are non-fearful dogs

Age (years) Mean age (SD) Sex Fearfulness 
(total)

Human fear_fre‑
quency

Human fear_
intensity

Noise sensitiv‑
ity

Behavioral test Diet

1 1.1 3.5 (2.5) Male 4 3 10 3 No Not known

2 1.5 Male 10 2 16 2 No Dry food, raw 
meat, oils

3 2.4 Male 3 4 21 3 No Dry food

4 2.8 Male 7 4 28 0 No Raw food, oils

5 4.2 Male 10 3 30 0 Yes Not known

6 5.4 Male 6 2 14 5 No Dry food

7 4.4 Male 8 2 14 4 Yes Not known

8 9.3 Male 6 3 6 8 No Dry food

9 1.8 Female 8 4 28 0 No Dry food, meat, 
fish

10 1.6 Female 10 4 30 0 Yes Raw food, oils

11 3.2 3.4 (2.2) Male 0 0 0 0 No Raw food, oils

12 4.5 Male 0 0 0 0 No Dry food

13 3.3 Male 0 0 0 0 Yes Dry food, oils

14 1.1 Male 0 0 0 0 No Not known

15 8.5 Male 0 0 0 0 Yes Dry food

16 4.8 Male 0 0 0 0 Yes Dry food, meat

17 3.3 Male 0 0 0 0 No Dry food, oils

18 1.6 Male 0 0 0 0 No Dry food, oils, 
vitamin C

19 2 Female 0 0 0 0 Yes Homemade 
food, meat, dry 
food, oils

20 2.1 Female 0 0 0 0 No Not known
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0.4 mL/min. The mobile phases consisted of water (elu-
ent A) and methanol (eluent B), both containing 0.01 % 
(v/v) of formic acid. The gradient profile employed was as 
follows: 2 → 100 % B (0–10 min); 100 % B (10–14.5 min); 
100 → 2 % B (14.5–14.51 min); 2 % B (14.51–16.50 min). 
The injection volume in RP was 2 µl. The HILIC chroma-
tography was performed on Acquity UPLC BEH Amide 
column (100  ×  2.1  mm, 1.7  µm; Waters Corporation, 
Milford, MA), and the temperature of the column was 
kept on 45 °C. The flow rate was 0.6 mL/min, and eluents 
A and B consisted of 50 % v/v and 90 % v/v ACN, respec-
tively, both containing 20 mM ammonium formate. The 
gradient was as follows: 100 % B (0–2.5 min); 100 → 0 % 
B (2.5–10  min); 0 →  100  % B (10–10.01  min); 100  % B 
(10.01–12.5  min). The injection volume in HILIC was 
2 µl.

The MS ion source conditions were as follows: ESI 
source, operated both in positive (+ve) and negative  
(−ve) ionization mode, drying gas temperature 325  °C 
with a flow of 10 L/min, sheath gas temperature 350 °C and 
flow 11 L/min, nebulizer pressure 45 psi, capillary voltage 
3500 V, nozzle voltage 1000 V, fragmentor voltage 100 V, 
and skimmer 45  V. For data acquisition, the mass range 
was 20–1600 amu with acquisition rate 1.67 spectra/s. In 
order to get the automatic MS/MS spectrums, four ions 
with the highest intensities were selected from every pre-
cursor scan cycle for fragmentation performed on the QC 
samples. After two product ion spectra, these ions were 
excluded, and released again for fragmentation after a 
0.25-min hold. The collision energies were 10, 20 and 40 V. 
If the molecular ion of a compound was not included into 
automatic MS/MS fragmentation, targeted MS/MS analy-
ses with collision energies 10 and 20  V were conducted. 
A continuous mass axis calibration was performed by 
monitoring two reference ions from an infusion solution 
throughout the runs. In positive mode the reference ions 
were m/z 121.050873 and m/z 922.009798, and in negative 
mode m/z 112.985587 and m/z 966.000725. Data acquisi-
tion was conducted with MassHunter Acquisition B.04.00 
(Agilent Technologies). The QC samples were injected 
in the beginning and ending of the analysis and also after 
every 10 samples.

