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Abstract 

Background:  Emotion recognition is an increasingly important field of research in brain computer interactions.

Introduction:  With the advance of technology, automatic emotion recognition systems no longer seem far-fetched. 
Be that as it may, detecting neural correlates of emotion has remained a substantial bottleneck. Settling this issue will 
be a breakthrough of significance in the literature.

Methods:  The current study aims to identify the correlations between different emotions and brain regions with the 
help of suitable electrodes. Initially, independent component analysis algorithm is employed to remove artifacts and 
extract the independent components. The informative channels are then selected based on the thresholded average 
activity value for obtained components. Afterwards, effective features are extracted from selected channels common 
between all emotion classes. Features are reduced using the local subset feature selection method and then fed to a 
new classification model using modified Dempster-Shafer theory of evidence.

Results:  The presented method is employed to DEAP dataset and the results are compared to those of previous 
studies, which highlights the significant ability of this method to recognize emotions through electroencephalogra-
phy, by the accuracy of about 91%. Finally, the obtained results are discussed and new aspects are introduced.

Conclusions:  The present study addresses the long-standing challenge of finding neural correlates between human 
emotions and the activated brain regions. Also, we managed to solve uncertainty problem in emotion classification 
which is one of the most challenging issues in this field. The proposed method could be employed in other practical 
applications in future.

Keywords:  Emotion identification, Local subset feature selection, Machine learning methods, Independent 
component analysis, Dempster Shafer theory, Brain computer interactions
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Introduction
A fundamental controversy that has been driving exten-
sive research in phycology and neuroscience today con-
cerns what emotion really is. Though seemingly simple, 
the definition of emotion has in fact remained as an area 
of little consensus. Most often, the term emotion refers 
to a psycho-physiological process triggered by conscious 
and unconscious perception of an object or situation and 

is commonly associated with mood, temperament, per-
sonality, disposition, and motivation. Emotion is central 
to almost any interpersonal communication and is gen-
erally expressed through both verbal and nonverbal cues. 
Quite undeniably, emotions pervade every aspect of 
human life, having profound influences on our actions as 
well as our perceptions. This has led to the development 
of systems that attempt to recognize and interpret human 
affects  to establish affective human–computer interac-
tions (HCI). However, as yet most human–computer 
interaction systems are far from being emotionally intel-
ligent and thus, tend to fail to distinguish and discrimi-
nate emotional states and decide upon following proper 
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actions. Therefore, affective computing, as a growing 
field, sets its goal to bridge this gap by identifying emo-
tional states using the exhibited cues and generating 
proper responses [1].

Over the past few years, the studies on emotion recog-
nition through EEG have received increasing attention 
and are now extending into interdisciplinary fields that 
range from psychology to different branches of engineer-
ing. They typically include preliminary researches on 
emotion theories and applications to affective BCIs [2, 3], 
which allow for identifying, analyzing and responding to 
user’s affective states based on physiological signals.

Emotion recognition is a key step towards emotional 
intelligence in advanced human–machine interaction. 
It is mainly served through analyzing either emotional 
expressions or physiological signals. The former refers to 
any observable emotional cues that communicates emo-
tion, while the latter, which has so far received little atten-
tion, includes information that lies in signals originating 
from the central and peripheral nervous system such as 
blood pressure, respiration, skin conductivity, pupil dila-
tion, heart rate, and so forth. In the field of affective com-
puting, different signals have been drawn into focus to 
study emotion recognition. For a comprehensive review 
of emotion recognition methods, one can refer to Calvo 
and D’Mello [4].

EEG is largely employed to investigate the brain activity 
associated to emotion since it allows for the identification 
of immediate responses to emotional stimuli and could 
potentially reflect emotional states in a relatively cost-and 
computation-effective manner. Nevertheless, emotion 
recognition based on EEG could come across as chal-
lenging, factoring in the fuzzy boundaries and individual 
differences related to emotions. Furthermore, it seems 
theoretically unlikely to obtain the correct category for 
an EEG that corresponds to different emotional states 
since emotion is generally regarded as a function of vari-
ous variables such as time, culture, and race [5].

With the rapid growth of micro-nano technologies and 
embedded systems, it is no longer far-fetched to have 
BCI systems ported from a laboratory demonstration to 
real-life applications. Thanks to new advances in materi-
als and integrated electronic systems technologies, a new 
generation of dry electrodes and embedded systems have 
been developed to fulfill the basic needs for increased 
practicability, wearability, and portability of BCI systems 
in real-world environments [6, 7].

