Arnsten AFT, Castellanos FX: Neurobiology of attention regulation and its disorders. Textbook of Child and Adolescent Psychopharmacology. Edited by: Martin A, Scahill L, Charney D and Leckman J. 2002, NY, Oxford Univ. Press, 99-109.
Google Scholar
Goldman-Rakic PS: The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil Trans R Soc London. 1996, 351: 1445-1453.
Article
CAS
Google Scholar
Robbins TW: Dissociating executive functions of the prefrontal cortex. Phil Trans R Soc London. 1996, 351: 1463-1471.
Article
CAS
Google Scholar
Stuss DT, Knight RT: Principles of Frontal Lobe Function. 2002, New York, Oxford University Press, 616-
Chapter
Google Scholar
Barkley RA, Grodzinsky G, DuPaul GJ: Frontal lobe functions in Attention Deficit Disorder with and without Hyperactivity: A review and research report. J Abnormal Child Psych. 1992, 20: 163-188. 10.1007/BF00916547.
Article
CAS
Google Scholar
Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JDE: Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proc Nat Acad Sci USA. 1998, 95: 14494-14499. 10.1073/pnas.95.24.14494.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mehta AD, Ulbert I, Schroeder CE: Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cerebral Cortex. 2000, 10: 343-358. 10.1093/cercor/10.4.343.
Article
CAS
PubMed
Google Scholar
Solanto MV: Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res. 2002, 130: 65-71. 10.1016/S0166-4328(01)00431-4.
Article
CAS
PubMed
Google Scholar
Volkow ND, Fowler JS, Wang GJ, Ding YS, Gatley SJ: Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharmacol. 2002, 12: 557-566. 10.1016/S0924-977X(02)00104-9.
Article
CAS
PubMed
Google Scholar
Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM: DOPA decarboxylase activity in attention deficit disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci. 1998, 18: 5901-5907.
CAS
PubMed
Google Scholar
Kuczenski R, Segal DS: Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci. 2002, 22: 7264-7271.
CAS
PubMed
Google Scholar
Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina PE, Dewey SL: Comparison between intraperitoneal and oral methylphenidate administration: A microdialysis and locomotor activity study. J Pharmacol Exp Ther. 2000, 295: 51-57.
CAS
PubMed
Google Scholar
Gaytan O, Ghelani D, Martin S, Swann AC, Dafny N: Methylphenidate: diurnal effects on locomotor and stereotypic behavior in the rat. Brain Res. 1997, 777: 1-12. 10.1016/S0006-8993(97)00880-9.
Article
CAS
PubMed
Google Scholar
McDougall SA, Collins RL, Karper PE, Watson JB, Crawford CA: Effects of repeated methylphenidate treatment in the young rat: sensitization of both locomotor activity and stereotyped sniffing. Exp Clin Psychopharmacol. 1999, 7: 208-218. 10.1037//1064-1297.7.3.208.
Article
CAS
PubMed
Google Scholar
Sproson EJ, Chantrey J, Hollis C, Marsden CA, Fone KC: Effect of repeated methylphenidate administration on presynaptic dopamine and behaviour in young adult rats. J Psychopharmacol. 2001, 15: 67-75.
Article
CAS
PubMed
Google Scholar
Wultz B, Sagvolden T, Moser EI, Moser MB: The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol. 1990, 53: 88-102. 10.1016/0163-1047(90)90848-Z.
Article
CAS
PubMed
Google Scholar
Amini B, Yang PB, Swann AC, Dafny N: Differential locomotor responses in male rats from three strains to acute methylphenidate. Int J Neurosci. 2004, 114: 1063-1084. 10.1080/00207450490475526.
Article
CAS
PubMed
Google Scholar
Kuczenski R, Segal DS: Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther. 2001, 296: 876-883.
CAS
PubMed
Google Scholar
Berridge CW, Stalnaker TA: Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex. Synapse. 2002, 46: 140-149. 10.1002/syn.10131.
Article
CAS
PubMed
Google Scholar
Arnsten AFT, Robbins TW: Neurochemical modulation of prefrontal cortical function in humans and animals. Principles of Frontal Lobe Function. Edited by: Stuss DT and Knight RT. 2002, New York, Oxford University Press, 51-84.
Chapter
Google Scholar
Arnsten AFT, Li BM: Neurobiology of executive functions: Catecholamine influences on prefrontal cortical function. Biological Psychiatry. 2005, in press:
Google Scholar
Arnsten AFT: Stress impairs PFC function in rats and monkeys: Role of dopamine D1 and norepinephrine alpha-1 receptor mechanisms. Prog Brain Res. 2000, 126: 183-192.
Article
CAS
PubMed
Google Scholar
Larsen JK, Divac I: Selective ablations within the prefrontal cortex of the rat and performance of delayed alternation. Physiolog Psychol. 1978, 6: 15-17.
Article
Google Scholar
Mishkin M: Perseveration of central sets after frontal lesions in monkeys. The Frontal Granular Cortex and Behavior. Edited by: Warren JM and Akert K. 1964, New York, McGraw-Hill, 219-241.