Non‑targeted metabolomics data analysis
Data collection and statistical analysis
The LC–MS data was collected using the vendor’s soft-
ware MassHunter Qualitative Analysis B.05.00 (Agilent 
Technologies), where the ions were extracted to com-
pounds utilizing the “Find by molecular feature” algo-
rithm. The data were output as compound exchange 
format (.cef-files) into the Mass Profiler Professional 
software (MPP 2.2, Agilent Technologies) for compound 

alignment, data preprocessing, and statistical analysis 
(Student’s t test between the case and control groups). In 
order to reduce noise and remove insignificant metabo-
lite features, only the features found in at least 60 % of the 
samples in at least one replicate group (case or control) 
were included in the analysis. This resulted in a dataset 
comprising 6 932 features in four separate analytical runs 
[986 in HILIC ESI(+), 1 071 in HILIC ESI(−), 3 790 in RP 
ESI(+), and 1 085 in RP ESI(−)].

The pre-processed data from each of the four analyti-
cal approaches were subjected to supervised classifica-
tion algorithm partial least-squares discriminant analysis 
(PLS-DA; Simca-13, Umetrics, Sweden). The data were 
log10-transformed, pareto-scaled and the model was val-
idated by the Simca-13 internal cross validation, and the 
resulting variable importance projection (VIP) values for 
each metabolite [19, 20], were integrated in the data. The 
PLS-DA illustrates the differences between case and con-
trol groups by investigating those metabolites that are the 
largest discriminators in the data, and the larger the VIP 
value is, the more significant contributor the metabolite 
is in the model.

The data was filtered according to VIP >1 in order to 
reduce insignificant features from the data, resulting in a 
dataset comprising 2 114 features in the four analytical 
runs [308 in HILIC ESI(+), 301 in HILIC ESI(−), 1 162 
in RP ESI(+), and 343 in RP ESI(−)]. After adjusting for 
multiple comparisons by Benjamini-Hochberg false dis-
covery rate (FDR) correction [21] (R project for Statistical 
Computing version 3.0.1.) within each of the four analyti-
cal approaches, the peak lists were filtered according to 
uncorrected p value <0.05, fold change (FC) ≥±1.2, PLS-
DA VIP >1, and feature present in at least seven repli-
cates in either of the groups. This resulted in dataset of 
239 entities [45 in HILIC ESI(+), 41 in HILIC ESI(−), 
127 in RP ESI(+), and 26 in RP ESI(−)], where the com-
pounds having FDR corrected p value <0.05 were con-
sidered as statistically significant differences between 
control and case groups, whereas those with uncorrected 
p value <0.05 were regarded nominally significant. In 
addition, the filtered data were subjected to the K-means 
cluster algorithm with the Pearson correlation as dis-
tance metric followed by the hierarchical cluster analysis 
and heat-map output for data visualization [22].

Finally, the remaining peaks in the lists were manu-
ally inspected in the LC–MS chromatograms and spec-
tra with the MassHunter software to locate peaks with 
poor retention and peak shape, which were filtered out 
from further analysis. Peak lists were also looked through 
to ensure that the molecular ion of a compound was 
included into data dependent MS/MS analysis, and in 
case not, targeted MS/MS analysis was performed.
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Identification of the differential features in the LC–MS data
The identification of metabolites was based on the accu-
rate mass and MS/MS fragmentation spectra acquired 
either in the automatic, data dependent MS/MS analy-
sis during the initial data acquisition, or via re-injection 
of the samples in targeted MS/MS mode. The spectra 
were compared against The METLIN Metabolite Data-
base (https://metlin.scripps.edu/index.php), Human 
Metabolome Database (HMDB) (http://www.hmdb.ca/), 
and LipidMaps (http://www.lipidmaps.org/), or frag-
mentation patterns reported in earlier publications. The 
identification of lipids was based on their characteristic 
fragmentation patterns reported in earlier publications 
[23–25]. The key elements for identification were the 
protonated head group (m/z 184.07 for PCs and LysoPCs, 
and m/z 196.03 for PEs) as well as the deprotonated fatty 
acid fragments visible in the negative ionization mode 
(the MS/MS fragmentation data for all of the identified 
metabolites is presented in Table 1). The identification of 
plasmalogen was based on the m/z 303 corresponding to 
arachidonic acid (C20:4), and on the characteristic frag-
mentation pattern of phosphoethanolamine plasmalo-
gens (PEP) described previously [26].

Results
A non-targeted LC–MS-based metabolomics platform 
was used to compare the whole blood metabolite profiles 
of fearful and non-fearful dogs. The two test groups had 
similar overall dietary profiles with a note that many con-
trol dogs were reported to consume more protein-rich 
food such as soybeans than cases. We detected a total of 6 
932 molecular features in the four separate LC–MS runs, 
of which 239 were differential between the two groups 
(Student’s t-test, p value  <  0.05; FC  ≥±1.2; PLS-DA 
VIP >1). This set of compounds (239) was subjected to 
manual inspection to identify metabolites and to remove 
redundant ions as well as poorly retained and integrated 
peaks. This analysis resulted in a set of 13 known metab-
olites and 5 unknown features (Table 2).