Recently, an increasing number of affective computing 
researches have been conducted with the aim of build-
ing computational models that employ EEG features to 
estimate emotional states. A review of such models can 
be found in [8], the work of Kim et  al. Affective neuro-
science seeks, among other goals, to study the neural 

associations between human emotions and the obtained 
brain activity, particularly such EEG signatures of emo-
tion that are more likely to be shared across individuals. 
Researches in the literature suggest that while processing 
modules for particular emotions appear to be non-exist-
ent, finding neural signatures of emotions, signified by a 
distributed pattern of brain activity [9], seem theoreti-
cally and practically possible. Mauss and Robinson [10] 
came to the conclusion that the emotional state tends to 
involve circuits as opposed to any isolated brain region. 
Furthermore, it is widely believed that identifying neural 
patterns which are common across individuals and are 
also stable across sessions can contribute significantly 
to EEG-based emotion recognition. On the other hand, 
cortical activity following emotional cues is attributed to 
the lateralization effect. Schmidt and Trainor [11] dis-
covered that valence and intensity could be identified 
by the pattern of asymmetrical frontal EEG activity and 
the overall frontal EEG activity, respectively. Muller et al. 
noticed a correlation between gamma power and a nega-
tive valence over the left temporal region [12]. Bringing 
into attention the relation between frontal EEG asym-
metry and approach and withdrawal emotions, Davidson 
and Fox [13] and Davidson [14] demonstrated that the 
left frontal activity mirrors heightened approach ten-
dencies, while withdrawal tendencies are reflected in the 
right frontal activity. Nie et  al. in [15] noted the preva-
lence of the subject-independent features attributed to 
positive and negative emotions in the right occipital lobe 
and parietal lobe for the alpha band, the central site for 
the beta band, and the left frontal lobe and right tempo-
ral lobe for the gamma band. Balconi et al. suggested that 
valence and arousal rating affect frequency band modu-
lations such that high arousal and negative or positive 
stimuli can trigger an increased response [16].

Despite all earlier efforts, the lack of recognizable neu-
ral signatures of emotion has continued to be a major 
barrier. Finding such a strategy to settle this issue will be 
a breakthrough of substantive significance, paving the 
way for several subsequent developments in psychology, 
cognitive sciences, and other relevant fields. Therefore, 
the current study, through combining novel approaches 
and proposing a new structure, aims to identify the active 
regions using suitable electrodes with acceptable level of 
accuracy.

According to the Circumplex Model, emotions are 
distributed in a two-dimensional circular space where 
the vertical and horizontal axes represent arousal and 
valence dimensions respectively. The two axes intersect 
at one point, dividing the space into four main quadrants 
which are used in labeling data in this research. The cur-
rent study aims to manage the novel methods, and pro-
pose a structure for active neural structures associated 
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with specific emotions and to present an optimal strat-
egy for applying these approaches to achieve an accurate 
classification of emotions. The proposed structure makes 
use of novel and optimized algorithms for extracting 
emotions in an effective and organized manner to bring 
about the best possible results. Using EEG channels, this 
study attempts to identify brain regions that are active 
when experiencing a specific emotion. To this end, ICA 
algorithm is employed to remove artifacts and extract the 
independent components. Then, based on the extracted 
mapping, channels will receive a corresponding value.

In this setting, the absolute values of active and inactive 
regions will be obtained. The normalized value as well as 
the average value of each channel are then calculated and 
compared to a threshold value, which leads to the selec-
tion of active channels that are suited to our task. The 
process is repeated for each of the four classes of emo-
tions, choosing the informative channels. The channels 
that are common in all classes would further be selected 

to allow for extraction of the proposed features. The 
proposed method would proceed to implement the fea-
ture selection along the arousal and valence dimensions. 
In the end, emotions are classified using the optimized 
Dempster Shafer method. Figure  1 illustrates the block 
diagram of the presents approach.

Materials and methods
Dataset used
The database contains all recorded signal data, frontal 
face video for a group of the participants, subjective rat-
ings from the participants as well as the subjective rat-
ings from the initial online subjective annotation and 
the list of 120 videos used. Koelstra et al. built the DEAP 
database aiming at examining spontaneous human affec-
tive states that are specifically induced by music vid-
eos [1]. The dataset contains 32 healthy participants 
half males and half females, with the age range of 19 
to 37 (mean = 26.9). For each participant, 40 videos 

Fig. 1  Block diagram of the proposed approach for emotion detection
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were separately presented in 40 trials with the EEG and 
peripheral physiological signals simultaneously recorded. 
In each of them, the index of the current trial was first 
displayed for 2-s; and a consecutive 5-s recording pro-
ceeded as the baseline condition; then the music video 
was shown for 1  min; finally, the subjective-ratings 
on arousal, valence, liking and dominance scales were 
collected.

