
Fasmer and Johansen  Behav Brain Funct  (2016) 12:32 
DOI 10.1186/s12993-016-0117-9

RESEARCH

Patterns of motor activity 
in spontaneously hypertensive rats compared 
to Wistar Kyoto rats
Ole Bernt Fasmer1,2,3 and Espen Borgå Johansen4*

Abstract 

Background: Increased motor activity is a defining characteristic of patients with ADHD, and spontaneously hyper-
tensive rats have been suggested to be an animal model of this disorder. In the present study, we wanted to use linear 
and non-linear methods to explore differences in motor activity patterns in SHR/NCrl rats compared to Wistar Kyoto 
(WKY/NHsd) rats.

Methods: A total number of 42 rats (23 SHR/NCrl and 19 WKY/NHsd, male and female) were tested. At PND 51, the 
animals’ movements were video-recorded during an operant test procedure that lasted 90 min. Total activity level and 
velocity (mean and maximum), standard deviation (SD) and root mean square successive differences (RMSSD) were 
calculated. In addition, we used Fourier analysis, autocorrelations and two measures of complexity to characterize the 
time series; sample entropy and symbolic dynamics.

Results: The SHR/NCrl rats showed increased total activity levels in addition to increased mean and maximum veloc-
ity of movements. The variability measures, SD and RMSSD, were markedly lower in the SHR/NCrl compared to the 
WKY/NHsd rats. At the same time, the SHR/NCrl rats displayed a higher complexity of the time series, particularly with 
regard to the total activity level as evidenced by analyses of sample entropy and symbolic dynamics. Autocorrelation 
analyses also showed differences between the two strains. In the Fourier analysis, the SHR/NCrl rats had an increased 
variance in the high frequency part of the spectrum, corresponding to the time period of 9–17 s.

Conclusion: The findings show that in addition to increased total activity and velocity of movement, the organiza-
tion of behavior is different in SHR/NCrl relative to WKY/NHsd controls. Compared to controls, behavioral variability is 
reduced in SHR/NCrl at an aggregate level, and, concomitantly, more complex and unpredictable from moment-to-
moment. These finding emphasize the importance of the measures and methods used when characterizing behav-
ioral variability. If valid for ADHD, the results indicate that decreased behavioral variability can co-exist with increased 
behavioral complexity, thus representing a challenge to current theories of variability in ADHD.
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Background
Increased motor activity is a defining characteristic of 
patients with attention-deficit/hyperactivity disorder 
(ADHD), combined and hyperactive subgroups. This is 
based on observations of children with ADHD and on 
objective registrations with actigraphs [1]. Studies of 

reaction times, as well as other behavioral measures in 
patients with ADHD, have repeatedly shown increased 
intraindividual variability (IIV) as a characteristic feature 
of ADHD [2–18].

Spontaneously hypertensive (SHR/NCrl) rats have been 
suggested to be an animal model of ADHD [19], and in 
several test paradigms display behavior similar to that seen 
in patients with ADHD, including increased motor activ-
ity, impulsivity, and inattention. Another similar feature 
observed in the behavior of SHR/NCrl is increased IIV 
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[20–24]. However, there are divergent views on SHR/NCrl 
as a valid model of ADHD [25] which may possibly be 
related to the control strain used in the experiments [26].

A characteristic feature of different disorders or dis-
ease processes may be increased order and regularity 
of behavior, i.e. reduced complexity [27, 28]. Biological 
systems can seldom be fully characterized by simple lin-
ear processes, and additional mathematical methods are 
required obtained from the field of non-linear system, 
complexity theory and chaos theory [29]. At a molar, 
aggregated level, behavioral variability is quantitatively 
described by measures such as standard deviation and 
root mean square of successive differences. However, 
such measures do not capture behavior variability at a 
local, molecular, moment-to-moment level [30]. There-
fore, non-linear methods, such as different measures 
of complexity and entropy, have in recent years been 
employed to analyze biological time series. Such meth-
ods may give additional information to that obtained by 
traditional linear methods, and can be used to identify 
the underlying neural mechanisms of the system being 
studied.

In the present report, we have analyzed video-
recorded motor behavior of SHR/NCrl rats in order to 
look for differences in behavioral organization between 
this strain and control rats of the WKY/NHsd strain. 
In addition to total activity levels and velocity of move-
ment, we have used both linear and non-linear methods 
to analyze movement patterns. We have used standard 
deviation (SD) and root mean square successive differ-
ences (RMSSD) to indicate the molar, overall level of 
variability. These measures have been used in the study 
of reaction time variability in ADHD patients [31] and 
also in the study of motor activity of psychiatric patients 
assessed with actigraphs [32–34]. For analyses of molec-
ular behavioral variability, we included analyses of auto-
correlations, which have been used to assess response 
variability in children with ADHD [2, 3]. Additionally, to 
investigate variability in different frequency domains, we 
have employed Fourier analyses, which is a well-estab-
lished method in many different fields, and which have 
been used together with SD and RMSSD in studies of 
motor activity [32–34]. To obtain a measure of complex-
ity we have used sample entropy and symbolic dynamics 
which are two methods that tolerate a reasonable degree 
of noise (as usually is the case with biological systems). 
Both methods were used in the actigraph-studies men-
tioned above [32–34] and also in the study of reaction 
time variability in ADHD patients where increased vari-
ability and reduced complexity were found [31].