Several phospholipids were differential between fearful 
and non‑fearful dogs
Majority of the significantly changed metabolites in 
canine whole blood were identified as phospholipids, 
including phosphatidylcholines (PC), lysophosphati-
dylcholines (LysoPC), phosphatidylethanolamine plas-
malogen (PEP) and lysophosphatidylethanolamine 
(LysoPE). Majority of them were decreased in the group 
of fearful dogs, especially PC(16:0/23:5) (−2.1-fold; 
Pcorr = 0.0226), PC(18:0/20:4) (−2.0-fold; P = 0.02) and 
PC(18:0/19:1) (−2.0-fold; P  =  0.0376) showed remark-
able differences between the two test groups. Addition-
ally, an unknown lipid with m/z 578.312 (−2.8-fold; 

P = 0.0103), which exhibited similar fragmentation pat-
tern to LysoPCs, was detected. Furthermore, a metabolite 
with m/z 748.531 was regarded as a nominally increased 
in fearful dogs (1.8-fold; P = 0.0447). The fragmentation 
suggested this compound to be PE(P-18:1/20:4), a phos-
phatidylethanolamine plasmalogen belonging to subclass 
of ether-linked lipids that are characterized by an ether 
linkage at the sn-1 position and an ester-linkage at the 
sn-2 position on the glycerol backbone of the lipid [26, 
27].

Oxidative stress and tryptophan pathways affected 
in fearful dogs
We found also several metabolites related to oxida-
tive stress and tryptophan pathways that were changed 
between fearful and non-fearful dogs. Two compounds, 
m/z values of 137.046 (1.9-fold; P =  0.025) and 212.002 
(1.8-fold; P  =  0.048), showed identical fragmentations 
with hypoxanthine (MID 83) and indoxylsulfate (MID 
253) in METLIN, respectively. Both of these metabo-
lites are known to promote oxidative stress [28–32], 
and indoxylsulfate is an indole-derivated metabolite of 
tryptophan [32]. Metabolite with m/z 247.144 (2.2-fold; 
P = 0.0485) was identified as hypaphorine, a methylated 
form of tryptophan, based on its similar fragmentation 
pattern with the previously published spectra [33, 34]. 
We found also lower levels of tryptophan among fearful 
dogs (−1.6-fold, Pcorr  =  0.0087), although the signifi-
cance of this finding is questionable since tryptophan was 
detected in altered levels only in RP analysis and not in 
HILIC analysis. The latter would be more reliable method 
to detect amino acids.

Other metabolic changes in fearful dogs
Another particularly clear change in the metabolite pro-
files of the two test groups was the accumulation of pyro-
catechol sulfate, a phenolic metabolite with m/z 188.986 
(2.4-fold; P = 0.015). It was identified based on fragmen-
tation match with pyrocatechol standard compound, and 
additional fragment ion at m/z 79.957 corresponding to 
sulfate group [SO3]− in the molecular structure of the 
compound. Additionally, a compound with m/z 284.294 
and rt 10.59 in the RP ESI(+) analysis was observed to 
accumulate in case group (1.3-fold; P = 0.0266) and iden-
tified as stearamide (MID 34494), a fatty amide found in 
food packaging materials according to Human Metabo-
lome Database (HMDB).

The most remarkable accumulation in case group was 
observed for a compound with m/z 312.326 and rt 11.01 
in the RP ESI(+) analysis (2.8-fold; P  =  0.024). How-
ever, this compound remained unidentified due to its 
unknown fragmentation pattern, although the retention 
time highly suggests fatty acid structure. The identity of 

https://metlin.scripps.edu/index.php
http://www.hmdb.ca/
http://www.lipidmaps.org/
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three other metabolic markers remain also unclear, since 
compound with m/z 87.009 (−2.6; P  =  0.0427) would 
match with pyruvate by its mass but its MS/MS frag-
mentation pattern was not identical with the spectrum in 
METLIN, whereas the feature with m/z 371.315 (1.6-fold; 
P  =  0.0335) in the RP ESI(+) analysis showed similar 
fragmentation to two fatty acyls, di-(2-ethylhexyl)adipate 
and dioctyl hexanedioate, although could not be distin-
guished from each other. A metabolite with m/z 316.285 
and rt 8.7 has MS/MS fragmentation similar to sphingo-
sines, but due to the lack of published spectra, its exact 
identity remains unclear.