Channel selection
In this section, we propose a method to select most 
active channels associated with different states of emo-
tions. As mentioned before, emotions can be described 
through the arousal-valence plane which allows consid-
ering four different regions as emotional states. Figure 2 
shows the arousal-valence plane as well as the emotional 
states. Here, we have simply named these four quarters 
as: Quarter 1 (Q1), Quarter 2 (Q2), Quarter 3 (Q3) and 
Quarter 4 (Q4).

Arousal and valence distribution in DEAP dataset is 
also represented in such plane. 1280 samples (32 indi-
viduals, each 40 trials) are almost uniformly distrib-
uted in arousal-valence plane indicating that there are 
adequate numbers of samples in each class. This section 
aims to determine neural correlates between each emo-
tional state, i.e. class, and the registered EEG signals and 

thus selecting the EEG channels that display appreciable 
higher activity.

EEG activity can be demonstrated using blind source 
separation (BSS) methods like ICA. The current study 
applies Runica as well as second order blind identifica-
tion (SOBI), JADE and COMBI which are believed to be 
the best BSS methods for EEG signal processing applica-
tions in several surveys such as [17, 18]. EEGs for each 
class are first fed into BSS methods to get sources sepa-
rated. 32 EEG sources (i.e. independent components) are 
estimated and reconstructed in each BSS method. Based 
on the surveys, we employed the mentioned BSS meth-
ods to evaluate and compare them in terms of emotion 
recognition and emotion-related neural activity.

It should be noted that, EEGs in DEAP database have 
been preprocessed before and it has been observed that 
no noticeable artifacts or noises exist which means all 
extracted sources are correspondent to neural activity. 
Neural activity is estimated for each component and then 
averaged over samples in each emotional class to have the 
average activity maps for each emotional state. Figures 3, 
4 depict the average activity mapping for 32 channels in 
Q1–Q4 emotional states, respectively.

EEG source separation and topographic mapping are 
carried out using EEGLAB in this study. Activity val-
ues are then normalized with respect to minimum and 
maximum activity in the dataset. All normalized activity 

Fig. 2  Arousal-valence plane and label distribution for DEAP dataset
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values vary in the range of [− 1, 1]. Since both active and 
inactive regions (i.e. channels) are of importance, we 
focus on the absolute value of neural activity to find most 
active and significant channels in emotional changes.

Channels with activity values being higher than a spe-
cific threshold are considered as “Emotional Channels” 
in each class. This threshold is determined based on a 
trial and error procedure to achieve best classification 
performance.

Since only the selected channels are taken to the next 
step, this method holds promise to be less time-con-
suming and more accurate. Channel indices for each 
emotional state are determined with respect to chan-
nel activity and only common channels among all four 
classes are considered to be processed in the rest of the 
proposed method.

Feature extraction
Prior to classification of samples, effective features are 
extracted from selected channels. Several studies like 
[19–34] have applied different features while working 
on DEAP database. This study makes use of features that 
have been previously proposed as well as nonlinear fea-
tures which are believed to be effective in emotion rec-
ognition. These features are estimated from the entire 
1-min selected EEG channels which were explained in 
the previous section. Since we concentrate on nonlinear 
features which are mostly extracted from the signal phase 
space, we need longer windows (e.g. 1 or 2 min at sam-
pling frequency of 256 or 128 Hz) to reconstruct the EEG 
phase space. Moreover, some features such as different 
kinds of entropies need at least 4000 samples to be esti-
mated correctly and precisely.

Table  1 lists the proposed features and the 
abbreviations.

For reasons of space, we avoid explaining these well-
known features here. For more information, refer to the 
mentioned references.

Local subset feature selection
This section focuses on feature selection algorithm. Tak-
ing a close look at labels in this dataset, i.e. arousal and 
valence, we can select a number of informative features 
simply by considering these values. To this end, the cur-
rent study benefits form one of the recent and successful 
feature selection methods called Bandit [42–47] where 
features are selected based on defined regions in the 
feature space. Turning the problem of feature selection 
into a sequential decision-making problem, this method 
applies the concept of feature tree, as a developed model 
of decision trees, to divide the sample space into a few 
localities and assign features to each of them. In addition 
to splitting and leaf nodes in a typical decision tree, a fea-
ture tree includes another type of node named ‘feature 
node’, which shows a feature that is attributed to all of its 
decedents and can have no more than one child. A Com-
pound Locality further refers to a sub-tree corresponding 
to a set of neighbor localities. This representation simpli-
fies the selection of similar features since neighbor locali-
ties are more likely to share mutual features, which will 
be factored together in the parent feature node. Figure 5 
depicts a sample feature tree where the feature nodes 
are represented by a circle with a single feature inside, a 
splitting node by a rectangle containing a feature and a 
threshold, and localities by leaves. In order for the locali-
ties to be dependent on a limited number of features, it 

Fig. 3  Average score of each ICA component for all of trials
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has been assuming that partitioning can be represented 
using a univariate binary decision tree [42].