Reduced behavioral complexity is suggested to be a 
characteristic of different disorders or disease processes, 
and several studies show that intraindividual variability 

is increased in ADHD as well as in SHR/NCrl. Thus, 
our hypothesis when conducting this study was that the 
behavior of SHR/NCrl rats would be characterized by 
increased variability and reduced complexity compared 
to WKY/NHsd rats, both with regard to total activity and 
velocity of movement.

Methods
Subjects
A total number of 42 animals, 23 SHR/NCrl rats (11 
females and 12 males) and 19 WKY/NHsd rats (11 
females and 8 males) participated in the present experi-
ment. The rats were primarily employed as controls in a 
behavioral study on the effects of polychlorinated biphe-
nyl 153 in a rat model of ADHD, and had been orally 
administered corn oil at postnatal days (PND) 8, 14, and 
20 [35]. Data from PND 51 were used in the present anal-
yses. The study was approved by the Norwegian Animal 
Research Authority (NARA) (project id. no. 590), and 
conducted in accordance with the laws and regulations 
controlling experiments on live animals in Norway.

Apparatus and behavioral procedure
Details of the apparatus and experimental procedure 
are described in [35, 36]. In brief, 16 Campden Instru-
ments operant chambers enclosed in sound-resistant 
outer housings were used in the current study. The 
animal’s working space was 25  ×  25  ×  25 (height) in 
half of the chambers, and 25 ×  25 ×  20 (height) in the 
other half. Each chamber was equipped with two levers, 
one positioned on each side of a small, recessed cubicle 
where reinforcers (water) were delivered contingent on 
lever-pressing.

A variable interval 180  s schedule of reinforcement 
was in effect for the session analyzed in the present study 
and for the 17 prior sessions. A cue light was located 
above each lever, and only presses on the lever signaled 
by light produced reinforcers. Then, the cue light above 
the other lever was off, and pressing this lever had no 
consequences. Following each reinforcer delivery, the 
reinforcer-producing lever randomly switched side. The 
behavioral procedure has been described as a simultane-
ous visual discrimination task [36].

Behavior was recorded by a video camera manufactured 
by Tracer Technology Co., Ltd, Taiwan (Mini Color Hid-
den Cameras, 420TVL, 0,1 lux) mounted in the upper rear 
corner of the ceiling. The camera was controlled by the VR 
Live Capture computer program (Novus Security, Warsaw, 
Poland) saving video-files (15 frames/s) for analyses.

Video recordings
The animals were video-recorded during the whole 
90-min session, and frame-to-frame analyses of changes 
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in pixels were performed using a computer program 
developed by Jensenius [37]. Changes in pixels occurred 
whenever the animal moved, and the total number of 
pixel-changes was used to quantitate the animal’s loco-
motion [38]: Total motor activity was calculated as 
the sum of all pixels that changed from frame to frame 
divided by the total number of pixels in the video image. 
The center of the active pixels was used to estimate 
the animal’s position and calculate velocity (i.e. veloc-
ity = change in position/time). For the present analyzes, 
seven recordings per second were used to calculate total 
amount of movement and velocity (mean and maximum).

Data analysis
The first 84 min of each session were used for the analy-
sis of motor activity, either analyzed as one continuous 
period or divided into three separate periods of 28  min 
each. Data were analyzed using SPSS 18. Differences 
between SHR/NCrl and WKY/NHsd rats were compared 
using t tests except for the autocorrelations that were 
analyzed by way of ANOVA using Statistica 12.

Several different measures of variability were calculated 
and analyzed in order to characterize behavioral variabil-
ity at a molar level as well as at a local level. For analy-
ses of behavioral variability at a molar level, mean values, 
SD, and the RMSSD were used. Additionally, we used 
four other measures to characterize these motor patterns 
at a local, fine-grained level; sample entropy, symbolic 
dynamics, Fourier analysis and autocorrelations.

Standard deviation and root mean square successive 
differences
Each of the three 28-min periods obtained when divid-
ing the first 84 min of the test session in three equal parts 
contained 130 data points. Each of these points thus 
encompasses data from a time period of 12.9 s, and rep-
resent respectively the total amount of motion, the aver-
age (mean) velocity or the maximum velocity during this 
time period. Standard deviation (SD) and RMSSD were 
both expressed as percent of the mean.

Sample entropy
Sample entropy (http://www.physionet.org) is a non-
linear measure developed to compute the regularity of 
heart rate and other time series [32, 39–41]. Sample 
entropy is the negative natural logarithm of an estimate 
of the conditional probability that two sequences that are 
similar for m points, within a tolerance, remain similar 
at the next point. Data were normalized before analysis. 
According to Richman and Moorman [41], we chose the 
following parameters: m = 2 and r = 0.2. Time periods of 
12.9  s were used for the sample entropy analyses. Sam-
ple entropy was calculated using a program downloaded 

from the web-site PhysioNet, a resource site for the anal-
ysis of physiological signals (http://www.physionet.org). 
This program calculates the sample entropy of time series 
given in a text format input-file.