Chemometric analysis of the LC–MS data
The partial least squares discriminant analysis (PLS-DA) 
analysis yielding variable influence projection (VIP) val-
ues for metabolites indicated that the most important 
discriminator metabolites, i.e. those metabolites with 
high VIP values, had usually also low p-values and high 
fold changes, being prominent candidate biomarkers (e.g. 
PC(16:0/23:5): Pcorr  =  0.0226, VIP  =  2.24) (Table  2). 
Moreover, the PLS-DA analysis also clearly visualized the 
differences between control and case dogs, as exemplified 
with the data from the RP ESI(+) mode (Fig. 1).

The 239 differential features were also subjected to 
the K-means cluster algorithm followed by hierarchical 
cluster analysis giving a heat map as an output (Fig.  2). 
Four clusters were formed. Cluster 1 contained a set of 
70 decreased metabolites among case group, including 
identified PC(16:0/23:5), PC(18:0/19:1), LysoPC(19:0) 
and tryptophan. Also cluster 2 included features hav-
ing lower concentrations in case group but with larger 
diversity among the samples. The third group clustered 
58 compounds increased among fearful dogs, including 
pyrocatechol sulfate, hypaphorine, indoxylsulfate, steara-
mide, sphingosine-like molecule, putative fatty acyl, and 
one unknown feature with sharp and large peak. Cluster 
4 indicated hypoxanthine and PE(P-18:1/20:4) together 
with several unknown metabolites having higher concen-
trations among fearful dogs. Hierarchical cluster analysis 
also revelead the relatively high degree of heterogeneity 
between the samples, especially within the control group 
(Fig. 2).

Discussion
Anxiety-related disorders are common but yet poorly 
characterized for molecular underpinnings in any spe-
cies. Research is challenged by clinical and genetic het-
erogeneity and there is a need for novel biomarkers to 
pinpoint affected pathways, to improve diagnostics, and 
to support research. This pilot study with non-targeted 
metabolomics addressed canine fear to establish meth-
odology and to compare metabolic profiles in fearful and 

non-fearful dogs in order to elucidate the molecular phe-
nomena related to anxiety. We identified 13 differential 
metabolites which indicated decreased phospholipids, 
elevated levels of the metabolites in oxidative stress path-
ways, and altered tryptophan metabolism in fearful dogs.

About half of the identified 13 metabolites were phos-
pholipids, including three PCs, two LysoPCs, one LysoPE 
and one phosphatidylethanolamine plasmalogen. PCs, 
LysoPCs and LysoPE were all decreased and only plasm-
alogen elevated in fearful dogs. Phospholipids are major 
components of cell membranes and important signalling 
molecules [35]. Together with fatty acids they have been 
associated with anxiety-related diseases and behavior in 
humans and mice [17, 35–41]. In schizophrenia patients, 
for example, lower levels of plasma PEs and PCs have 
been measured when compared to healthy controls, sug-
gesting an involvement of lipid disorder in schizophre-
nia [42]. Since the blood lipid composition is strongly 
affected by nutrition [43], the observed difference in the 
phospholipid levels could originate from diet. However, 
our case and control groups had similar diets, and there-
fore, differences in dietary lipids do not likely explain the 
differences observed. This suggests endogenous cause, 
i.e. altered absorption of dietary lipids or disturbed lipid 
metabolism, for the affected pathways in the fearful dogs.

Plasmalogens are important signalling molecules and 
free radical scavengers present in the majority of cell 
membranes [27, 44]. This family of ether-linked phos-
pholipids has been heavily studied due to the potential 
anti-oxidant properties of plasmalogens [45, 46]. Previ-
ous studies of metabolic syndrome [47] and sepsis [48] 
patients have suggested decreased plasmalogen levels as 
a marker for oxidative stress. In the present study, fear-
ful dogs had higher levels of PE(P-18:1/20:4) and it could 
be a secondary response for oxidative stress caused by 
chronic fear.