Feature trees assign a sample, either training or test, 
to a descendant in the root repeatedly, based on the 
value of the corresponding feature, until it is assigned to 
a unique leaf. Accordingly, a subset of training samples 
and a subset of features, that is the set of feature nodes 

from the leaf to the root, are accumulated in each local-
ity as the process precedes. For a test sample classifi-
cation, it is first assigned to a locality according to the 
feature tree and is then classified in the locality through 
the corresponding features and training samples. To 
ensure an effective local feature selection, we employ 
a criterion which helps us compare different feature 

Fig. 4  Average score of 32 components of ICA for: a Q1, b Q2, c Q3, d Q4
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trees. We expect that the sample of different classes be 
separable in the new space formed by the selected fea-
tures. With that in mind, S and ft are assumed to be the 
training set and the feature tree, respectively. Given ft 
and a random sample x, we can find the subset of S that 
belongs to the same locality as x. Let s ⊂ L(x, s, ft, k) be 

the k-nearest neighbors of x among the members of this 
subset. The score of ft with respect to the training set S 
is computed as:

where label (·) signifies the class of a sample.
In another perspective, each node of a feature 

tree is regarded as an equivalent of a state in the 
Reinforcement Learning (RL) machine, consist-
ing of a sequence of nodes from the root to the cur-
rent node. The RL agent selects an action for each 
state, which in this setting, means choosing the node 
type and the corresponding feature index. Accord-
ingly, the set of all possible actions in each state is 
Actions =

{

f 1, f 2, .., Ff , S1, S2, . . . , SF , T
}

 with F 
being the number of features, fi and si showing a fea-
ture node and a splitting node respectively, and T being 
the terminating action, which finishes feature selection 
in the current node, leaving it as a leaf [42].

(1)

SCORE(ft) =
1

K · |S|

∑

x∈s

∑

y∈L(x,s,ft,k)

{

1 label (y) = label (x)

0 otherwise

Table 1  Most common features in  emotion recognition 
through EEG

# Feature description Abbreviation Explained in

1 Correlation dimension CD [22, 37, 38]

2 Fractal dimension FD [40, 41, 49]

3 Largest Lyapunov exponent LLE [37, 40, 41]

4 Sample entropy SpEn [33, 36]

5 Recurrence rate RR [35, 39]

6 Determinism DET [35, 39]

7 Average diagonal line length L [35, 39]

8 Entropy ENT [35, 39]

9 Differential entropy DeEn [19, 27]

Fig. 5  An instance from different localities and features in tree representation. The sub-tree ri corresponds to the compound locality cli consisting of 
two single localities [42]
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Classification
Since emotions are described by arousal and valence val-
ues, we can consider four emotional quarters, i.e. Q1–Q4 
classes, in two independent binary classifications. Q1, 
denotes samples with high valence-high arousal (HVHA). 
Similarly, Q2, Q3 and Q4 classes mark samples with low 
valence-high arousal (LVHA), low valence-low arousal 
(LVLA) and high valence-low arousal (HVLA), respec-
tively. In this paper, we classify samples based on two 
feature subsets by two separate and independent multi-
layer perceptron (MLP) neural networks. MLP is among 
the most popular classifiers in pattern recognition prob-
lems. This classification model works in two main steps: 
training and testing. In the training phase, weights are 
adjusted to achieve the least training error. Then, the test 
samples will be made use of to evaluate the classifier in 
the testing phase. Numerous studies have employed MLP 
to identify emotions [48–54].

As the feature selection procedure returns two different 
subsets as the output, we propose to employ Dempster-
Shafer theory (DST) of evidence to combine two MLPs 
trained by two different feature subsets. DST is reported 
to be one of the most commonly used methods to reduce 
uncertainty and increase classification accuracy [38].

Introduced by Dempster and then modified by Shafer, 
DST is a widely used, theoretical framework which offers 
a way to handle imprecise, uncertain and partial informa-
tion. In addition, this theory is applied to fuse different 
information sources and feature subsets [55]. Therefore, 
fusion of classifiers can also be performed with the help 
of this framework. Posterior probability values can be 
combined using DST and final decision could be made. 
This theory can reduce uncertainty and incompleteness 
and lead to a higher accuracy of classification by apply-
ing a combination rule for belief functions (Bel) of dif-
ferent information sources. These sources could be some 
experts or classification models trained by subsets of fea-
tures. Different classifiers can be combined through this 
theory. Combination of classification models yields con-
siderably better classification results. DST is explained as 
follows.

