Granado N, Ares-Santos S, Moratalla R (2013) Methamphetamine and Parkinson’s disease. Parkinsons Dis 1:1–10
Google Scholar
Popa L, Constantinescu A, Popescu CD (2012) Differences of cortical excitability between Parkinson’s disease patients and healthy subjects. A comparative TMS study. Romanian J Neurol 11:1
Google Scholar
Furukawa T, Izumi S, Toyokura M, Masakado Y (2009) Effects of low-frequency repetitive transcranial magnetic stimulation in Parkinson’s disease. Tokai J Exp Clin Med 34(3):63–71
PubMed
Google Scholar
Desplats P, Patel P, Kosberg K, Mante M, Patrick C, Rockenstein E et al (2012) Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease. Mol Neurodegener 7:49. doi:10.1186/1750-1326-7-49
Article
PubMed Central
CAS
PubMed
Google Scholar
Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106–107:17–32. doi:10.1016/j.pneurobio.2013.04.004
Article
PubMed
CAS
Google Scholar
Vallelunga A, Ragusa M, Di Mauro S, Iannitti T, Pilleri M, Biundo R et al (2014) Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front Cell Neurosci 8:156. doi:10.3389/fncel.2014.00156
Article
PubMed Central
PubMed
CAS
Google Scholar
Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74
Article
PubMed Central
CAS
PubMed
Google Scholar
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909
Article
CAS
PubMed
Google Scholar
Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V et al (2004) PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 56:336–341
Article
CAS
PubMed
Google Scholar
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047
Article
CAS
PubMed
Google Scholar
Chou KL (2004) Diagnosis and management of the patient with tremor. Med Health R I 87(5):135–138
PubMed
Google Scholar
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909 pii: S0896627303005683
Article
CAS
PubMed
Google Scholar
McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10(1):S3–S7
Article
PubMed
Google Scholar
Mendez I, Viñuela A, Astradsson A, Mukhida K, Hallett P, Robertson H et al (2008) Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 14(5):507–509
Article
PubMed Central
CAS
PubMed
Google Scholar
Richardson PJ, Kase H, Jenner PG (1997) Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s disease. Trends Pharmacol Sci 18(9):338–344
Article
CAS
PubMed
Google Scholar
Schapira AH, Bezard E, Brotchie J, Calon F, Collingridge GL, Ferger B et al (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5(10):845–854
Article
CAS
PubMed
Google Scholar
Bezard E, Gerlach I, Moratalla R, Gross CE, Jork R (2006) 5-HT1A receptor agonist-mediated protection from MPTP toxicity in mouse and macaque models of Parkinson’s disease. Neurobiol Dis 23(1):77–86. doi:10.1016/j.nbd.2006.02.003
Article
CAS
PubMed
Google Scholar
Poryazova RG, Zachariev ZI (2005) REM sleep behavior disorder in patients with Parkinson’s disease. Folia Med (Plovdiv) 47(1):5–10
Google Scholar
Eisensehr I, v Lindeiner H, Jäger M, Noachtar S (2001) REM sleep behavior disorder in sleep-disordered patients with versus without Parkinson’s disease: is there a need for polysomnography? J Neurol Sci 186(1–2):7–11
Article
CAS
PubMed
Google Scholar
Kales A, Ansel RD, Markham CH, Scharf MB, Tan TL (1971) Sleep in patients with Parkinson’s disease and normal subjects prior to and following levodopa administration. Clin Pharmacol Ther 12(2):397–406
CAS
PubMed
Google Scholar
Factor SA, McAlarney T, Sanchez-Ramos JR, Weiner WJ (1990) Sleep disorders and sleep effect in Parkinson’s disease. Mov Disord Off J Mov Disord Soc 5(4):280–285
Article
CAS
Google Scholar
