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Studying alcohol use disorder using 
Drosophila melanogaster in the era of ‘Big Data’
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Abstract 

Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains 
incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila mela-
nogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behav-
ior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of 
alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomo-
tor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an 
extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our 
understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks iden-
tified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. 
These networks hold great potential as translational drug targets, making it prudent to conduct further research into 
how these gene mechanisms are involved in alcohol behavior.
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Background
As of 2015, Alcohol Use Disorder (AUD) directly affected 
over 15 million people in the United States. Its social, 
financial, and medical repercussions affect countless 
others [1]. The Center for Disease Control estimates 
that alcohol use is a contributing factor in over 80,000 
deaths annually [2]. The National Epidemiologic Survey 
on Alcohol and Related Conditions (NESARC) recently 
found that AUD diagnoses reach as high as 36.7% in indi-
viduals 30–44 years old [3]. While the impact of AUD is 
clearly wide-ranging, the disorder remains poorly under-
stood. Developing an understanding of the underlying 
biological mechanisms driving AUD is important for the 
development of novel treatments.

AUD is a complex phenotype characterized in the 
Diagnostic and Statistical Manual of Mental Disorders, 
5th Edition (DSM-5) by multiple diagnostic criteria 
including alcohol consumption, craving, dependence, 

tolerance, withdrawal, and/or continued consumption 
despite negative consequences [4]. Both environmental 
and genetic factors play a role in each criterion and in the 
development of AUD [1]. Twin studies have shown her-
itability runs from 40 to 60% [5–8]. Differences exist in 
the cellular structure and gene expression in the brains of 
AUD patients [9–12] when compared to non-AUD con-
trol subjects. Whether these differences are purely the 
result of alcohol consumption, or due to preexisting dif-
ferences in underlying structure, is unknown.

Strides have been made to understand the role that 
genetics play in AUD. In recent decades research has 
moved away from one-gene models towards models that 
encompass multiple contributing gene effects [1, 5, 13, 
14]. This new understanding was facilitated by genome-
wide association studies (GWAS) coupled with the fine 
genome mapping tools now available, and by transcrip-
tional studies [14, 15]. However, human population 
studies are hampered by the long time course of AUD’s 
development and a patient’s unknown environmental 
factors. Because of this animal models of AUD are criti-
cal to furthering our understanding of the disorder. Mod-
eling of AUD phenotypes across model organisms with 
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well-characterized genomes has identified gene-networks 
that have provided novel insights [16–20].

In this review we will focus on lessons learned from 
genomic studies of alcohol behavior in Drosophila mel-
anogaster (henceforth, the fly) and their implications 
for AUD. Flies share approximately 75% homology with 
the human genome in disease-causing genes [21–23] 
and representation of all major gene families found in 
humans, making them a cost-effective model for study-
ing the role of genes and gene products in human disor-
ders [24]. Flies also possess a smaller and less complex 
genome, as well as a smaller, more characterized nervous 
system that coordinates a broad repertoire of behaviors 
[25]. Because of this it is relatively easy to validate the 
behavioral roles of candidate genes, putting the fly model 
at the forefront of genomic studies of AUD. Addition-
ally, the fly offers the potential to develop a mechanistic 
understanding of the genes involved in AUD phenotypes. 
To highlight the advantages of the fly for studies of AUD 
we will describe the techniques used to study alcohol 
genetics in flies and the specific gene networks involved 
in alcohol behavior that have already been identified 
there.

Part 1: Techniques for studying alcohol genetics 
in flies
Alcohol behaviors in the fly
Like humans, flies have a robust evolutionary relation-
ship with alcohol. They hold a naturally evolved prefer-
ence for laying eggs on fermenting fruit, and show many 
of the defining characteristics of AUD [24, 26, 27]. Com-
pared to humans flies show increased resistance to many 
of the effects of different primary alcohols, including eth-
anol, the least toxic alcohol in mammals and the fly [28]. 
However, both humans and flies show natural variations 
in sensitivity to different effects of alcohol, including its 
stimulating effect at low doses, and its sedative effect at 
high doses [29, 30]. Similar to mammals, flies develop 
both metabolic and functional tolerances to ethanol, and 
show evidence of reinstatement after withdrawal [27, 30, 
31]. Additionally, flies show robust preference learning 
when alcohol is paired with either olfactory, gustatory, 
and/or visual cues [32].

While the fly is well-suited for AUD studies, it is worth 
noting that to date flies only display a subset of pheno-
types associated with the disorder. The most widely 
studied are alcohol sensitivity, alcohol tolerance, and 
preference learning.

Alcohol sensitivity assays
Alcohol in low quantities produces stimulatory effects 
in both humans and flies [33–36]. At larger quanti-
ties it produces nervous system depression [28, 33, 

37]. Sensitivity to these effects in humans is one of the 
strongest predictors of AUD; Schuckit et  al. tracked 
men for 25  years and determined that baseline alco-
hol sensitivity was the greatest predictor of AUD [38]. 
Their findings suggested that those who were resist-
ant to alcohol effects would require greater quantities 
of alcohol in order to experience the positive feelings 
associated with alcohol and thus were risking greater 
alcohol induced changes [39].

In the fly there are a number of ways to assess alco-
hol sensitivity phenotypes (Table 1). One of the earliest 
assays, the “inebriometer” [24, 40], assessed the disin-
hibitory effects of alcohol on large fly populations. Flies 
exposed to increasing concentrations of alcohol in a 
large vertical tube would gradually fall due to the loss 
of postural control and sedation (for a more detailed 
description see [24]) [41]. Flies will also become 
sedated following exposure to long-periods of low 
concentration alcohol vapor. The inebriometer assay 
has been refined to quantify subtle behavioral changes 
due to alcohol exposure, and to increase the efficiency 
of screening large numbers of genotypes at once. This 
upgraded assay is known as the “booz-o-mat” [35]. In 
it, flies are placed in horizontal tubes through which 
humidified alcohol vapor is passed. By placing the 
apparatus horizontally any pre-existing motor deficits 
in the flies are minimized as they no longer need to 
climb vertically or hold onto supports. This assay also 
provides tighter control over alcohol concentrations 

Table 1  Definitions of  important terms found in  fly AUD 
research

Term: Definition

ChIP-seq Chromatin immunoprecipitation sequencing

GWAS Genome wide association studies (also known as WGA—
whole genome association)