Google Scholar
Butter CM: Perseveration in extinction and in discrimination reversal following selective frontal ablations in Macaca mulatta. Physiol Behav. 1968, 4: 163-171. 10.1016/0031-9384(69)90075-4.
Article
Google Scholar
Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW: Perseveration and strategy in a novel spatial self-ordered sequencing task for nonhuman primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J Cognitive Neuroscience. 1998, 10: 332-354. 10.1162/089892998562771.
Article
CAS
Google Scholar
Zahrt J, Taylor JR, Mathew RG, Arnsten AFT: Supranormal stimulation of dopamine D1 receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci. 1997, 17: 8528-8535.
CAS
PubMed
Google Scholar
Arnsten AFT, Mathew R, Ubriani R, Taylor JR, Li BM: Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry. 1999, 45: 26-31. 10.1016/S0006-3223(98)00296-0.
Article
CAS
PubMed
Google Scholar
Birnbaum SG, Gobeske KT, Auerbach J, Taylor JR, Arnsten AFT: A role for norepinephrine in stress-induced cognitive deficits: Alpha-1-adrenoceptor mediation in prefrontal cortex. Biol Psychiatry. 1999, 46: 1266-1274. 10.1016/S0006-3223(99)00138-9.
Article
CAS
PubMed
Google Scholar
Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW: Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology. 1997, 131: 196-206. 10.1007/s002130050284.
Article
CAS
PubMed
Google Scholar
Trommer BL, Hoeppner JA, Zecker SG: The go-no go test in attention deficit disorder is sensitive to methylphenidate. J Child Neurol. 1991, 6 Suppl: S128-31.
CAS
PubMed
Google Scholar
Bedard AC, Ickowicz A, Logan GD, Hogg-Johnson S, Schachar R, Tannock R: Selective inhibition in children with attention-deficit hyperactivity disorder off and on stimulant medication. J Abnorm Child Psychol. 2003, 31: 315-327. 10.1023/A:1023285614844.
Article
PubMed
Google Scholar
Aron AR, Dowson JH, Sahakian BJ, Robbins TW: Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2003, 54: 1465-1468. 10.1016/S0006-3223(03)00609-7.
Article
CAS
PubMed
Google Scholar
Mehta MA, Goodyer IM, Sahakian BJ: Methylphenidate improves working memory and set-shifting in AD/HD: relationships to baseline memory capacity. J Child Psychol Psychiatry. 2004, 45: 293-305. 10.1111/j.1469-7610.2004.00221.x.
Article
PubMed
Google Scholar
Turner DC, Blackwell AD, Dowson JH, McLean A, Sahakian BJ: Neurocognitive effects of methylphenidate in adult attention-deficit/hyperactivity disorder. Psychopharmacology. 2004, epub:
Google Scholar
Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW: Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neuroscience. 2000, 20: RC651-656.
Google Scholar
Robbins TW, Sahakian BJ: "Paradoxical" effects of psychomotor stimulant drugs in hyperactive children from the standpoint of behavioral pharmacology. Neuropharmacol. 1979, 18: 931-950. 10.1016/0028-3908(79)90157-6.
Article
CAS
Google Scholar
Solanto MV, Wender EH: Does methylphenidate constrict cognitive functioning?. J Am Acad Child Adolesc Psychiatry. 1989, 28: 897-902.
Article
CAS
PubMed
Google Scholar
Dyme IZ, Sahakian BJ, Golinko BE, Rabe EF: Perseveration induced by methylphenidate in children: preliminary findings. Prog Neuropsychopharmacol Biol Psychiatry. 1982, 6: 269-273.
Article
CAS
PubMed
Google Scholar
Tannock R, Schachar R: Methylphenidate and cognitive perseveration in hyperactive children. J Child Psychol Psychiatry. 1992, 33: 1217-1228.
Article
CAS
PubMed
Google Scholar
Douglas VI, Barr RG, Desilets J, Sherman E: Do high doses of stimulants impair flexible thinking in attention-deficit hyperactivity disorder?. J Am Acad Child Adolesc Psychiatry. 1995, 34: 877-885. 10.1097/00004583-199507000-00011.
Article
CAS
PubMed
Google Scholar
Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW: Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002, 27: 699-711. 10.1016/S0893-133X(02)00346-9.
Article
CAS
PubMed
Google Scholar
Brozoski T, Brown RM, Rosvold HE, Goldman PS: Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science. 1979, 205: 929-931.
Article
CAS
PubMed
Google Scholar
Sawaguchi T, Goldman-Rakic PS: The role of D1-dopamine receptors in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed response task. J Neurophysiol. 1994, 71: 515-528.
CAS
PubMed
Google Scholar
Sawaguchi T, Goldman-Rakic PS: D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science. 1991, 251: 947-950.
Article
CAS
PubMed
Google Scholar
Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW: Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci. 2000, 20: 1208-1215.
CAS
PubMed
Google Scholar
Biederman J, Spencer T: Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry. 1999, 46: 1234-1242. 10.1016/S0006-3223(99)00192-4.