Lees AJ, Blackburn NA, Campbell VL (1988) The nighttime problems of Parkinson’s disease. Clin Neuropharmacol 11(6):512–519
Article
CAS
PubMed
Google Scholar
Comella CL, Nardine TM, Diederich NJ, Stebbins GT (1998) Sleep-related violence, injury, and REM sleep behavior disorder in Parkinson’s disease. Neurology 51(2):526–529
Article
CAS
PubMed
Google Scholar
Chaudhuri KR, Healy DG, Schapira AH, FmedSci (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5(3):235–245
Article
PubMed
Google Scholar
Lieberman A (2006) Depression in Parkinson’s disease—a review. Acta Neurol Scand 113(1):1–8
Article
CAS
PubMed
Google Scholar
Poewe W (2008) Non-motor symptoms in Parkinson’s disease. Eur J Neurol 15(1):14–20
Article
PubMed
Google Scholar
Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9(8):445–454
Article
CAS
PubMed
Google Scholar
Lubbe S, Morris HR (2014) Recent advances in Parkinson’s disease genetics. J Neurol 261(2):259–266
Article
CAS
PubMed
Google Scholar
Taymans JM, Baekelandt V (2014) Phosphatases of alpha-synuclein, LRRK2, and tau: important players in the phosphorylation-dependent pathology of Parkinsonism. Front Genet 5:382
Article
PubMed Central
PubMed
CAS
Google Scholar
van der Vegt JP, van Nuenen BF, Bloem BR, Klein C, Siebner HR (2009) Imaging the impact of genes on Parkinson’s disease. Neuroscience 164(1):191–204
Article
PubMed
CAS
Google Scholar
Kimura H, Kurimura M, Kurokawa K, Nagaoka U, Arawaka S, Wada M et al (2011) A comprehensive study of repetitive transcranial magnetic stimulation in Parkinson’s disease. ISRN Neurol 2011:845453. doi:10.5402/2011/845453
Article
PubMed Central
PubMed
Google Scholar
Lees AJ (1989) The on-off phenomenon. J Neurol Neurosurg Psychiatry 52(1):29–37
Article
PubMed Central
Google Scholar
Hattoria N, Wanga M, Taka H, Fujimura T, Yoritaka A, Kubo S et al. (2009) Toxic effects of dopamine metabolism in Parkinson’s disease. Parkinsonism Relat Disord 15(1):S35–S38
Article
PubMed
Google Scholar
Belcastro V, Tozzi A, Tantucci M, Costa C, Di Filippo M, Autuori A et al (2009) A2A adenosine receptor antagonists protect the striatum against rotenone-induced neurotoxicity. Exp Neurol 217(1):231–234
Article
CAS
PubMed
Google Scholar
Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81
Article
PubMed
Google Scholar
Wang Z, Che PL, Du J, Ha B, Yarema KJ (2010) Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385. PLoS One 5(11):e13883
Article
PubMed Central
PubMed
CAS
Google Scholar
Anderkova L, Rektorova I (2014) Cognitive effects of repetitive transcranial magnetic stimulation in patients with neurodegenerative diseases—clinician’s perspective. J Neurol Sci 339(1–2):15–25
Article
PubMed
Google Scholar
Caspar S (2011) Invasive and non-invasive stimulation in Parkinson’s disease. Department of Clinical Neurophysiol, Germany
Google Scholar
Sandyk R (1992) Weak magnetic fields as a novel therapeutic modality in Parkinson’s disease. Int J Neurosci 66(1–2):1–15
CAS
PubMed
Google Scholar
Sandyk R (1997) Treatment with weak electromagnetic fields restores dream recall in a parkinsonian patient. Int J Neurosci 90(1–2):75–86
Article
CAS
PubMed
Google Scholar
Vonloh M, Chen R, Kluger B (2013) Safety of transcranial magnetic stimulation in Parkinson’s disease: a review of the literature. Parkinsonism Relat Disord 19(6):573–585
Article
PubMed Central
PubMed
Google Scholar
Wade B (2013) A review of pulsed electromagnetic field (PEMF) mechanisms at a cellular level: a rationale for clinical use. Am J Health Res 1(3):51–55
Article
Google Scholar
Markov MS (2007) Expanding use of pulsed electromagnetic field therapies. Electromagn Biol Med 26(3):257–274