MB Mushroom body; an important neural center in flies; 
involved in olfaction and olfactory memory formation

NGS Next generation sequencing (massive parallel sequenc-
ing)

RNA-seq RNA sequencing (whole genome RNA sequencing)

SNP Single nucleotide polymorphism

Wildtype Aa model strain of organism fly with no induced muta-
tions

RNAi Short hairpin RNA used to target RNA for degradation. 
Used to knockdown expression of genes

Behavioral assays: terms

 booz-o-mat Aa horizontal assay for intoxicating flies

 Inebriom-
eter

Aa vertical assay for intoxicating flies

 CAFE Ccapillary feeding assay

 PER Pproboscis extension reflex; used to study alcohol’s 
appetitive properties
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and finer analyses of fly behavior during and after alco-
hol exposure [35]. For example, in the booz-o-mat the 
stimulant effect of low doses of alcohol becomes appar-
ent as an increase in locomotor behavior, as does the 
eventual decrease in activity (until full sedation) seen 
with higher levels of alcohol [35]. The sedative inebria-
tion of flies in this assay reflects high levels of inebria-
tion in the same way that the loss of righting reflex 
(LORR) does in mice [39]. Another measure of alcohol 
sensitivity is time to recovery following sedation. Flies 
are exposed to ethanol vapor of a given concentration 
(e.g. 35% ethanol of a cotton plug) until all flies are 
sedated, and then the time to recovery is recorded [19, 
42].

Alcohol sensitivity is indicated by a population mean 
elution time (MET) in the inebriometer, or time to 50% 
sedated or recovered in sedation assays [19, 41–43]. The 
low cost and high-throughput nature of these assays 
make them very powerful for screening large numbers of 
flies in a relatively short period. Results from these assays 
demonstrate that flies may be evolutionarily adapted 
to prefer alcohol-rich environments and demonstrate 
robust behavioral responses to alcohol, and that these 
responses can change due to genetic and environmental 
manipulations [16, 44–46].

Alcohol tolerance assays
Tolerance, the consumption of larger quantities of alco-
hol to achieve the same response or exhibiting a lower 
response  to the same quantity of alcohol, is a defining 
characteristic of AUD. In many human studies alco-
hol consumption rates are used as the defining AUD 
phenotype for gene identification [9]. Flies can also 
develop the three types of tolerance to alcohol [24, 26, 
28]: acute tolerance (a model for binge drinking), rapid 
tolerance (tolerance following metabolism of a sin-
gle dose of alcohol), and chronic tolerance (developed 
from repeated alcohol exposure) [47]. The fly has been 
used to study these modes of tolerance in many ways. 
Findings include that larvae grown on media contain-
ing alcohol prefer higher alcohol concentrations as 
adults [48], adult flies who have consumed alcohol will 
consume alcohol in greater quantities during a second 
exposure [27, 47], and adult flies exposed to alcohol 
vapor are more resistant to alcohol’s behavioral effects 
upon second exposure [35, 47, 49].

The same behavioral assays described above for study-
ing sensitivity are also used when looking at tolerance. In 
the inebriometer, higher METs are seen on the second 
exposure to the same concentration of alcohol vapor and 
recovery time from sedation decreases [43, 45, 50]. Stud-
ies performed using the booze-o-mat have also shown 

the development of rapid tolerance, particularly to stimu-
latory effects of alcohol upon second exposure [35, 51].

Consumption assays are also well-suited for study-
ing alcohol tolerance. Long-term exposure is modeled 
through raising flies on alcohol-infused food [48, 52]. 
This type of assay not only models chronic tolerance but 
also is used to model fetal alcohol syndrome [53]. Other 
consumption-based assays involve short term access 
to alcohol-infused food [27, 54]. The capillary feeder 
(CAFE) assay can be used to quantify the amount of a liq-
uid consumed by a population of flies in a given period. 
In this assay the amount of fluid consumed from filled 
capillaries is measured and compared to an evaporation 
control [54]. Alcohol exposure results in flies increas-
ing their consumption of alcohol in this assay [44]. One 
notable precondition to this assay’s use is that in order 
for flies to drink to the relevant blood alcohol levels, they 
must first be starved prior to being placed in the CAFE 
assay [27, 44]. This induces a stress which is important to 
note in any discussion of gene networks involved in alco-
hol consumption in the fly [55]. Variations of the CAFE 
assay can create a choice between two capillaries contain-
ing different stimuli. This has been used to study alcohol 
tolerance as well as preference in the fly [44]. Flies will 
prefer to drink alcohol over water, and prefer to consume 
more alcohol following prior exposure to alcohol [27]. 
Flies show adaptation to both the negative and positive 
aspects of alcohol consumption, facilitating increased 
alcohol intake.

Alcohol association preference assays
While the assays described above measure specific alco-
hol-induced motor or gustatory behavior, many others 
have been developed based on well-characterized learn-
ing and memory assays to assess the encoding of alco-
hol’s negative and positive valences [32]. The proboscis 
extension reflex (PER) assay models short term memory 
of gustatory cues [56]. As flies extend their proboscii in 
response to different nutrients, the rate of extension indi-
cates learned associations with appetitive or aversive sub-
stances [57]. Like the CAFE assay described above, flies 
must also be starved prior to performing the PER assay, 
complicating its interpretation.

The most commonly used alcohol preference assay is 
based on the classic olfactory T-maze used in fly learn-
ing and memory studies. Flies are exposed to inebriating 
concentrations of alcohol while also exposed to a neutral 
odor [32]. Because the fly increases its proximity to appe-
titive odors, its movement towards or away from alcohol-
paired odors indicates whether the fly perceives alcohol 
intoxication as appetitive or aversive, respectively [24]. 
Initially, alcohol induces an aversion to an odor paired 
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with it, but later this reverses so the paired stimulus is 
preferred [32].