Let us suppose ϕ = {s1, s1, . . . , sm} . The num-
ber of all possible subsets or hypothesis is 
2ϕ = {s1, s2, {s1, s2}, . . . , {s1, s2, . . . , sm}} . Bels (or mass val-
ues) could be defined for each subset. A mass value deter-
mines the degree of belief which is assigned to a specific 
subset. A Bel should satisfy the following conditions:

(2)m(φ) = 0

(3)m(S) ≥ 0, ∀S⊆ϕ

(4)
∑

S⊆ϕ

m(S) = 1

With some assumption, we can consider posterior 
probabilities of classifiers as mass values. As it is men-
tioned, mass values have some characteristics. There are 
some methods to transfer the output of a classifier into 
mass functions [29]. In the current study, we have used 
softmax operator [38] which is defined as following:

In which Rji is the j th posterior probability value of i 
th classifier. C signifies the number of classes and m 
indicates the mass value. Also the combination of mass 
values assigned by n different independent sources can 
be performed through Dempster’s combination rule as 
follows:

where K  is the normalization factor or the degree of con-
flict. Final decision can be made through several ways 
such as choosing a hypothesis with the maximum value 
of mass, belief or plausibility. In this paper, we decide 
to go for the maximum value of mass function. For the 
sake of simplicity, maximum Bel is chosen to determine 
selected hypothesis [29–31].

To clarify more, it should be noted that in the training 
phase relabeling should be done in order to put the prob-
lem into DST framework. Relabeling is carried out based 
on what is suggested in [53]. The Euclidian distance 
between each class prototype and each training sample is 
calculated. Then a membership function is defined based 
on the distance which determines the level of ambiguity 
in the data. Membership values for each training sample 
is thresholded. A training sample might be assigned to a 
specific class or a set of classes based on the membership 
values and the considered threshold. Figure 6 shows the 
classification procedure in this study.

In testing phase, samples are classified through trained 
MLPs and the output is normalized using the softmax 
operator to follow belief function properties. For more 
information about combining MLPs using DST refer to 
[55].

In the present paper, two different feature subsets 
are extracted. Relabeling is carried out for each subset 
and then two MLPs are trained. In testing phase, MLP 

(5)mi

({

sj
})

=
exp(Rji)
∑C

j=1 Rji

j = 1, . . . ,C

(6)m(S) =

∑

S1 ∩...∩ Sn=S

∏n
i=1mi(Si)

1− K

(7)K =
∑

S1 ∩...∩ Sn=φ

n
∏

i=1

mi(Si)
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outputs are normalized using softmax operator to have 
belief functions. Based on DST, belief functions are com-
bined and final decision for each test sample is made.

Evaluation
Classification accuracy, that is the ratio of correctly clas-
sified instances to the total number of test samples, as 
well as confusion and confidence matrices were taken 
into account to appraise the proposed method. Confu-
sion matrix is a table layout that allows visualization of 
the classification performance. Each row of the matrix 
demonstrates the test samples in a predicted class while 
each column denotes the test instances in an actual class, 
or the other way around.

Confidence matrix
There are several evaluation methods to ensure accept-
able and reliable classification results. One of the most 
widely-used methods is K-fold cross validation where the 
data set is divided into 10 subsets, with one subset being 
retained as the test set and the remaining k-1 being used 
as training data. In most of the literature, K is chosen as 
10 according to the size of the data set.

Results
We present a new method to determine neural activity 
related to each emotion class which results in EEG emo-
tion-related channel selection. For each BSS method, 32 

EEG sources and consequently neural activity maps are 
reconstructed and then averaged over all samples in each 
emotional state. Common channels over four emotion 
classes are considered for the next step. All mentioned 
features in Table 1 are extracted from the selected EEG 
channels for all samples. The same features are extracted 
for each emotion class. These feature have been claimed 
to be effective in emotion recognition based on the pre-
vious studies. The proposed method of feature selection 
determines features representing and describing arousal 
and valence values the best. The main idea of this method 
is to formulate the problem of local feature subset selec-
tion as a sequential decision making problem in which 
we look for a series of good splitting actions. We suggest 
a sequential decision making process to create feature 
trees. In other words, the suggested method partitions 
the sample space into localities and select features for 
them. The partitions and the corresponding local fea-
tures are represented using a novel notion of feature 
tree. As mentioned before, arousal and valence are two 
major quantities which describe emotions and emotional 
states. Taking this in mind, we divide the sample space 
into two main parts and finally we achieve two localities 
(i.e. arousal and valence) and consequently two subsets 
of features. Ten most significant features in each subset 
are selected and finally these features (for train and test 
samples) are fed into MLPs and DST in order to classify 
emotions.