Article
PubMed
Google Scholar
Weintraub MI (2004) Magnetotherapy: historical background with a stimulating future. Phys Rehabil Med 16(2):95–108
Google Scholar
De Loecker W, Cheng N, Delport PH (1990) Effects of pulsed electromagnetic fields on membrane transport. In: Emerging electromagnetic medicine. Springer, New York, pp 45–57
Chapter
Google Scholar
Wassermann EM, Lisanby SH (2001) Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 112(8):1367–1377
Article
CAS
Google Scholar
Wassermann EM, Grafman J, Berry C, Hollnagel C, Wild K, Clark K et al. (1996) Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr Clin Neurophysiol 101(5):412–417
Article
CAS
PubMed
Google Scholar
Edwards MJ, Talelli P, Rothwell JC (2008) Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol 7(9):827–840
Article
PubMed
Google Scholar
Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156
Article
PubMed
Google Scholar
Rudiak D, Marg E (1994) Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol 93(5):358–371
Article
CAS
PubMed
Google Scholar
Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107
Article
CAS
PubMed
Google Scholar
Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81(4):257–262
Article
CAS
PubMed
Google Scholar
Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534
PubMed Central
CAS
PubMed
Google Scholar
Farzan F, Barr MS, Hoppenbrouwers SS, Fitzgerald PB, Chen R, Pascual-Leone A et al (2013) The EEG correlates of the TMS-induced EMG silent period in humans. Neuroimage 83:120–134
Article
PubMed Central
PubMed
Google Scholar
Cantello R, Gianelli M, Bettucci D, Civardi C, De Angelis MS, Mutani R (1991) Parkinson’s disease rigidity: magnetic motor evoked potentials in a small hand muscle. Neurology 41(9):1449–1456
Article
CAS
PubMed
Google Scholar
Khedr EM, Farweez HM, Islam H (2003) Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur J Neurol 10(5):567–572
Article
CAS
PubMed
Google Scholar
Lefaucheur JP (2005) Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol 116(2):244–253. doi:10.1016/j.clinph.2004.11.017
Article
CAS
PubMed
Google Scholar
Anninos P, Adamopoulos A, Kotini A, Tsagas N, Tamiolakis D, Prassopoulos P (2007) MEG evaluation of Parkinson’s diseased patients after external magnetic stimulation. Acta Neurol Belg 107(1):5–10
CAS
PubMed
Google Scholar
Stam CJ (2010) Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci 289(1–2):128–134. doi:10.1016/j.jns.2009.08.028
Article
CAS
PubMed
Google Scholar
Fregni F, Simon DK, Wu A, Pascual-Leone A (2005) Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J Neurol Neurosurg Psychiatry 76(12):1614–1623
Article
PubMed Central
CAS
PubMed
Google Scholar
Hallett M (2007) Transcranial magnetic stimulation: a primer. Neuron 55(2):187–199. doi:10.1016/j.neuron.2007.06.026
Article
CAS
PubMed
Google Scholar
Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF et al. (2006) Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 31(11):2384–2393
Article
Google Scholar
Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M et al (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48(5):1398–1403
Article
CAS
PubMed
Google Scholar
Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain J Neurol 117(Pt 4):847–858
Article
Google Scholar
Okabe S, Ugawa Y, Kanazawa I (2003) 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov Disord 18(4):382–388. doi:10.1002/mds.10370
Article
PubMed
Google Scholar
Elahi B, Chen R (2009) Effect of transcranial magnetic stimulation on Parkinson motor function—systematic review of controlled clinical trials. Mov Disord 24(3):357–363. doi:10.1002/mds.22364