Recent work has detailed conditioned associations of 
alcohol at different concentrations and exposure times 
[58]. It has shown that low levels of alcohol do not form 
appetitive long-term cued memories, whereas mod-
erate levels of alcohol form appetitive memories and 
these memories are enhanced by multiple cue pairings 
[58]. At high levels of alcohol exposure flies fail to form 
long-term appetitive memories and in some cases form 
long-term aversive memories, though there is evidence 
of short term attraction [58]. From this work it is clear 
that at different time points, and at different concentra-
tions of alcohol, behavioral responses will vary. This work 
also points out that the most relevant alcohol concentra-
tions, if one wants to model alcohol’s rewarding and cue-
induced addictive qualities in the fly, are moderate doses 
around 8  mM spaced over multiple days, or between 6 
and 8  mM trained on a single day with multiple expo-
sures [58].

Variations on alcohol conditioned learning assays
It is worth discussing two studies that used notably dif-
ferent methods to assay alcohol conditioned preference. 
Both assays include an element of stress, which is often 
neglected in conceptualizing alcohol behavior in the 
fly. Flies are known to experience stress, which changes 
their behavior in ways similar to mammals [59]. Stress is 
a major contributor to AUD, and particularly to relapse 
behavior [60]. These studies may provide novel insights 
into how ancient stress pathways interact with alcohol 
behavior, particularly with tolerance and reward.

Flies have evolved a mechanism to increase alcohol 
consumption to protect their larvae from parasitic wasps 
[61, 62]. Exposure to these wasps drives females to lay 
eggs on food sources with higher alcohol concentrations. 
Naïve flies prefer food with 3% alcohol for laying, whereas 
6–12% is preferred in flies exposed to wasps [56, 62]. This 
level of alcohol is considered toxic due to the reduced 
viability of exposed offspring, but is effective in reduc-
ing wasp infection in the fly larvae [61, 63]. This demon-
strates a strong drive to attain alcohol in wasp-exposed 
flies, even at toxic levels. This behavior is observed even 
after the wasps no longer pose a threat [62, 63]. How-
ever, the cues that drive the female to seek higher alco-
hol concentrations and the underlying transcriptional 
changes that facilitate retention of this behavior remains 
poorly understood. The stress of wasp exposure may be 
analogous to the stress of starvation necessary for flies 
to consume higher alcohol in the CAFE assay. Known 
regulators of fly anxiety-like behavior, including GABA, 
dopamine, serotonin, and octopamine (norepinephrine 

homologue) signaling are important in alcohol behavior 
[59, 64–69].

Another study linking alcohol intake to stress demon-
strated that male flies who fail to copulate with a female 
increase their alcohol intake [70]. The authors argued 
that the reward of copulation could supplant the reward-
ing nature of alcohol. Another interpretation of this 
study is that failed copulation increases stress, leading to 
increased alcohol consumption. Work by Winbush et al. 
looking at transcriptional changes following 30  min of 
courtship (no copulation) supports the notion that court-
ship rejection is stressful [71]. In addition, Devineni and 
Heberlein demonstrated that flies will overcome aversive 
signals to seek alcohol, and these aversive signals also 
induce behavioral stress phenotypes such as increased 
wall following [27, 59]. Not only is there an increase 
in the behavioral stress response, but transcriptional 
changes following aversive stimuli indicate an increase 
in cellular stress response genes [72]. Other stressors 
are known to effect alcohol responses across species. 
One such stressor is sleep deprivation [73, 74]. Changes 
in sleep patterns often occur following environmental 
stressors, and these changes may also influence alcohol 
behavior. Recent work demonstrated overlapping path-
ways between alcohol sensitivity and sleep deprivation 
sensitivity through the adenosine A1 receptor [74].

Genomics and transcriptomics
Beyond serving as an ideal model for alcohol behavior, 
the genetics of the fly is highly tractable. Over 600 differ-
ent fly genomes are available for analysis (see section for 
wildtype populations of flies in Table 2) and over 4.8 mil-
lion single nucleotide polymorphisms (SNPs) have been 
identified in the fly genome (dbSNP build 149) [75–78]. 
Together, the level of fine mapping and the availability 
of fully sequenced large populations of flies have made 
the fly an ideal model to study behaviors with complex 
genetic underpinnings.

The fly can easily be used to validate gene mecha-
nisms in human disorders. A prime example of this is 
in the validation of a SNP in the intronic region of the 
human AUTS2 gene. This SNP was found in a GWAS 
study looking at alcohol consumption [79]. The AUTS2 
gene was also identified when comparing a mouse line 
bred for high alcohol preference (HAP1) with low alcohol 
preferring mice (LAP1) [79, 80]. Mechanistic validation 
was demonstrated in the fly through reduced expression 
of the fly homolog tay, resulting in a blunted sensitivity 
to alcohol [79]. Tay, a negative regulator of the Epider-
mal Growth Factor Receptor (EGFR) pathway, has been 
implicated in a number of studies of alcohol behavior 
in the fly [16, 44, 45, 49, 81, 82] as well as mammalian 
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studies (reviewed in [83]). Further mechanistic valida-
tion studies of mammalian genes implicated in AUD in 
the fly will be enhanced by large scale efforts underway, 
including the determination of the fly brain connec-
tome [84], identification of each neuron molecularly and 

cellularly [85], creation of mutations in every gene in the 
fly genome [86], and identification of the transcriptional 
landscape across time, anatomical structures, and experi-
mental conditions [72, 87–90].

Table 2  Tools and resources available to study AUD in the fly

Fly resources Refs

Drosophila network resources https​://wiki.flyba​se.org/wiki/FlyBa​se:Droso​phila​_Netwo​rk_Resou​rces

Flybase http://flyba​se.org/ [178]

Bloomington Stock center https​://bdsc.india​na.edu/index​.html

Alliance of genome resources https​://www.allia​ncege​nome.org/

Wildtype populations of flies

 Drosophila genetic reference panel (DGRP) http://dgrp2​.gnets​.ncsu.edu/ [77]

 Drosophila synthetic population resource (DSRP) http://wfitc​h.bio.uci.edu/~dspr/index​.html [75]

 Global diversity lines http://www.johnp​ool.net/genom​es.html [76]

Genetic tools for cell-type specific next-generation sequencing

 INTACT​ Nuclear purification [117]

 TRAP Translating Ribosomal Affinity Purification [114, 115]

 TU or EC tagging Labels RNA following feeding of 4-thiouracil or 5-ethynylcytosine [179, 180]

 CAST-ChIP [118]

 DamID Methylation-based chromatin profiling [181]

Relevant collections of fly strains for behavioral validation

 Vienna RNAi lines [182]

 Transgenic RNAi project [183]