Symbolic dynamics
The same time series as used for the sample entropy 
analyses were employed to analyze symbolic dynam-
ics (time periods of 12.9  s). The time series were trans-
formed into series of symbols according to the method 
described by [42, 43]. For each sequence analyzed, the 
difference between the maximum and minimum value 
was divided into 6 equal portions (1–6) and each value 
of the series was assigned a number from 1 to 6, such 
that the transformed time series consisted of a string of 
numbers from 1 to 6. The series were then divided into 
overlapping sequences of three consecutive numbers. 
Each sequence was assigned one of four symbols accord-
ing to the following rule: (1) 0 V—a pattern with no varia-
tion (e.g. pattern 333 or 555), (2) 1 V—a pattern with only 
one variation where two consecutive symbols are equal 
and the remaining symbol is different (e.g. 522 or 331), 
(3) 2LV—a pattern with two like variations, such that the 
3 symbols ascend or descend (e.g., 641 or 235), and, (4) 
2UV—a pattern with two unlike variations (both ascend-
ing and descending, e.g., 312 or 451). The occurrence 
of these four patterns (0, 1  V, 2LV, 2UV) were counted 
and the results presented as the percentage of the total 
number of sequences analyzed (n =  129). The symbolic 
dynamic analyses give an indication of the complexity of 
the time series.

Fourier analysis
For the Fourier analyses (http://www.physionet.org), the 
first 84  min of the test session were divided into three 
equal parts, each containing 390 data points, and the 
middle 256 points from these time series were used. Each 
data point thus represents a time period of 4.3 s. The rea-
son for using 256 data points is that the Fourier analysis 
requires series with a length that represents a power of 
2 (64, 128, 256). Data were normalized before analysis 
and no windows were applied. Results are presented as 
the relation between variance in the high frequency part 
of the spectrum, 0.116–0.0581  Hz, corresponding to 
the period 9–17  s, and the low frequency part, 0.0581–
0.00091 Hz, corresponding to 17–1100 s.

Autocorrelations
The first 84  min of the session were divided into three 
28-min sequences, and serial correlations (autocorre-
lations) of movement and velocity were calculated for 
each of the three sequences thus expressing the predict-
ability or variability of behavior within a sequence of 

http://www.physionet.org
http://www.physionet.org
http://www.physionet.org
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observations. A total of 42 lags were calculated, where 
the correlation between e.g. movement at time t and 
movement at time t + 1 represents lag 1, the correlation 
between movement at time t and movement at time t + 2 
represents lag 2, and so forth. The autocorrelations were 
calculated for seven recordings of movement or velocity 
per second. Thus, the 42 lags represent a time period of 
approximately 6 s.

Results
Total motor activity
The SHR/NCrl rats showed substantially higher total 
motor activity than the WKY/NHsd rats during all three 
sequences of the test session; 437, 542 and 426% of the 
activity of the WKY/NHsd rats (Table 1).

At a molar level, both the SD and the RMSSD measures 
showed reduced behavioral variability in the SHR/NCrl 
rats. In the three sequences, the SDs in SHR/NCrl were 
52, 53 and 53% and the RMSSDs were 55, 51 and 53% of 
the corresponding values for the WKY/NHsd. Calculat-
ing variability for total motor activity without correct-
ing for mean values (using absolute SD values) showed 
higher variability for SHR/NCrl compared to WKY/
NHsd rats, with values that were 214, 284 and 275% of 
the corresponding values for the WKY/NHsd rats in the 
three sequences. For RMSSD, the absolute values were 
also higher for SHR/NCrl compared to WKY/NHsd rats. 
The values were 226, 279 and 271% of the corresponding 
values for the WKY/NHsd rats in the three sequences 
(Table 4).

At a molecular level, the Fourier analysis showed that 
the SHR/NCrl rats had an increased ratio of variance in 
the high frequency range compared to the low frequency 
range (16, 13 and 22% higher than the WKY/NHsd rats), 

but these differences were not significant. The sample 
entropy was for the SHR/NCrl rats increased to 150, 
151 and 164% of the corresponding values for the WKY/
NHsd rats in the three sequences. The symbolic dynamic 
analyses showed that the SHR/NCrl rats had lower val-
ues for the 0 and 1 V measures, particularly in the sec-
ond and third sequences, and correspondingly higher 
values for 2LV and 2UV. Analyses of motor activity auto-
correlations (Fig.  1) showed no statistically significant 
main effects of strain for the three sequences analyzed. 
However, statistically significant strain x lag interac-
tion effects were found in all three sequences (0–28, 
28–56 and 56–84 min): F (41, 1640) = 3.59; p < 0.0001, 
F (41, 1640) = 6.68; p < 0.0001, and F (41, 1640) = 7.94; 
p < 0.0001, respectively. Newman-Keuls post hoc analy-
ses of these significant effects showed that the autocor-
relation for lag 1 was higher in SHR/NCrl than in WKY/
NHsd controls in all the three sequences, were lower for 
lags 3–5 in the second sequence, and higher for lags 3–4 
in the third sequence (ps < 0.05).

Velocity
The mean velocities of the SHR/NCrl were also signifi-
cantly higher than in the WKY/NHsd rats, but the dif-
ferences were smaller than for the motor activity. Mean 
velocity for the SHR/NCrl rats were 164, 195 and 185% 
of the corresponding values for the WKY/NHsd rats in 
the three test sequences (Table 2). This difference is illus-
trated in Fig. 2 showing mean velocity over time during 
the third sequence for one SHR/NCrl and one WKY/
NHsd rat.