Article
PubMed
Google Scholar
Wang M, Ping GU, Xiao-wei MA, Yan-min LI (2009) Effects of low frequency repetitive transcranial magnetic stimulation on motor function and affective disorder in patients with Parkinson’s disease. Chin J Geriatr 28:729–732
Google Scholar
Niu X, G Y (2012) Observation of repetitively transcranial magnetic stimulation in the treatment of depression induced by Parkinson’s disease. Chin J Pract Nerv Dis 15:11–13
Google Scholar
Shirota Y, Ohtsu H, Hamada M, Enomoto H, Ugawa Y (2013) Supplementary motor area stimulation for Parkinson disease: a randomized controlled study. Neurology 80(15):1400–1405. doi:10.1212/WNL.0b013e31828c2f66
Article
PubMed
Google Scholar
Pizzolato G, Mandat T (2012) Deep brain stimulation for movement disorders. Mini Rev Art Front Integr Neurosci 6(2):1–5. doi:10.3389/fnint.2012.00002
Google Scholar
Boutros NN, Berman RM, Hoffman R, Miano AP, Campbell D, Ilmoniemi R (2000) Electroencephalogram and repetitive transcranial magnetic stimulation. Depress Anxiety 12(3):166–169. doi:10.1002/1520-6394(2000)12:3<166:AID-DA8>3.0.CO;2-M
Article
CAS
PubMed
Google Scholar
Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJ et al (2006) A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 37(8):2115–2122. doi:10.1161/01.STR.0000231390.58967.6b
Article
PubMed
Google Scholar
Fox MD, Liu H, Pascual-Leone A (2013) Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. Neuroimage 66:151–160. doi:10.1016/j.neuroimage.2012.10.082
Article
PubMed
Google Scholar
Shimamoto H, Takasaki K, Shigemori M, Imaizumi T, Ayabe M, Shoji H (2001) Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson’s disease. J Neurol 248(3):III48–III52
Article
PubMed
Google Scholar
Eckert T, Peschel T, Heinze HJ, Rotte M (2006) Increased pre-SMA activation in early PD patients during simple self-initiated hand movements. J Neurol 253(2):199–207
Article
CAS
PubMed
Google Scholar
Buhmann C, Glauche V, Stürenburg HJ, Oechsner M, Weiller C, Büchel C (2003) Pharmacologically modulated fMRI–cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126(Pt 2):451–461
Article
CAS
PubMed
Google Scholar
Ceballos-Baumann AO, Boecker H, Bartenstein P, von Falkenhayn I, Riescher H, Conrad B et al. (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 56(8):997–1003
Article
CAS
PubMed
Google Scholar
Jahanshahi M, Jenkins IN, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain J Neurol 118(Pt 4):913–933
Google Scholar
Jenkins IH, Fernandez W, Playford ED, Lees AJ, Frackowiak RS, Passingham RE et al. (1992) Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Ann Neurol 32(6):749–757
Article
CAS
PubMed
Google Scholar
Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RSJ, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 32(2):151–161
Article
CAS
PubMed
Google Scholar
Rascol O. Sabatini U, Chollet F, Fabre N, Senard JM, Montastruc JL et al (1994) Normal activation of the supplementary motor area in patients with Parkinson’s disease undergoing long-term treatment with levodopa. J Neurol Neurosurg Psychiatry 57(5):567–571
Article
PubMed Central
CAS
PubMed
Google Scholar
Randhawa BK, Farley BG, Boyd LA (2013) Repetitive transcranial magnetic stimulation improves handwriting in Parkinson’s disease. Parkinsons Dis 2013:751925
PubMed Central
PubMed
Google Scholar
Morari M, Marti M, Sbrenna S, Fuxe K, Bianchi C, Beani L (1998) Reciprocal dopamine-glutamate modulation of release in the basal ganglia. Neurochem Int 33(5):383–397 pii: S0197018698000527
Article
CAS
PubMed
Google Scholar