 FlyLight https​://www.janel​ia.org/proje​ct-team/flyli​ght [184]

 Gene disruption project MiMIC and CRIMIC lines
http://flypu​sh.imgen​.bcm.tmc.edu/pscre​en/about​.html

[86]

Relevant drosophila transcriptional data sets

 Updated mapping of Drosophila sequence read archive GEO Series GSE117217

 Single-cell whole brain GEO Series GSE107451

 Kenyon cells GEO Series GSE115718

 Kenyon cells GEO Series GSE119629

 Kenyon cells and subset of MBONs GEO Series GSE74989

 Mating behavior GEO Series GSE104706

 Antennal lobe GEO Series GSE99545

 CREB RNA binding GEO Series GSE59611
GEO Series GSE73386

 Ethanol exposure RNA expression GEO Series GSE77792
GEO Series GSE89137
GEO Series GSE48449

Gene network analysis sites

 modENCODE http://www.moden​code.org/ [185]

 SCENIC http://sceni​c.aerts​lab.org [186]

 AmiGO 2 http://amigo​.geneo​ntolo​gy.org/amigo​/ [187, 188]

 DAVID bioinformatics database https​://david​.ncifc​rf.gov/ [189, 190]

 MEME-ChiP http://meme-suite​.org/index​.html [191]

 Weighted gene co-expression network https​://horva​th.genet​ics.ucla.edu/html/Coexp​ressi​onNet​work/ [119, 192]

 Reactome https​://react​ome.org/ [193]

 Cytoscape https​://cytos​cape.org/ [194]

 Geneweaver 2 https​://beta.genew​eaver​.org/ [195]

https://wiki.flybase.org/wiki/FlyBase:Drosophila_Network_Resources
http://flybase.org/
https://bdsc.indiana.edu/index.html
https://www.alliancegenome.org/
http://dgrp2.gnets.ncsu.edu/
http://wfitch.bio.uci.edu/%7edspr/index.html
http://www.johnpool.net/genomes.html
https://www.janelia.org/project-team/flylight
http://flypush.imgen.bcm.tmc.edu/pscreen/about.html
http://www.modencode.org/
http://scenic.aertslab.org
http://amigo.geneontology.org/amigo/
https://david.ncifcrf.gov/
http://meme-suite.org/index.html
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/
https://reactome.org/
https://cytoscape.org/
https://beta.geneweaver.org/
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The fly is also ideal for use in GWAS studies, where it 
allows for tight control over environmental factors. The 
Drosophila Genetics Reference Panel (DGRP) and, more 
recently, the Drosophila Synthetic Population Resource 
(DSPR) are comprised of inbred fly lines derived from 
wildtype flies over many generations [75, 77]. The DGRP 
consists of approximately 200 lines whose genomes have 
been sequenced [91]. Transcriptional information is 
now available for a subset of those lines [44, 77, 89, 91]. 
Further refinement of the DGRP is possible through an 
advanced intercross scheme that puts a diverse subset of 
DGRP lines through a mating routine which refines the 
areas associated with SNPs [44]. Both the DGRP lines 
and the advanced intercross lines have been instrumental 
in identifying gene networks associated with sleep, lifes-
pan, olfactory behavior, and alcohol sensitivity and toler-
ance [16, 92–96].

GWAS studies have limitations, including the inabil-
ity to predict transcriptional changes in response to 
alcohol exposure and chronic use [9, 15, 17, 80, 97]. 
Transcriptome analysis has shed light on this research 
area. Microarrays and whole transcriptome shotgun 
sequencing (RNA-seq) are the tools that have been 
most commonly used to perform transcriptome analysis 
(techniques reviewed by [98]). While microarray tech-
nology has come a long way over the last two decades, 
it is still restricted by the quantity of probes that can be 
put on a chip and by probe choice [98]. That said, RNA 
microarrays are still a particularly cost effective method 
to characterize responses to alcohol within specific brain 
regions, cell-types, and across species [10, 43, 49, 64, 
80, 98–101]. In both RNA-seq and microarrays, sample 
quality is critical; particularly in microarrays due to their 
dependence on probes for transcript identification [98].

RNA-seq methods are now preferred over microarrays 
for whole genome profiling, as their greatest strength is 
the ability to uncover a range of different transcriptome 
complexities without reliance on probes. This is particu-
larly useful when considering potential alternative splice 
forms and non-coding RNAs associated with AUD [102–
104]. Alternative splice forms have been shown to play a 
role in alcohol behavior in humans and flies [105–107]. It 
has been established that alternative splicing of the slow-
poke gene mediates fly alcohol tolerance [40, 108] and 
the full impact of alternative splicing events is only now 
being appreciated. Signor and Nuzhdin recently made 
available a comprehensive data set from a long-read 
RNA-seq study [107]. This work showed that changes 
in exon expression due to alcohol presentation build the 
longer animals are exposed [107]. Limited alternative 
splicing in response to alcohol (meaning similar expres-
sion of gene but alternative exon expression) was shown, 

but changes in the rank order of the presence of specific 
exons changed based on alcohol presentation [107].

Recent human transcriptome studies have shown the 
impact of long-term alcohol use on subtle transcriptional 
changes in multiple brain regions, including the nucleus 
accumbens, hippocampus, and prefrontal cortex [9, 97, 
99, 109]. These areas are important for reward, learning, 
and executive functioning and are strongly implicated in 
AUD [65]. Within the hippocampus RNA-seq work has 
identified potential neural adaption mechanisms impor-
tant in alcohol’s addictive properties [97, 109]. Recent 
work has also shown evidence of alternative gene splicing 
across different brain regions, emphasizing the need for 
more region-specific and cell-specific studies [110].

One powerful technique that allows investigation 
of region- and cell-specific transcriptional changes in 
the fly is the GAL4/UAS system [111–113]. This tech-
nique allows the yeast GAL4 transcription factor to be 
expressed under the control of a specific gene promoter 
or enhancer. The GAL4 transcription factor binds to an 
upstream activating sequence (UAS), which leads to the 
expression of a downstream gene [111]. Large collections 
of GAL4 and UAS fly lines exist (see Table 2). Using the 
GAL4/UAS system fly geneticists can express almost any 
protein in any cell type, allowing cells to be identified and 
sorted based on fluorescent protein expression or tagged 
proteins. These tags can be used to perform cell-type spe-
cific transcriptional analysis by a variety of techniques, 
including translating ribosome affinity purification 
(TRAP) [114, 115], isolation of nuclei tagged in specific 
cell types (INTACT), and chromatin affinity purification 
(CAST-ChIP) [116–118] (see Table 2 for additional tags).