At a molar level, and similar to the findings for the 
motor activity, both the SD and the RMSSD measures 
showed lower variability in the SHR/NCrl rats. In the 

Table 1 Total amount of motor activity

Activity was analyzed using time periods of 12.9 s. SD and RMSSD are given as % of the mean. For the Fourier analysis results are presented as variance in the high 
frequency range divided by the variance in the low frequency range. All data are given as mean ± SD

t tests: * p < 0.05, ** p < 0.01, *** p < 0.001

WKY SHR WKY SHR WKY SHR

0–28 min 28–56 min 56–84 min

Mean 671 ± 256 2935 ± 919*** 424 ± 205 2298 ± 818*** 482 ± 259 2054 ± 658***

SD 136 ± 72 71 ± 33 ** 125 ± 33 66 ± 19*** 124 ± 31 66 ± 11***

RMSSD 159 ± 91 87 ± 43** 163 ± 41 83 ± 26*** 162 ± 40 86 ± 16***

Sample entropy 1.25 ± 0.65 1.87 ± 0.53** 1.32 ± 0.40 1.99 ± 0.40*** 1.27 ± 0.46 2.08 ± 0.36**

Fourier analysis 0.56 ± 0.19 0.65 ± 0.17 0.62 ± 0.18 0.70 ± 0.21 0.63 ± 0.22 0.77 ± 0.26

Symbolic dynamics

 0 V 0.6 ± 1.8 0.0 ± 0.0 3.0 ± 3.4 0.0 ± 0.0** 3.7 ± 4.8 0.0 ± 0.2**

 1 V 3.7 ± 3.0 0.1 ± 0.4*** 10.1 ± 6.0 0.2 ± 0.5*** 9.9 ± 6.1 0.6 ± 1.0***

 2LV 33.8 ± 3.4 35.5 ± 3.6 28.6 ± 4.8 36.0 ± 4.7*** 30.0 ± 5.0 34.4 ± 5.7*

 2UV 61.9 ± 3.7 64.4 ± 3.6* 58.3 ± 7.6 63.8 ± 4.5** 56.5 ± 8.0 64.9 ± 5.4***
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three test sequences, the SDs of the SHR/NCrl rats were 
63, 54 and 56% of the values for the WKY/NHsd rats, 
and 66, 56 and 60% for the RMSSDs. Calculating vari-
ability without correcting for mean values (using abso-
lute SD values) showed higher variability for SHR/NCrl 
compared to WKY/NHsd rats, with SDs that were 103, 
106 and 104% of the corresponding values for the WKY/
NHsd rats in the three sequences. For RMSSD, the abso-
lute values were also higher for SHR/NCrl compared to 
WKY/NHsd rats with values that were 108, 111 and 113% 
of the corresponding values for the WKY/NHsd rats in 
the three sequences (Table 4).

At a molecular level, the Fourier analysis showed that 
the SHR/NCrl rats had a significantly increased ratio of 
variance in the high frequency range compared to the 
low frequency range. In SHR/NCrl, this ratio was found 
to be 31, 69 and 77% higher than for the WKY/NHsd rats 

in the three sequences. As an illustration, Fig.  3 shows 
the Fourier analysis results during the third sequence 
for the same animals as in Fig.  2. Contrary to the find-
ings for motor activity, the sample entropy values did not 
differ between the SHR/NCrl and the WKY/NHsd rats. 
The symbolic dynamic analyses showed lower values 
in SHR/NCrl for the 0 and 1  V measures, but only sig-
nificantly different from WKY/NHsd for 1 V in the first 
and second sequences, and significantly higher values in 
SHR/NCrl for 2UV in the third sequence. Further, the 
analyses showed that autocorrelations of velocity (Fig. 4) 
were lower in SHR/NCrl than in WKY/NHsd controls in 
all three sequences (0–28, 28–56 and 56–84  min): F (1, 
40) = 5.69; p < 0.05, F (1, 40) = 17.11; p < 0.001, and F 
(1, 40) =  8.97; p  <  0.01, respectively. The analyses also 
showed a statistically significant strain ×  lag interaction 
effect during the third sequence, F (41, 1640)  =  1.84; 

Fig. 1 Autocorrelations (lags 1–42) of total motor activity for SHR/NCrl and WKY/NHsd for three 28-min periods representing the first 84 min of the 
90-min session

Table 2 Mean velocity

Mean velocity was analyzed using time periods of 12.9 s. SD and RMSSD are given as % of the mean. For the Fourier analysis results are presented as variance in the 
high frequency range divided by the variance in the low frequency range. All data are given as mean ± SD

t tests: * p < 0.05, ** p < 0.01, *** p < 0.001

WKY SHR WKY SHR WKY SHR

0–28 min 28–56 min 56–84 min

Mean 146 ± 20 240 ± 37*** 110 ± 24 214 ± 36*** 107 ± 25 198 ± 32***

SD 51 ± 9 32 ± 4*** 65 ± 10 35 ± 4*** 66 ± 13 37 ± 7***

RMSSD 59 ± 10 39 ± 5*** 80 ± 16 45 ± 7*** 81 ± 16 49 ± 10***

Sample entropy 2.01 ± 0.24 2.20 ± 0.36 2.14 ± 0.33 2.15 ± 0.25 2.05 ± 0.4 2.25 ± 0.28