Besides plasmalogen, two other oxidative stress-related 
biomarkers were increased in fearful dogs: hypoxanthine 
and indoxylsulfate. Hypoxanthine is an oxidative stress 
stimulator [28, 29] and it effects are mediated by xanthine 
oxidase (XO), an enzyme which oxidases hypoxanthine 
to xanthine and further to uric acid. As a by-product of 
this process a highly deleterious superoxide is gener-
ated [30]. Indoxylsulfate promotes also oxidative stress 
[31, 32]. It is a uremic toxin metabolite of tryptophan 
that induces endothelial ROS production [32]. Oxidative 
stress is caused by an accumulation of reactive oxygen 
species (ROS), when the balance between pro- and anti-
oxidant systems of the cell is disturbed [49]. As a result, 
several cellular components such as DNA, lipids, nucleic 
acids and proteins are damaged, and the levels of pro-
inflammatory cytokines are increased. Oxidative stress 
has been associated with neuropsychiatric disorders like 
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schizophrenia, anxiety, PTSD and social phobia across 
species [49–55]. There are also evidence that mitochon-
dria-directed antioxidants relieve anxiety in rodents [56]. 
Further research is required to investigate the cause, 
whether primary or secondary, and significance of the 
elevated oxidative stress in the fearful dogs.

The third affected pathway was related to tryptophan 
metabolism. Fearful dogs had lower levels of tryptophan 
but increased levels of indoxylsulfate and hypaphorine. 
The latter two molecules are tryptophan metabolites. 
Hypaphorine (C14H18N2O2), an indole alkaloid and a 
betaine of tryptophan [33, 34] was greatly increased in 
fearful dogs. Biological functions of this metabolite are 
not well known and there is no link between hypapho-
rine and behavior. Since hypaphorine is a biomarker of 
consumption of pulses like beans and peas, increased 
hypaphorine could originate from diet. Unexpectedly, we 
found increase of hypaphorine in fearful dogs although 
dietary records indicated that control dogs had higher 
content of pulses in diet. This suggests that it is unlikely 
that such a significant and systematic difference in cases 
would result from nutrition solely. Instead, this observed 
change may refer to endogenic causes related to trypto-
phan metabolism, since hypaphorine is an N-methylated 
form of tryptophan. Also the identification of the other 
tryptophan metabolite indoxylsulfate supports the sig-
nificance of altered tryptophan metabolism in fearful 
dogs. However, more research is needed to clarify the 

connection between these observed changes in canine 
anxiety.

This study demonstrates the promise of metabolomics 
approach in research related to canine anxiety, although 
we recognize technical and theoretical limitations that 
could be improved in future studies. First, we used whole 
blood and not plasma as a starting material. Whole blood 
challenges experimental conditions, including a sample 
preparation phase and may result in extra background 
followed by complications in downstream analyses. The 
replication study should be performed with fresh plasma 
samples collected in standardized manner. Second, 
the extraction conditions in the LC–MS platform were 
optimized for human samples and more optimal condi-
tions should be investigated for samples of dog origin 
for higher quality of data. Third, better management of 
diet profiles of the participating dogs and sampling pro-
tocols should be considered in future experiments. The 
sampling time (morning/evening), the length of the sam-
ple storage time in the freezer and dog’s physical activ-
ity could have had effects on the metabolite profiles and 
should be controlled in future experiments. Finally, due 
to our small sample size but high amount of detected 
metabolic features, most of the observed changes were 
not significant after correction for multiplicity. Therefore, 
too far conclusions cannot be drawn from these results, 
and larger cohorts are needed although require more 
efforts for preparation given that we research private pets 

Fig. 1 Partial least squares discriminant analysis (PLS-DA) of the reversed phase positive ESI–MS mode data. The score plot shows the individual 
samples in both case and control groups. Case group (black circles); Control group (grey squares)
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not colony dogs. However, despite the heterogeneous 
background and conditions of this pilot study, we were 
clearly able to identify several anxiety relevant metabo-
lites in fearful Great Danes and thereafter warrant the 
future applications of metabolomics investigations.

Conclusions
In summary, the pilot non-targeted metabolite profil-
ing of canine anxieties indicates significant differences 
between fearful and non-fearful dogs. 13 identified 

metabolites were differential in the whole blood of fearful 
dogs, and are involved in oxidative stress, tryptophan and 
lipid metabolisms. Furthermore, these changes appear 
relevant to anxiety also in other species. This study 
demonstrates the power of the non-targeted metabolite 
profiling approach and encourages for a replication in a 
larger cohort of dogs with anxiety. Reliable replication 
of the identified biomarkers and pathways in this study 
could lead to applications for improved phenotyping and 
understanding of anxiety across species.
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