These transcriptional analysis techniques can distin-
guish transcript changes due to stimuli versus those due 
to network regulation. Many genes work within networks 
where a change in expression in one gene may actually 
reflect a change in an entire network of genes that share 
common regulators. Network analysis can find hubs in 
gene networks which can point to common regulatory 
networks (see weighted gene coexpression network anal-
ysis (WGCNA)) [119]. It can also identify novel regula-
tory mechanisms including epigenetic modifications that 
cause coordinated gene expression changes. These epige-
netic modifications play a role in alcohol behavior across 
species [19, 120]. Modern sequencing techniques like 
ChIP-seq have greatly increased our ability to directly 
study the epigenetic changes that occur during alcohol 
behavior. This method utilizes antibodies for specific 
transcription factors or chromatin modifiers to tag DNA 
where transcription is potentially occurring [121].

Collectively, these genomic and transcriptomic tech-
niques have provided information on both the underlying 
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genomic landscape as well as changes to this landscape 
that drive alcohol behavior in the fly.

Part 2: Gene networks implicated in alcohol 
behavior in the fly
Genomic and transcriptomic studies of alcohol behavior 
in the fly have provided insight not only into the individ-
ual genes that play a role, but also into their functional 
networks. Over the last 20  years our understanding of 
how these networks fit into the behavioral mechanisms 
of alcohol sensitivity, tolerance, and conditioned prefer-
ence learning has greatly expanded. This is partly due to 
increased gene annotation, increased availability of data 
sets, and public databases that compare across studies 
and species (see Table  2 for a list of relevant datasets). 
These genomic survey studies have reinforced the find-
ings of earlier forward genetic screens that identified sin-
gle genes involved in alcohol behavior (see reviews [24, 
31, 52]) and are now shedding light on how these genes 
act in the networks identified more recently [82, 106, 
122].

Morozova et al. have demonstrated the involvement of 
networks regulating metabolic enzymatic activity, oxida-
tive stress, glial functioning, nervous system function-
ing, metabolism, chromatin modification, cytoskeleton 
dynamics, and immune response genes in alcohol behav-
ior [16, 43, 45, 53, 123]. In addition, they found that dis-
tinct genes affect alcohol sensitivity and alcohol tolerance 
[16]. Extensive review of the role metabolic enzymes and 
neuronal signaling genes play in alcohol behavior can 
be found elsewhere [31, 52, 124]. We will now highlight 
gene networks identified in the fly that have received less 
attention and will be crucial in understanding alcohol 
behavior across species [18, 100, 125–128].

Chromatin remodeling genes
Chromatin remodeling in the form of histone acetylation, 
deacetylation, methylation, and demethylation all play a 
role in transcription by modulating access to the DNA. 
Genes coding for chromatin remodeling enzymes are 
important in the discussion of gene networks, not only 
because they have been implicated through gene network 
analysis in alcohol behavior across species [19, 51, 97, 
109, 120, 129–131], but because they possess the capabil-
ity to coordinate gene networks. Histone acetylation via 
histone acetyltransferases (HATs) can provide access to 
DNA in a coordinated and long-lasting fashion, resulting 
in a network of transcripts becoming upregulated, while 
histone deacetylases (HDACs) mediate the opposite 
function.

Ghezzi et  al. exploited the coordinating functions of 
HATs and HDACs using ChIP-seq methods to probe 
for histone acetylation changes due to alcohol tolerance 

(both benzyl and ethyl alcohol) [19]. Targeting the his-
tone H4 acetylation sites, due to their associations with 
active transcription, they identified a series of coordi-
nated gene expression modules across different alcohol 
exposures and from other environmental stimuli such as 
heavy metals. Among these modules was a set of genes 
enriched for ion channels and synaptic proteins. Interest-
ingly, they found genes with alternative splicing known 
to play a role in alcohol behavior: Dscam and slo [107, 
108]. Ghezzi et al. validated slo’s role in alcohol tolerance, 
but Dscam manipulation did not influence the behavior. 
Importantly, their validation was done using an RNAi 
knockdown fly line for Dscam which may not have tar-
geted the correct transcript variant [19]. This under-
scores the importance of transcript variants in alcohol 
behaviors, and these results remain to be verified in 
follow-up analyses. This study also found that H4 acety-
lation at HDAC genes was occurring in response to tol-
erance. HDAC6 not only showed increased acetylation, it 
also showed increased transcript expression across differ-
ent environmental stressors, with the highest expression 
in response to heavy metals [19]. Thus, alcohol appears 
to increase expression of a coordinated network of genes 
to promote tolerance, and one of these genes coordinates 
the silencing of other genes.

Sir2, the fly homolog for mammalian Sirt1, is another 
HDAC gene that has proven important for alcohol sen-
sitivity, conditioned preference, and the development of 
tolerance [43, 49, 51]. In mammals, Sirt1 in the brain is 
directly involved in neurogenesis, dendritic morphology, 
plasticity, regulation of micro RNAs (miRNAs), energy 
metabolism, and circadian rhythms [132]. It is down-
regulated following alcohol exposure in the fly [43, 133]. 
Alcohol tolerance in the fly depends upon expression of 
Sir2 in the mushroom body (MB, a neuropil important 
for learning and memory in the fly [134]) [32, 51, 135]. 
Engel et  al. also demonstrated that the loss of Sir2 dis-
rupted upregulation of approximately 90% of genes that 
responded to alcohol exposure [51]. This implies a very 
different transcriptional landscape without Sir2. Part 
of the difference was in the expression of pre-synaptic 
proteins. In order for tolerance to develop synaptic reor-
ganization in the MB needed to occur. This was Sir2 
dependent. Taken together, since histone acetylation 
changes the long-term expression of genes, exposure to 
alcohol may effect tolerance by altering histone acetyla-
tion. Evidence for this model was supported by Adhi-
kari et al. who showed that Hr38 expression needs to be 
terminated by Sir2, which leads to a reduction in Hr38, 
which in turn results in an increase in tolerance [136]. 
Hr38 is also down-regulated 7 h following wasp exposure 
[63], pointing to ongoing silencing of this gene to pro-
mote tolerance and alcohol preference.
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Glial affiliated genes
Glial dysfunction and structural change as a consequence 
of alcohol consumption have been documented across 
species [100, 127] and glial involvement in alcohol behav-
ior in the fly is not new. Early forward genetics screens 
showed disruptions in the blood brain barrier (BBB) 
leading to alcohol resistance [137]. Moody, an orphan 
G-protein coupled receptor, compromises the BBB due 
to its role in maintaining tight septate junctions in glial 
cells. This causes decreased alcohol sensitivity [137]. 
While Moody has not appeared in genomic survey stud-
ies, its regulator, loco, has [44]. Both moody and loco are 
also important in cocaine sensitivity [137].