Fourier analysis 0.52 ± 0.10 0.68 ± 0.20** 0.42 ± 0.09 0.71 ± 0.16*** 0.43 ± 0.10 0.76 ± 0.22***

Symbolic dynamics

 0 V 0.1 ± 0.3 0.0 ± 0.0 0.3 ± 0.8 0.0 ± 0.0 1.3 ± 3.5 0.0 ± 0.0

 1 V 2.3 ± 2.1 1.0 ± 1.2* 3.0 ± 3.1 1.3 ± 1.0* 3.9 ± 4.6 2.1 ± 1.6

 2LV 33.6 ± 4.0 34.9 ± 4.7 34.2 ± 5.1 34.9 ± 4.1 35.0 ± 4.6 32.8 ± 3.9

 2UV 64.1 ± 4.1 63.8 ± 4.1 62.5 ± 5.0 63.8 ± 4.3 59.8 ± 6.2 65.1 ± 3.8**
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p  <  0.001. Newman-Keuls post hoc tests showed that 
autocorrelations were lower in SHR/NCrl than in WKY/
NHsd for lags 2–5 (ps < 0.05).

The maximum velocities of the SHR/NCrl rats were 
significantly higher than those of the WKY/NHsd rats, 
but the differences were smaller than for the mean veloc-
ity. The values for the SHR/NCrl rats were 12, 23 and 22% 
higher than the corresponding values for the WKY/NHsd 
rats in the three test sequences (Table 3). Similar to the 
findings for the motor activity and the mean velocity, 
both the SD and the RMSSD measures showed lower var-
iability in the SHR/NCrl rats. In the three test sequences, 
the SDs for the SHR/NCrl rats were 67, 55 and 59% of 
the values for the WKY/NHsd rats, whereas the corre-
sponding values for the RMSSDs were 69, 61 and 63%. 
Calculating variability without correcting for mean val-
ues (using absolute SD values) showed lower variability 
for SHR/NCrl compared to WKY/NHsd rats for maxi-
mum velocity, with values that were 76, 69 and 73% of 

the corresponding values for the WKY/NHsd rats in the 
three sequences. For RMSSD, the absolute values were 
also lower for SHR/NCrl compared to WKY/NHsd rats, 
with values that were 78, 75 and 77% of the correspond-
ing values for the WKY/NHsd rats in the three sequences 
(Table 4).

Again, and similar to the findings for the mean veloc-
ity, the Fourier analysis showed that the SHR/NCrl rats 
had an increased ratio of variance in the high frequency 
range compared to the low frequency range. In SHR/
NCrl, these were found to be 24, 44 and 38% higher 
than for the WKY/NHsd rats. The sample entropy 
values did not differ between the SHR/NCrl and the 
WKY/NHsd rats. The symbolic dynamic analyses 
showed that the SHR/NCrl rats had significantly lower 
values for the 1 V measure in all three sequences, and 
correspondingly higher values for 2UV in the second 
and third sequence.
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Fig. 2 Mean velocity for one SHR/NCrl (a) and one WKY/NHsd rat (b) 
during the third 28-min time period of the 90-min session (the last 
6 min excluded). The mean velocity during this period was 198 ± 32 
(SEM) for all SHR/NCrl and 107 ± 25 (SEM) for all WKY/NHsd, respec-
tively (see Table 2)

Fig. 3 Fourier analysis of the mean velocity data for the SHR/NCrl 
(a) and WKY/NHsd rats (b) displayed in Fig. 2. Power spectral density 
(ordinate) is shown as a function of frequency (abscissa), and illus-
trates the difference in the ratio of variance in the high frequency as 
compared to the low frequency end of the spectrum between the 
two strains
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Fig. 4 Autocorrelations (lags 1–42) of velocity for SHR/NCrl and WKY/NHsd for three 28-min periods representing the first 84 min of the 90-min 
session

Table 3 Maximum velocity

Maximum velocity was analyzed using time periods of 12.9 s. SD and RMSSD are given as % of the mean. For the Fourier analysis results are presented as variance in 
the high frequency range divided by the variance in the low frequency range. All data are given as mean ± SD

t tests: * p < 0.05, ** p < 0.01, *** p < 0.001

WKY SHR WKY SHR WKY SHR

0–28 min 28–56 min 56–84 min

Mean 1302 ± 185 1455 ± 174** 1133 ± 206 1391 ± 166*** 1137 ± 203 1388 ± 194***

SD 49 ± 8 33 ± 7*** 56 ± 9 31 ± 5*** 56 ± 12 33 ± 4***

RMSSD 62 ± 8 43 ± 8*** 71 ± 11 43 ± 8*** 72 ± 15 45 ± 7***

Sample entropy 1.94 ± 0.24 1.90 ± 0.21 2.01 ± 0.19 2.02 ± 0.19 1.96 ± 0.49 2.13 ± 0.27

Fourier analysis 0.66 ± 0.16 0.82 ± 0.18** 0.52 ± 0.09 0.75 ± 0.15*** 0.55 ± 0.13 0.76 ± 0.22**