Fig. 6  Flowchart of the proposed FBS-based emotion recognition system
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Table  2 demonstrates classification methods with 
respect to different classifiers and algorithms. All imple-
mentations are performed using MATLAB (release 
R2016a) running on Windows 7 Laptop PC with Intel(R) 
Core (TM) 2 Duo 2.0  GHz processor with 4  GB RAM. 
As it can be seen, four well-known BSS methods, four 
most common classifiers and the proposed method are 
employed and the results are presented in Table  2. For 
each BSS method and classifier, accuracy and process-
ing time are reported. Besides, statistical analysis using 
one way ANOVA test is carried out and p-values are rep-
resented. Significant differences are in the bold face for 
each BSS method as well as each classification model. 
Taking a closer look, we can easily conclude that the 
proposed Classification method and SOBI are the best 
combination. Moreover, the proposed features are almost 

successful in all classification schemes. This suggests that 
nonlinear features can describe emotions appropriately.

The results suggest that the modified Dempster Shafer 
method can significantly separate different classes of 
emotions when second order blind identification (SOBI) 
algorithm is applied. On the other hand, ranking the 
channels led to presenting the corresponding channels 
for each emotion. Having implemented the selecting 
threshold, the more considerably active channels asso-
ciated with each emotion were eventually selected, and 
presented in Table 3.

Afterwards, the intersection between the selected 
channels was computed. According to the results, the 
number of selected channels is much lower in other 
methods indicating that activated regions are approxi-
mately constant in each emotion (regardless of the source 
separations methods).

As Table  3 signifies, temporal areas are prominently 
more active when experiencing happiness, whereas cen-
tral and frontal areas play a more significant role in Class 
4 emotion, i.e. sadness.

According to Table  2, the modified Dempster Shafer 
method produces better performance results in compari-
son with other blind source separation algorithms. There-
fore, confusion and confidence matrices are computed to 
evaluate the errors of the presented method. As shown in 
Table 4, the desired label value for each class and decided 
class are defined and at the end, CCR value is reported 
as 0.9054, which is more appropriate. It should be noted 
that Q1 to Q4 refer to four different emotion classes 
according to the arousal–valance plane containing 458, 
296, 260 and 266 samples (total = 1280), respectively.

As mentioned earlier, identifying the correlations 
between different emotions and brain regions has 

(8)CCR =

∑4
i=1Qii

∑4
j=1

∑4
i=1Qji

Table 2  A comparison among  source separation 
algorithms with respect to different classifiers

Runica SOBI COMBI JADE p-value

Index channels 14 16 17 15 –

MLP

 Accuracy (%) 77.16 79.57 76.33 80.28 0.0646

 Time (min) 118.46 120.78 116.89 113.45

KNN

 Accuracy (%) 79.11 81.46 77.16 73.28 0.0894

 Time (min) 112.56 110.32 118.96 103.52

Bayes

 Accuracy (%) 82.57 84.65 78.24 79.67 0.0743

 Time (min) 121.32 122.85 119.65 118.45

SVM

 Accuracy (%) 84.65 86.78 85.96 83.13 0.0531

 Time (min) 115.43 112.47 108.75 111.65

Modified DST

 Accuracy (%) 88.49 90.54 86.72 89.32 0.0417

 Time (min) 122.25 120.82 123.67 126.95

p-value 0.0631 0.0301 0.0472 0.0787

Table 3  A comparison among  the  values of  the  selected electrodes in  each quarter with  respect to  source separation 
algorithms

Q1 Q2 Q3 Q4 Intersection

Runica Fp1, Fp2, Fz, F4, F3, F8, Cz, C4, C3, 
Pz, P3, T4

Pz, P4, P3, F4 O1, T4, F3 T3, T4, C3, T6, P3, T5, P4, F4, O1 P3, T4, F4, Pz, P4, O1, O2, T6, 
T5, F3

F3, F4, O1, T4

SOBI Fp1, Fz, F4, F3, F8, Cz, P4, Cz, Pz, 
P3, O2

Pz, P4, P3, O2, Cz, F3 F3, T4, C3, T6, P3, T5, Cz, O2 P3, Cz Pz, P4, O1, O2, T6, T5, F3 Cz, O2, F3

COMBI Fp1, Fp2, Fz, F4, O1, F8, Cz, C4, 
C3, Pz, P3, T4

Pz, P4, P3, O1, T4, F3, FP1 T3, T4, C3, T6, P3, T5, P4, O1, Fp1 P3, Fp1, Pz, P4, O1, O2, T4, T5, F3 O1, Fp1, T4

JADE F3, Fp2, Fz, F4, F3, F8, Cz, C4, C3, 
Pz, P3, O1, T4

Pz, P4, P3, O1, T4, F3 T3, T4, C3, T6, P3, T5, F4, F3, O1, P3, F4, Pz, P4, O1, O2, T4, T5, F3 F3, O1, T4
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remained a major challenge in the field of emotion rec-
ognition. According to the proposed structure, which 
includes averaging the corresponding values of active 
regions through various trials, this study introduces aver-
age activation within brain regions for each class of emo-
tion. Figure 7 reports average activation in brain regions 
for 320 trials in various emotions. The most striking 
results to emerge from the data analysis is that the frontal 
region is particularly activated when experiencing emo-
tions in Q1 quarter, also, temporal and occipital regions 
activation evidently correlate with experiencing emotions 
in Q2 and Q4 quarters, respectively.