Cytoskeletal proteins have also been implicated in glial 
functioning in response to alcohol, particularly those 
involved in actin cytoskeleton organization, which are 
upregulated following alcohol exposure [49]. Recent 
work has found evidence for actin dysregulation resulting 
in major topology changes in the perineurial glia (the flies 
BBB) that persist over 24 h, which may be a mechanism 
that leads to tolerance [122].

In addition to these genes, whole brain analysis has 
identified a number of other glial related genes that are 
involved in in alcohol sensitivity and consumption. These 
include the genes drpr, pbl, and fas [44]. Of particular 
interest is Draper (drpr), which increases expression in 
response to glial cell injuries [138]. Draper codes for a cell 
surface receptor found on ensheathing glia in the adult 
brain, and is involved in the glial phagocytic response 
following injury or cellular damage [139]. Draper is also 
important for synapse reorganization (including in the 
mushroom body) [140], which is hypothesized to under-
lie tolerance and alcohol conditioned place preference 
[16, 106, 124, 141, 142]. This hypothesis has been sup-
ported by the findings in genomic survey studies that 
identify synaptic signaling and synaptic structural pro-
teins play a role in alcohol behavior [43, 44, 49, 143]. Syn-
aptic reorganization is necessary for the development of 
tolerance and conditioned place preference in the fly [31, 
51, 141, 142, 144]. Subtle underlying changes in Draper 
function may make synaptic reorganization, which facili-
tates behavioral extinction, harder following initial cue-
reward learning. This may be why Draper appears in 
GWAS studies but has not appeared in prior transcrip-
tional studies.

The role of glial signaling in alcohol behavior is under-
studied in the fly and may provide a mechanistic under-
standing of the role alcohol plays in glial functioning. 
Recent findings from the mammalian nucleus accumbens 
using single cell analysis in response to opioids aligns 
with the hypothesis that glia help shape rewarding mem-
ories [145].

Cellular stress genes
Cellular stress genes present in glia and/or neurons also 
play a role in alcohol behavior across species [18, 49, 50, 
60, 126, 128, 146]. Genes involved in oxidative stress, heat 
shock, and unfolded protein responses routinely appear in 
gene networks for alcohol behavior [128, 147]. Kong et al. 
found multiple heat shock proteins up-regulated following 
alcohol exposure. Hsp 22, Hsp70Ba, Hsp 70Bc, Hsp70Aa, 
Hsp23, Hsp26, Hsp68, Hsp27 all show differential expres-
sion following alcohol sedation [49]. The stress of a heat 
shock assay itself can induce tolerance through a hango-
ver gene-dependent pathway [50]. Both heat shock and 
cold shock show overlapping gene expression with alco-
hol exposure as well [19]. Previous work also implicated 
Hsp70Aa as an immediate response gene to alcohol pres-
entation [49]. However, these transcriptional studies were 
done on whole fly heads. The specific cells in which these 
genes networks mediate alcohol responses remain unclear.

Genes involved in oxidative stress have also been impli-
cated in alcohol behavior [146, 148]. Most notably the 
gene jwa, which is upregulated in mammals in response 
to oxidative stress and heat stress [148], is important for 
the development of tolerance [148]. Other relevant stress 
response genes implicated in alcohol phenotypes and 
showing differences in expression levels in response to 
alcohol are msn, Mpk2 and members of the cytochrome 
P450 family [19, 44, 49, 53]. These differences in gene 
expression of heat shock proteins and other cellular 
response genes (especially for environmental toxins) in 
response to alcohol exposure may reflect alcohol’s cellu-
lar toxicity at high doses. Hence, consistent with the glial 
work described above, increased cellular stress in both 
glia and neurons facilitate cellular changes that reduce fly 
sensitivity to alcohol. Indeed, in the case of msn, RNAi-
mediated knockdown of the gene throughout the animal 
resulted in decreased sensitivity to alcohol’s effects on 
viability [53], but restriction of the knockdown to neu-
ronal populations showed no effect on tolerance [19].

Innate immune response genes
Innate immune response genes are often found in the 
same gene networks as cellular stress genes. Multiple 
studies examining transcriptional changes following 
alcohol exposure in the fly have found changes in innate 
immune response genes [49, 143, 149, 150]. Kong et  al. 
found up-regulation of both the Toll and Imd pathways 
[49]. These pathways converge onto and regulate nuclear 
factor-κB (NF-κB), a critical factor in the innate immune 
response. A number of these genes are implicated in 
alcohol sensitivity in other studies as well, including cact, 
rel, dnr1, dro5, and Spn27A [43, 143, 149]. More recent 
work on the Toll signaling pathway in alcohol behavior 
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demonstrated that reducing the activity of this pathway 
through mutation or RNAi knockdown increased sen-
sitivity to the sedative effects of alcohol [149]. Increas-
ing Toll pathway activity through overexpression led to 
decreased sensitivity to alcohol sedation [149]. Activity of 
the Toll pathway is conserved across species in response 
to alcohol [147] (reviewed by [151]).

The gene Spn27A is also known to be involved in the 
innate immune response, where it is upregulated follow-
ing bacterial infection [152]. It is increased in the fly on 
the same order of magnitude in response to alcohol [49]. 
Reduced levels of Spn27A result in increased sensitivity 
to alcohol, but minimal differences in tolerance [49], sim-
ilar to the behavioral response seen with manipulations 
to the Toll pathway [149].