Symbolic dynamics

 0 V 0.1 ± 0.4 0.0 ± 0.0 0.3 ± 0.8 0.0 ± 0.0 1.2 ± 3.5 0.0 ± 0.0

 1 V 1.8 ± 1.8 0.7 ± 0.9* 2.3 ± 3.0 0.8 ± 1.2* 3.7 ± 4.3 0.9 ± 1.0*

 2LV 33.6 ± 2.9 34.2 ± 3.4 34.4 ± 3.3 32.3 ± 3.9 35.1 ± 4.7 33.7 ± 2.4

 2UV 64.6 ± 3.4 65.1 ± 3.6 63.0 ± 3.4 66.9 ± 4.1** 60.0 ± 6.3 65.5 ± 2.5**

Table 4 Results from  analysis of  variability without  correcting for  mean values, but  using absolute values for  SD 
and RMSSD

Motor activity Mean velocity Maximum velocity

WKY SHR p WKY SHR p WKY SHR p

SD

 0–28 min 880 1882 0.001 73 75 0.591 633 484 0.001

 28–56 min 506 1438 0.001 70 74 0.452 631 435 0.001

 56–84 min 481 1325 0.001 69 72 0.353 630 461 0.001

RMSSD

 0–28 min 2308 1021 0.001 86 93 0.095 813 634 0.001

 28–56 min 1788 641 0.001 85 94 0.042 801 602 0.001

 56–84 min 1702 629 0.001 84 95 0.016 809 624 0.001
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In Table  5 are presented correlations between mean 
values of motor activity, mean velocity, maximum veloc-
ity and the different variability measures we have used in 
Tables  1, 2 and 3. These correlations are given for each 
strain separately and together. Analysis of sex differ-
ences did not reveal any consistent pattern with regard 
to differences between SHR/NCrl and WKY/NHsd rats, 
test sequences or the different parameters used, and are 
therefore not reported.

Discussion
The present study examined organization of video-
recorded motor behavior in SHR/NCrl and WKY/NHsd 
controls using linear and non-linear methods. The main 
finding of the present study is that the motor activity 
of SHR/NCrl rats is different from WKY/NHsd rats in 
a number of ways, not only at the level of activity. The 
SHR/NCrl rats display increased mean and maximum 
velocity of their movements in addition to a pronounced 
increased total activity level. Concurrently, the organi-
zation of behavior is different in SHR/NCrl and WKY/
NHsd controls. At a molar level of analysis, the variability 
of the time series, the SD and RMSSD, is markedly lower 
in SHR/NCrl compared to the WKY/NHsd rats when 

these measures are expressed as percent of the mean. At a 
molecular level of analysis, in contrast, the Fourier analy-
sis shows that in the SHR/NCrl rats there is an increased 
variance in the high frequency part of the spectrum, cor-
responding to a time period of 9–17 s. When analyzing 
the time series with symbolic dynamics, the SHR/NCrl 
rats appear to have a higher behavioral complexity, par-
ticularly with regard to the total activity level. Similarly, 
using sample entropy, the complexity of the time series 
of total activity is higher in the SHR/NCrl rats than in 
the WKY/NHsd rats, and the lower autocorrelations of 
velocity in SHR/NCrl than in WKY/NHsd controls show 
that behavior is less systematic and less predictable from 
one occurrence to the next in the SHR/NCrl.

The increased total activity level of SHR/NCrl rats 
compared to the WKY/NHsd strain is in accordance with 
previous studies and in agreement with SHR/NCrl rats 
as a model of ADHD [20–24, 44, 45]. Increased activity 
is a defining feature of ADHD and has been confirmed 
using objective registrations of motor activity in patients 
[1, 46].

In SHR/NCrl, increased IIV has been found across a 
variety of behaviors including maze performance, lever 
pressing and nose poking [20–24, 44, 45]. The markedly 

Table 5 Correlations between  motor activity, mean velocity, maximum velocity and  measures of  variability in  WKY 
and SHR rats in sequence 2 (28–56 min), each strain analyzed separately (A) and together (B)