Discussion
As mentioned, detection of brain regions that associate 
with an emotion is a matter of leading importance in the 
field of BCI and cognitive sciences. The current study has 
been able to successfully identify these regions through 
applying novel methods of feature extraction, selection 

of emotion-related features, and implementation of 
Dempster Shafer method as well as upgrading the classic 
methods. Moreover, this research has made use of blocks 
containing novel approaches in emotion detection, each 
of which has the capacity to have improved the results on 
its own. As one of the novelties, this work uses each of 
these fully-automated blocks to serve the purpose.

Dempster-Shafer theory is quite well-known in pattern 
recognition while the classification problem contains 
uncertainty. In emotion recognition, previous stud-
ies such as [54] have employed DST in order to identify 
emotions through facial expression. It shows that emo-
tion classification is quite subject-oriented and includes 
imperfect data with uncertain labels. Based on the results 
of the current study and [54], DST seems to be an effec-
tive method of classification in both facial and EEG-
based emotion recognition. Since in several samples, 
individuals did not reflect a specific emotion, DST should 
be used to decrease the uncertainty.

Some studies such as [56] have tried to classify emo-
tions into four quadrants like what has been done in this 
work. Emotions are mostly described by arousal and 
valence which result in arousal-valence plane with four 
quadrants. In [56] three EEG channels (Fz, Cz and Pz) are 
claimed to be the most important information sources in 
emotion recognition. This proves the findings in Table 3 
and Fig.  7. Although they have tried to develop a real-
time system by means of processing event related poten-
tial (ERP), the classification performance is still low.

DEAP dataset has been known as a reliable and rich 
dataset in emotion recognition. Also, it is noted in 
numerous studies like [57–60] that visual emotion elicita-
tion has more influential effects. Those mentioned stud-
ies, like us, have used DEAP EEG signals. These signals 
can be considered information sources whereby we can 
classify emotions. Among these sources EEG has very 

Table 4  Confusion and  confidence matrices 
of the proposed method

The upper value in each cell represents the number of samples correctly 
classified through the proposed method

Target

Q1 Q2 Q3 Q4

Decision

 Q1 407 8 9 10

88.86% 2.70% 3.46% 3.75%

 Q2 23 268 8 3

5.02% 90.54% 3.07% 1.12%

 Q3 17 13 236 5

3.71% 4.39% 90.76% 1.87%

 Q4 11 7 7 248

2.40% 2.36% 2.69% 93.23%

Fig. 7  Average activation in brain regions in emotions: a Q1, b Q2, Q4, c Q3
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high spatial and temporal resolution. In addition EEG 
signals are easily available and price effective.

Most emotion assessment methods consist of three 
main steps including the biological signal which is 
processed, extracted features and the classification 
model. Extracted feature may come from traditional 
approaches or modern ones which are more related to 
nonlinear analysis. For example [59–62] employed dis-
crete wavelet transform (DWT) to extract EEG bands 
and classify emotions while it should be mentioned 
that DWT cannot exactly and efficiently extract and 
separate EEG bands since it totally depends on the 
wavelet kernel [56–59] report that EEG spectral analy-
sis can solve the problem and results in a higher rec-
ognition performance while those approaches seem to 
be still limited and unsuccessful in comparison with 
the recent methods which apply nonlinear analysis. 
We can see that both traditional and modern process-
ing approaches have been employed to classify emo-
tions. But common traditional methods which focus 
on time domain statics, frequency or frequency-scale 
domain are mostly useful for analyzing linear signals 
with specific mathematical characteristics such as lin-
ear, stationary and Gaussian distributed [63]. However, 
it is obvious that biological systems such as brain are 
inherently complex, non-Gaussian, nonlinear, and non- 
stationary [64]. That is the reason why nonlinear analy-
sis has gained a lot of attention as a novel methodology 
over the past years. Nonlinear analysis makes it possible 
to extract more meaningful information and features 

from the recordings of brain activity [65]. In this study, 
we focus on EEG nonlinear analysis by extracting fea-
tures mostly related to signal phase space. Results show 
that the proposed features are effective.

This research also contributes to the existing literature 
through organizing the recently proposed approaches.