Article
CAS
PubMed
Google Scholar
Biederman J, Spencer TJ: Genetics of childhood disorders: XIX. ADHD, Part 3: Is ADHD a noradrenergic disorder?. J Am Acad Child Adolesc Psychiatry. 2000, 39: 1330-1333. 10.1097/00004583-200010000-00024.
Article
CAS
PubMed
Google Scholar
Viggiano D, Vallone D, Sadile A: Dysfunctions in dopamine systems and ADHD: evidence from animals and modeling. Neural Plast. 2004, 11: 97-114.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuczenski R, Segal DS: Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: Comparison with amphetamine. J Neurochem. 1997, 68: 2032-2037.
Article
CAS
PubMed
Google Scholar
Ma CL, Arnsten AFT, Li BM: Locomotor hyperactivity induced by blockade of prefrontal cortical alpha-2-adrenoceptors in monkeys. Biological Psychiatry. 2005, in press:
Google Scholar
Ma CL, Qi XL, Peng JY, Li BM: Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys. Neuroreport. 2003, 14: 1013-1016. 10.1097/00001756-200305230-00021.
CAS
PubMed
Google Scholar
Li BM, Mei ZT: Delayed response deficit induced by local injection of the alpha-2 adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behav Neural Biol. 1994, 62: 134-139.
Article
CAS
PubMed
Google Scholar
Li BM, Mao ZM, Wang M, Mei ZT: Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacol. 1999, 21: 601-610. 10.1016/S0893-133X(99)00070-6.
Article
CAS
Google Scholar
Arnsten AFT, Cai JX, Goldman-Rakic PS: The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects. J Neurosci. 1988, 8: 4287-4298.
CAS
PubMed
Google Scholar
Mao ZM, Arnsten AFT, Li BM: Local infusion of alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biol Psychiatry. 1999, 46: 1259-1265. 10.1016/S0006-3223(99)00139-0.
Article
CAS
PubMed
Google Scholar
Arnsten AFT, Contant TA: Alpha-2 adrenergic agonists decrease distractability in aged monkeys performing a delayed response task. Psychopharmacology. 1992, 108: 159-169.
Article
CAS
PubMed
Google Scholar
Steere JC, Arnsten AFT: The alpha-2A noradrenergic agonist, guanfacine, improves visual object discrimination reversal performance in rhesus monkeys. Behav Neurosci. 1997, 111: 1-9.
Article
Google Scholar
Wang M, Ji JZ, Li BM: The alpha(2A)-adrenergic agonist guanfacine improves visuomotor associative learning in monkeys. Neuropsychopharmacology. 2004, 29: 86-92. 10.1038/sj.npp.1300278.
Article
CAS
PubMed
Google Scholar
Wang M, Tang ZX, Li BM: Enhanced visuomotor associative learning following stimulation of alpha 2A-adrenoceptors in the ventral prefrontal cortex in monkeys. Brain Res. 2004, 1024: 176-182. 10.1016/j.brainres.2004.07.062.
Article
CAS
PubMed
Google Scholar
Avery RA, Franowicz JS, Studholme C, van Dyck CH, Arnsten AFT: The alpha-2A-adenoceptor agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task. Neuropsychopharmacology. 2000, 23: 240-249. 10.1016/S0893-133X(00)00111-1.
Article
CAS
PubMed
Google Scholar
Spencer T, Heiligenstein JH, Biederman J, Faries DE, Kratochvil CJ, Conners CK, Potter WZ: Results from 2 proof-of-concept, placebo-controlled studies of atomoxetine in children with attention-deficit/hyperactivity disorder. J Clin Psychiatry. 2002, 63: 1140-1147.
Article
CAS
PubMed
Google Scholar
Scahill L, Chappell PB, Kim YS, Schultz RT, Katsovich L, Shepherd E, Arnsten AFT, Cohen DJ, Leckman JF: Guanfacine in the treatment of children with tic disorders and ADHD: A placebo-controlled study. Amer J Psychiatry. 2001, 158: 1067-1074. 10.1176/appi.ajp.158.7.1067.
Article
CAS
Google Scholar
Franowicz JS, Kessler L, Dailey-Borja CM, Kobilka BK, Limbird LE, Arnsten AFT: Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci. 2002, 22: 8771-8777.
CAS
PubMed
Google Scholar
Tanila H, Rama P, Carlson S: The effects of prefrontal intracortical microinjections of an alpha-2 agonist, alpha-2 antagonist and lidocaine on the delayed alternation performance of aged rats. Brain Res Bull. 1996, 40: 117-119. 10.1016/0361-9230(96)00026-3.
Article
CAS
PubMed
Google Scholar
Rama P, Linnankoski I, Tanila H, Pertovaara A, Carlson S: Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmacol Biochem Behav. 1996, 54: 1-7. 10.1016/S0091-3057(96)90003-9.
Article
Google Scholar
Jakala P, Riekkinen M, Sirvio J, Koivisto E, Kejonen K, Vanhanen M, Riekkinen PJ: Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology. 1999, 20: 460-470. 10.1016/S0893-133X(98)00127-4.
Article
CAS
PubMed
Google Scholar