Motor activity Mean velocity Maximum velocity

WKY SHR WKY SHR WKY SHR

A

SD −0.391 −0.523* −0.691** −0.114 −0.009 0.253

RMSSD −0.611** −0.596** −0.821*** −0.443* −0.091 0.171

Sample entropy 0.195 0.428* −0.086 −0.382 0.653** 0.030

Fourier analysis 0.092 −0.328 0.250 −0.417* 0.315 −0.165

Symbolic dynamics

0 V −0.439 – −0.207 – 0.115 –

1 V −0.678** −0.401 −0.211 −0.169 0.015 −0.417**

2LV 0.471* 0.016 0.278 0.018 −0.178 −0.112

2UV 0.437 0.026 −0.121 0.021 0.141 0.217

Motor activity Mean velocity Maximum velocity

B

SD −0.760*** −0.859*** −0.466**

RMSSD −0.802*** −0.875*** −0.472**

Sample entropy 0.686*** −0.107 0.307*

Fourier analysis 0.041 0.559*** 0.407**

Symbolic dynamics

0 V −0.505** −0.283 −0.088

1 V −0.719*** −0.388* −0.266

2LV 0.559*** 0.132 −0.272

2UV 0.397** 0.102 0.396**



Page 9 of 13Fasmer and Johansen  Behav Brain Funct  (2016) 12:32 

reduced molar IIV in SHR/NCrl, as measured with SD 
and RMSSD, found in the present study is therefore at 
first glance surprising and inconsistent with the findings 
of Perry et  al. [24] who used an identical experimental 
procedure to the one used in the present study, where 
total test-time was divided into 5 segments, and IIV for 
operant lever-pressing was expressed as the absolute dif-
ference between behavior in each segment and the total 
test-time mean. One important difference between the 
studies is that Perry et al. analyzed reinforcer-controlled 
lever pressing only, whereas the video-recorded behavior 
analyzed in the present study included reinforcer-con-
trolled movements (lever approach, presses, tray visits, 
and reinforcer consummation) as well as other move-
ments not controlled by the scheduled reinforcers (e.g. 
grooming, exploration and motor control). The impact of 
each of these processes on the observed changes in IIV in 
SHR/NCrl cannot be disentangled in the present study, 
but may have contributed to the inconsistent findings. A 
second important difference between the two studies is 
that Perry et  al. used variability measures corrected for 
mean whereas SD and RMSSD mean corrections were 
used in the present study. Although uncorrected SDs 
and RMSSDs in the present study were higher in SHR/
NCrl than in controls for total activity, the means were 
also much higher in SHR/NCrl than in controls. Thus, 
the mean-corrections produced lower SDs and RMSSDs 
in SHR/NCrl than in controls, and it has been argued 
that this procedure may be overly conservative and over-
correct for SHR/NCrl phenotype [24]. In the analysis of 
mean velocity, uncorrected SDs and RMSSDs were also 
higher in SHR/NCrl than in controls, but the differences 
were smaller, whereas uncorrected SDs and RMSSDs 
for maximum velocity were lower in SHR/NCrl than in 
controls. Comparing total activity, mean and maximum 
velocity using uncorrected SD and RMSSD would there-
fore give inconsistent results, while correcting for mean 
gives a consistent picture, with lower SD and RMSSD for 
SHR/NCrl compared to controls in the range of 51–69%.

Mean corrections have been discussed within the 
ADHD literature for measures of reaction time (RT) and 
reaction time variability. In these studies, intraindividual 
variability has commonly been measured as the standard 
deviation of RTs without mean correction. Studies have 
shown that although correlated, RT mean and RT stand-
ard deviation have independent components of variance 
[47]. Additionally, increased mean RT and RT variability 
may have shared etiology in ADHD [48]. Thus, by cor-
recting for mean, there is a risk of controlling for what 
one intends to study [49].

The question of dependence between the mean and 
measures of variability is highly relevant in the present 
study because the increased mean activity level and 

variability measures in SHR/NCrl could be expressions of 
one underlying factor. When looking at data from both 
rat strains, there are strong correlations between the 
variability measures and mean values for motor activity, 
velocity and maximum velocity, and these correlations 
parallel the differences in variability measures between 
the strains. However, when examining each strain sepa-
rately there are fewer correlations and the pattern is 
clearly different for the two strains. We think this shows 
that the differences seen between the two strains do not 
simply reflect differences in total motor activity or veloc-
ity of movement, and that studying variability measures 
give added information concerning the organization of 
motor activity.

Overall, the analyses of video-recorded behavior during 
the operant task suggest that behavior is organized dif-
ferently in SHR/NCrl as compared to WKY/NHsd con-
trols: At a molar level, SHR/NCrl behavior is less variable 
whereas behavior at a molecular level is more complex 
than in controls. Increased molecular behavioral com-
plexity in SHR/NCrl compared to WKY/NHsd was found 
in the Fourier analyses for both mean velocity and maxi-
mum velocity of movement, and is consistent with the 
symbolic dynamics analyses, and the autocorrelations 
analyses for velocity of movement.

Studying movement patterns, Paulus et  al. [50] found 
differences between Fischer, Lewis, and Sprague–Daw-
ley rats using a spatial scaling exponent quantifying the 
degree of linear movement versus movement within 
a circumscribed area (low versus high scaling expo-
nent, respectively), that may in some respect resemble 
the complexity test we have used. They suggested that 
a lower scaling exponent in Sprague–Dawley rats com-
pared to Fischer and Lewis rats was related to differ-
ences in central serotonergic systems. In a study of SHR 
and WKY rats, Li and Huang [51] found that the scaling 
exponent was higher in SHR rats, in accordance with our 
finding of a higher complexity of total motor activity in 
these rats. Previous studies have shown a range of neu-
rological changes in SHR. We are in our study unable to 
separate the possible role of dopaminergic and serotoner-
gic systems in the regulation of movement patterns, and 
there are differences between SHR and WKY rats in both 
these systems. Additionally, changes in noradrenergic, 
glutaminergic neurotransmission and several other sys-
tems have been shown in SHR [19, 26, 52–55].

The present finding may partly reflect basic motor 
processes and point to important differences in the neu-
ronal organization of basic motor activity in SHR/NCrl 
compared to WKY/NHsd rats. This may indicate similar 
differences in motor activity regulation in patients with 
ADHD vs. controls. In a study of reaction times during 
the CPT-II test, higher variability (using SD and RMSSD) 
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was found in adult ADHD patients compared to clini-
cal controls, but at the same time lower complexity as 
measured with sample entropy and symbolic dynamic 
analysis was found in the ADHD group [31]. This finding, 
an inverse relation between measures of variability and 
complexity, mirrors the relation between the same meas-
ures in the present study. We have seen this same inverse 
relationship also in a study of motor activity in depressed 
and schizophrenic patients [32].