Identifying active regions for each emotion not only 
extends our knowledge and ability in the field of BCI, but 
also comes in particularly useful in diagnosis and treat-
ment applications for mental diseases such as depres-
sion, autism etc. Studies in the literature review suggest 
[19–24] that several emotions at Q1 originate from tem-
poral region, which is near auditory region, this can aid 
in mental illness treatments. Also, correlations between 
the active brain regions and emotions in Q3 quarter 
reveals that, from a psychological perspective, it would 
be enough to expose the aforementioned regions to elec-
tromagnetic waveforms to change the brain mode.

The current study also provides considerable insight 
into the distribution of activated brain regions associated 
with different emotional states.

Figure 8 provides a comparison of the share of activa-
tion of each brain region while experiencing different 
classes of emotion. As illustrated, emotions do not origi-
nate from a single, specific region but rather from inter-
connected regions. However, this should not be taken to 
mean that each region will be equally activated. With that 
in mind, a strong point of the current study lies in iden-
tifying the dominant regions with respect to each class of 
emotions.

Fig. 8  Share of activation of each brain region for each class of emotion
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Table  5 enables comparison among available methods 
in the literature and the proposed approach.

Like every single study, our work has some limitations. 
The proposed method has different steps and it can be 
problematic while dealing with datasets such as DEAP 
containing large number of instances and features. The 
long processing time could be one of the disadvantages. 
One proposal to resolve this problem is to select effective 
EEG channels (like what is carried out in this study) in 
order to consider just the dominant channels and brain 
regions related to emotions. Active brain regions and 
EEG channels related to emotions can be determined 
through other methods such as connectivity analysis 
which is more complex and time consuming. Although 
BSS methods have some shortcomings such as initial cri-
teria and assumptions, they are quite simple and fast to 
implement. In addition, other evaluation functions can 
be employed for the wrapper step and therefore, we will 
have faster convergence of the feature selection algo-
rithm. Using a Monte Carlo scheme for searching, the 
suggested method is likely to be stable with respect to the 
changes in the feature subset. But it is noteworthy that 
the proposed method can be unstable for other datasets 
and evaluation functions.

Conclusion
The present study has sought to address the long-stand-
ing challenge of finding neural correlates between human 
emotions and the activated brain regions. It has been 
stressed that all the regions interconnect and none of 
them is the sole responsible for any specific emotional 

state. However, some contribute more than others to cer-
tain classes of emotion.

The findings presented in this paper can significantly 
add to the growing body of literature on emotion rec-
ognition. Nevertheless, accurate determination of active 
regions would not conclude here and is still in need of 
further investigation. One of the methods which seems 
to be more appropriate among recent studies is the use 
of two or more modalities. Since each modality shows 
a different approach from its own aspect, it is expected 
that combining modalities would produce better results. 
Future research can explore fusion of EEG and MEG 
recordings or EEG-fMRI. Since different emotions have 
different effects on metabolic behavior of blood in cap-
illaries and electrical activity of neurons, it is recom-
mended to assess adding another modality as well as 
fusion of various modalities.
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Table 5  A comparison of the provided methods in other papers and the proposed method for Emotion Recognition

Authors Year Method Classification accuracy (%)

Fan and Chou [66] 2018 Recurrence quantification analysis, logistic regression 75.7%

Zhong et al. [33] 2017 Spectral and time features, multiple-fusion-layer based 
ensemble classifier of stacked autoencoder (MESAE)

77.19% (arousal accuracy), 76.17% (valence accuracy)

Atkinson and Campos [22] 2016 Statistical and spectral features, Hjorth parameters, 
fractal dimension, minimum-Redundancy-Maximum-
Relevance, support vector machine

62.39% (valence), 60.72% (arousal)

Xu and Plataniotis [32] 2016 Power spectral density, stacked denoising autoencoders, 
deep belief network

85.86% (arousal accuracy of SDAE), 84.77% (valence 
accuracy of SDAE), 88.33% (arousal accuracy of DBN), 
88.59% (valence accuracy of DBN)

Jie et al. [67] 2014 Sample entropy, support vector machine 79.11%

Yin et al. [33] 2017 Spectral and time features, multiple-fusion-layer based 
ensemble classifier of stacked autoencoder

77.19% (arousal accuracy)
76.17% (valence accuracy)

Tripathi et al. [21] 2017 Convolutional neural networks, deep neural network 58.44% (valence, DNN), 55.70% (arousal, DNN), 66.79% 
(valence, CNN), 57.58% (arousal, CNN)

Alam et al. [29] 2016 Convolutional neural networks 81.17%

Kumar et al. [25] 2016 Bispectrum, least square support vector machine, radial 
basis function, linear neural network

64.86% (arousal), 61.17% (valence)

Our work 2018 The proposed method 90.54%
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