While these genes may not play a role in tolerance, 
evidence suggests that they may be triggers for the alco-
hol-based wasp defenses described previously. Innate 
immune response genes are one category of gene that 
show increased expression following the shift in alcohol 
preference in the presence of wasps [63]. Based upon the 
findings from the Toll pathway, activation of immune 
pathways in response to wasps is expected to increase 
resistance of the flies to alcohol, allowing them to sustain 
themselves on higher alcohol content food without the 
locomotor or sedating effects of the drug. Increased alco-
hol concentrations within the fly also prevent bacterial 
infection. So in the presence of infection, changes in gene 
expression allow flies to sustain themselves on higher 
alcohol food.

Brain structure‑ and circuit‑level analysis of gene networks
While the mechanistic relationship between these gene 
networks and changes in alcohol behavior is poorly 
understood, the fly presents a critical avenue for fur-
ther research. Many of the components of the networks 
outlined above were validated through mutant analysis 
or RNAi-mediated knockdown of targeted genes (for 
a listing of comprehensive collections of fly mutants, 
RNAi fly lines, and GAL4 fly lines in which to express 
RNAi lines, see Table  2). While most have been vali-
dated using whole-body mutants or RNAi knockdown 
in all tissues [19, 44, 45, 49, 53, 150], a number of 
genes have been validated in neuronal tissue using the 
elav-GAL4 line [19], in glial tissue using reaper-GAL4 
[122], or in even more specific brain structures such as 
the MB [106] and the ellipsoid body [153]. Utilization 
of the GAL4/UAS system to validate genes in specific 
brain structures or circuits is an important advantage 
of the fly.

There is a long history in the fly of overlap in the genes 
important for learning/memory, alcohol behavior, and 
the reward system (reviewed by [124, 154]). One of the 

first genes discovered to show an alcohol phenotype was 
amnesiac, already extensively studied for its role in aver-
sive olfactory memory through an MB-dependent circuit 
[155–157]. The MB plays a role in both tolerance follow-
ing ethanol exposure and in ethanol-induced hyperactiv-
ity in flies [51, 144]. It is also necessary for the expression 
of alcohol conditioned preference [32], and it functions as 
a dopaminergic integration center and epicenter for asso-
ciative learning, particularly in the formation of olfactory 
memory [134]. The brains of flies only contain approxi-
mately 130 dopaminergic neurons, of which a subset 
panel the MB structure. This dopamine system regulates 
the flies’ reward signaling, short- and long-term memory 
formation, aversive memory formation, wakefulness, for-
aging behavior, and oviposition preference [66, 158–164]. 
Thus, dopaminergic signaling and modulation of the 
MB circuit is a crucial component in the development 
of associative ethanol memories, as well as the encod-
ing of aversive and appetitive ethanol memories [32, 106, 
164]. While this work has been primarily accomplished 
through forward genetic screens, evidence from GWAS 
studies exists as well. Work by Morozova et al. identified 
SNPs near the dopamine decarboxylase gene associated 
with variation in alcohol sensitivity [123]. This implies 
that underlying differences in dopamine signaling alters 
alcohol behavior.

As mentioned above, Sir2 expression is required in the 
MB for normal alcohol tolerance to develop. Engel et al. 
demonstrated that Sir2 was important for determining 
the valence of alcohol and synaptic functioning in the 
MB [51]. More recent work using alcohol conditioned 
preference assays points to the actions of Notch signaling 
within the MB circuit for mediating long-term alcohol 
reward memories [106]. Morozova et al. identified mem-
bers of the Notch signaling pathway involved in alcohol 
sensitivity [45, 150], and previously Kaun et  al. found a 
role for Scabrous (Sca, a mediator of Notch signaling) in 
alcohol-associated preference [32]. Upon further explo-
ration of the Notch pathway, Petruccelli et al. found that 
Notch and Suppressor of Hairless (Su(H)) signaling medi-
ated by Sca in the MB is important for long-term alcohol 
preference [106]. Not only was this pathway important in 
the adult fly for memory formation, but Su(H) changes 
the transcriptional dynamics of the MB. Alternative 
splicing of DopR2, a dopamine receptor previously impli-
cated in alcohol behavior [133] and AUD [165], occurs 
following alcohol exposure driven by Su(H) activation.

The Jak/Stat Innate immunity pathways also shows 
extensive crosstalk with the Notch pathway [166, 167]. 
Stat92E was found to be differentially expressed in 
rejected male flies. One isoform was up-regulated while 
the other was down-regulated 24  h post-rejection [71]. 
Recent work by Petruccelli et al. identified Stat92E as also 
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being alternatively spliced within the MB following alco-
hol exposure [106]. Modifications in Stat92E levels due 
to alcohol exposure in the MB may underlie long-term 
changes in alcohol preference, as well as larger memory 
systems involving stress. Other genes involved in innate 
immune response and cellular stress have also been 
found in the MB [72]. Further work will need to be done 
to understand the roles innate immune genes in the MB 
play in memory formation.

Caveats and considerations from gene network analysis 
in fly alcohol behavior
Studies of alcohol behavior genetics are confounded by 
the differing modes of alcohol exposure used [16, 44, 
123]. If flies consume alcohol from their food source, 
genes enriched for feeding behavior and alcohol behav-
ior are both enriched [44]. To illustrate, recent work 
using the DGRP lines have evaluated the overlap between 
food consumption and alcohol consumption [168]. The 
authors argue that among the genes associated with 
alcohol consumption, about 30% are associated with the 
caloric nature of alcohol [168]. Additionally, enrichment 
for olfactory genes is found when animals are exposed to 
alcohol vapor (either from a food source or air stream) 
[123]. A number of studies have demonstrated a role 
for olfactory genes in alcohol sensitivity and tolerance 
[49, 142, 150, 169]. Lush, one of the most characterized 
among these genes, encodes an odorant-binding protein 
known to bind to alcohols [169]. It is down-regulated in 
response to alcohol and is implicated in alcohol behavior 
[43, 49]). Additionally, recent work has shown that synap-
tic alterations driven by Dunc13 (homolog of mammalian 
Munc13) in olfactory receptor neurons of the fly play a 
role in mediating tolerance [142]. Alcohol vapor-induced 
changes in olfactory genes were addressed by Kong et al., 
who explained that alcohol is toxic to the antennae cilia 
causing degeneration of the cilia [49]. Down-regulated 
olfactory genes are a response to this toxicity, whereas 
the upregulated olfactory genes may be involved in alco-
hol behavior. Recent work has also pointed to poten-
tial novel roles for olfactory associated genes outside of 
olfactory receptor neurons [72].