Reduced complexity of physiological systems has been 
postulated to be associated with disease and aging [28], 
but this may depend on the dynamics of the system under 
study. Vaillancourt and Newell [56] have suggested that 
in systems with intrinsic oscillations the opposite may 
occur, namely that disease processes are accompanied by 
increased complexity. This has been found in the motor 
activity of schizophrenic patients [32], and the present 
findings may fit the same pattern.

Another way to conceptualize the present findings 
on intraindividual variability is to compare them with 
human studies showing that variability patterns are dif-
ferent when comparing measures of brain function and 
behavior. Garrett et  al. [57] found in an imaging study 
that blood oxygen level-dependent signal variabil-
ity (brain variability) was lower in older compared to 
younger persons, while reaction time speed variability on 
different cognitive tasks was higher. Similarly, McIntosh 
et  al. [58] found, when comparing children and young 
adults, that maturation was accompanied by increased 
variability of EEG-signals and reduced variability of 
response times on a facial recognition task.

Studies of behavioral variability in ADHD have pro-
duced a complex set of findings. Studying children with 
ADHD using autocorrelations, predictability of responses 
was found to be lower in ADHD (i.e. responding was 
more variable), consistent with the current findings [2]. 
Additionally, the autocorrelations in ADHD were found 
to be sensitive to the reinforcement contingencies [3], 
which has also been found for response time variability 
[59]. In a study of reaction times in children with ADHD, 
Castellanos et al. [6] found evidence of multisecond oscil-
lations, with a cycle length of approximately 20  s, and 
they suggested that this might be due to deficiencies in 
dopaminergic regulations in the patients. This is intrigu-
ingly similar to the findings with Fourier analysis in the 
present study. Using Fourier analyses, Karalunas et  al. 
found more low-frequency variability and higher faster-
frequency variability in ADHD, with non-significant 
differences between frequency bands [60]. In a study of 
children with ADHD, Wood et  al. [46] found, in addi-
tion to increased motor activity, also increased intraindi-
vidual variability of the intensity of movements. On the 

other hand [61], a study of adult ADHD patients found 
that the patients had both increased activity levels and 
reduced daytime variability patterns compared to con-
trols. In another study in adults, ADHD patients did not 
show increased activity levels compared to controls, and 
variability measures (SD and RMSSD) were not altered, 
but Fourier analyses revealed higher power in the high 
frequency range, corresponding to the period from 2 to 
8 min [31].

Several mechanisms underlying the increased IIV 
observed in ADHD have been proposed, including defi-
cient astrocyte energy supply to active neurons, state 
regulation and working memory problems, arousal-
attention regulation, and altered learning processes (see 
[11, 49] for reviews of etiological models of reaction time 
variability). The complexity of findings is a challenge to 
current theories of IIV in ADHD, and obviously under-
score the need for further studies that compare measures 
used to characterize variability, examine possible discrep-
ancies between molar and molecular analyses of variabil-
ity, and explore variability patterns in both patients and 
animal models.

The current findings add to this complexity by suggest-
ing the presence of both increased molecular as well as 
decreased molar behavioral variability in SHR. If valid for 
ADHD, this finding is a new and interesting contribution 
to the research on IIV, and suggests that IIV in ADHD 
is not unitary and explained by one common principle, 
but may have several underlying mechanism depending 
on the task used and the behavior analyzed, and may be 
changed in opposite directions depending on the vari-
ability measures used.

There are some important limitations to the pre-
sent study that must be considered. First, it is not clear 
what the video-recorded behavior during the operant 
task reflect (i.e. reinforcer-effects, grooming, explora-
tion, basic motor organization, or other processes) or 
how the behavioral changes relate to underlying mecha-
nisms. Nevertheless, several changes in IIV in SHR/NCrl 
were found suggesting that analyses of video-recorded 
behavior may be a valuable supplement to traditional 
behavioral measures used in studies of IIV. Second, the 
decreased molar IIV found in SHR/NCrl relative to con-
trols is based on analyses of SD and RMSSD correcting 
for mean. However, the use of mean correction has been 
debated in the ADHD literature, and has been argued to 
overcorrect for phenotype in studies of SHR/NCrl [24]. 
The present analyses using mean corrections produced 
more consistent results, with variability changes in oppo-
site directions, compared to analyses using mean correc-
tions, underscoring the importance of mean corrections 
in analyses of variability.
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Conclusion
This study shows that SHR/NCrl rats, a postulated ani-
mal model of ADHD, are different form WKY/NHsd 
rats in a number of measures related to motor activity. 
In addition to increased activity levels, the most pro-
nounced findings are increased mean and maximum 
velocity of movements, and reduced variability for all 
these measures when assessed with SD and RMSSD 
corrected for mean. There is also an increased complex-
ity of movement patterns in the SHR/NCrl rats. These 
results point to differences in the neuronal organiza-
tion of movements that may be related to the known 
differences in neurotransmitter systems between these 
two rat strains. Even though these findings have no 
immediate implications for the diagnosis or treatment 
of ADHD patients, they may be used to explore further 
the mechanisms of motor activity regulation in general, 
and alterations in neurodevelopmental disorders such 
as ADHD.
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