The use of differing modes of alcohol exposure across 
studies may help explain the lack of significant over-
lap in their identified genes (excluding functional gene 
networks which do show overlap). Even across studies 
using the DGRP lines very few overlapping genes are 
found. Study methods often differ not only in the mode 
of alcohol exposure but in length of exposure, concentra-
tion, time following exposure, and general experimental 
design and analysis including the bioinformatics tools 
used. One of the most surprising examples of this lack of 
overlap came from Troutwine et al., who used RNA-seq 

in an attempt to verify innate immune response genes, 
found by Kong et al. using microarrays [49, 149].

An additional concern is that while both GWAS and 
transcriptional methods seek to identify genes, the 
genes identified through GWAS are participating in the 
predisposition for an alcohol phenotype, whereas tran-
scriptome studies are well-suited to identify changes in 
response to alcohol. For instance, significance in a GWAS 
study does not necessarily mean there will be a transcrip-
tional difference in that same gene in response to alcohol. 
This is why looking at functional and coexpression gene 
networks may be more appropriate for studying alcohol 
behavior in the fly. Morozova et al. observed that if they 
loosened their cutoff accounting for multiple testings 
they picked up additional gene overlaps with other stud-
ies [16, 43]. If genes are working in coordinated networks 
and are not changing independent of each other then 
there should be a reevaluation of how we identify mean-
ingful transcriptional changes.

One additional caveat when considering work done 
with the DGRP fly lines is that alcohol behavior is sexu-
ally dimorphic [44, 170]. Different SNPs are associated 
with alcohol behavior depending upon the sex of the fly 
[44]. Up to this point studies producing transcriptional 
data have either not found sexual dimorphisms or have 
not considered them when analyzing data. A number of 
studies only used male flies, including Morozova et  al. 
[43], Kong et  al. [49], Engel et  al. [51], and Signor and 
Nuzhdin [107]. Troutwine et al. used only females [149]. 
Ghezzi et al. [19] and Urizar et al. [143] used mixed male 
and female populations. Additional transcriptional work 
conducted using controlled populations of both males 
and females must be performed.

Part 3: Future directions
Morozova et  al. elegantly demonstrated that identify-
ing gene networks in the fly could inform human GWAS 
studies [170]. They used a candidate gene approach 
in humans for the genes identified in fly networks with 
homologs. Quantitative Trait Transcript (QTT) analysis 
for alcohol sensitivity (second exposure) showed a clus-
ter of transcripts involved in metabolic enzyme activ-
ity. Centered in the fly network is the gene Men (Malic 
Enzyme), which has been identified previously in alcohol 
sensitivity across species [43, 171]. Targeting the human 
homolog Malic Enzyme (ME1) in the Framingham Heart 
Cohort showed small yet significant effects of SNPs on 
cocktail drinking [170]. This demonstrated the utility 
of identifying gene networks in flies and then using this 
information to inform the human data. As new gene net-
works are described, this type of cross species validation 
will prove insightful.
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Further identification of coordinated gene networks 
through RNA-seq and ChIP-seq will shed light on 
larger pathways that could be targets for pharmaco-
logical treatment. In 2006 Riley et  al. demonstrated 
that the human homologue of the Drosophila hangover 
gene is associated with alcohol dependence within an 
Irish cohort [172]. Both hangover and its human homo-
logue ZNF699 are zinc-finger proteins, making them 
potential coordinators of gene networks, and thus tar-
gets for future drug development. Hangover also plays a 
role in response to oxidative stress, further implicating 
the role of cellular stress genes in alcohol behavior [50, 
173]. Other potential targets are the proteins regulated 
by Protein Kinase C (PKC). Recent work demonstrated 
naltrexone’s ability to block alcohol preference in the fly 
through PKC mechanisms [174]. Previous work impli-
cated the PKC gene inaC in a network of genes associ-
ated with tolerance [170]. Both of the fly’s genes coding 
PKCs (InaC and Pkc98E) are also implicated in alcohol 
sensitivity via the Neuropeptide F (NPF) and serotonin 
circuits [175].

A gene network approach also illuminates develop-
mental pathways still in use in the adult fly for mediat-
ing behavior [16, 32, 106], which were underappreciated 
until recently. Additionally, the roles of glia, cellular stress 
genes, and immune response genes in adult fly behavior 
are only now being fully realized. Further investigation is 
needed into the mechanisms that these pathways use to 
drive alcohol behavior. It is also clear from these genomic 
surveys that responses to alcohol change over time, both 
in the genes expressed and in splicing differences [49, 63, 
107], which are only now being fully appreciated and will 
require further investigation.

Recent advances in proteomic research in the fly will 
also allow researchers to validate expression differ-
ences seen at the transcriptome level [176]. Recent pro-
teomic analysis of postmortem human brain tissue of 
AUD patients showed changes in metabolic, trafficking, 
cytoskeletal, and excitotoxity proteins [177]. A significant 
amount of mRNA never becomes protein, so proteomic 
analysis may be a better method for examining the large 
number of genes with expression changes [89]. For exam-
ple, recent work on proteomic changes in the fly brain 
following olfactory learning implicated the Jak/Stat path-
way [176]. Large-scale proteomic studies in the fly will 
also identify novel networks of proteins associated with 
alcohol behavior.

Concluding remarks
In the era of ‘Big Data’ the fruit fly is an advantageous model 
organism to use to acquire novel insights into alcohol 
behavior. Through the use of a broad set of genetic tools, 
well-characterized behavioral assays, and an ever-growing 

number of genomic survey studies, one can begin to piece 
together a mechanistic understanding of the genes involved 
in alcohol behavior. This work shows translational potential 
to understand some of the features of AUD in humans. In 
particular, recent work on learning mechanisms and toler-
ance in the fly have shown overlap with glial, cellular stress, 
innate immunity, and chromatin modifying genes in AUD. 
These gene networks point to a mechanism in which alco-
hol tolerance and learning is partially mediated through 
homeostatic mechanisms to deal with cellular injury. Fur-
ther study of these gene networks in flies may provide a 
better mechanistic understanding of AUD and drug targets.
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