Keck ME, Welt T, Müller MB, Erhardt A, Ohl F, Toschi N et al. (2002) Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology 43(1):101–109
Article
CAS
PubMed
Google Scholar
Grafman J, Pascual-Leone A, Alway D, Nichelli P, Gomez-Tortosa E, Hallett M (1994) Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. Neuroreport 5(9):1157–1160
Article
CAS
PubMed
Google Scholar
Jahanshahi M, Profice P, Brown RG, Ridding MC, Dirnberger G, Rothwell JC (1998) The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain 121(Pt 8):1533–1544
Article
PubMed
Google Scholar
Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci 354(1387):1229–1238. doi:10.1098/rstb.1999.0476
Article
PubMed Central
CAS
PubMed
Google Scholar
Mottaghy FM, Krause BJ, Kemna LJ, Töpper R, Tellmann L, Beu M et al (2000) Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neurosci Lett 280(3):167–170
Article
CAS
PubMed
Google Scholar
Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21(15):RC157 pii: 20015457
CAS
PubMed
Google Scholar
Gessler M, Bruns GA (1989) A physical map around the WAGR complex on the short arm of chromosome 11. Genomics 5(1):43–55 pii: 0888-7543(89)90084-0
Article
CAS
PubMed
Google Scholar
Dragasevic N, Potrebic A, Damjanović A, Stefanova E, Kostić VS (2002) Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson’s disease: an open study. Mov Disord Off J Mov Disord Soc 17(3):528–532
Article
Google Scholar
Fregni F, Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER et al (2004) Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75(8):1171–1174. doi:10.1136/jnnp.2003.02706075/8/1171
Article
PubMed Central
CAS
PubMed
Google Scholar
Boylan LS, Pullman SL, Lisanby SH, Spicknall KE, Sackeim HA (2001) Repetitive transcranial magnetic stimulation to SMA worsens complex movements in Parkinson’s disease. Clin Neurophysiol 112(2):259–264 pii: S1388-2457(00)00519-8
Article
CAS
PubMed
Google Scholar
Ghabra MB, Hallett M, Wassermann EM (1999) Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology 52(4):768–770
Article
CAS
PubMed
Google Scholar
Garcia L, D’Alessandro G, Bioulac B, Hammond C (2005) High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci 28(4):209–216. doi:10.1016/j.tins.2005.02.005
Article
CAS
PubMed
Google Scholar
Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59(5):706–713
Article
CAS
PubMed
Google Scholar
Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356
CAS
PubMed
Google Scholar
McIntyre CC, Savasta M, Walter BL, Vitek JL (2004) How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21(1):40–50
Article
PubMed
Google Scholar
Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C et al (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–1934
Article
CAS
PubMed
Google Scholar
Maltete D, Jodoin N, Karachi C, Houeto JL, Navarro S, Cornu P et al (2007) Subthalamic stimulation and neuronal activity in the substantia nigra in Parkinson’s disease. J Neurophysiol 97(6):4017–4022
Article
CAS
PubMed
Google Scholar
Kita H, Tachibana Y, Nambu A, Chiken S (2005) Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. J Neurosci Off J Soc Neurosci 25(38):8611–8619
Article
CAS
Google Scholar
Zhao XD, Cao YQ, Liu HH, Li FQ, You BM, Zhou XP (2009) Long term high frequency stimulation of STN increases dopamine in the corpus striatum of hemiparkinsonian rhesus monkey. Brain Res 1286:230–238
Article
CAS
PubMed
Google Scholar
Putzke JD, Wharen RE, Wszolek ZK, Turk MF, Strongosky AJ, Uitti RJ (2003) Thalamic deep brain stimulation for tremor-predominant Parkinson’s disease. Parkinsonism Relat Disord 10(2):81–88
Article
CAS
PubMed
Google Scholar
Dipti P, Yogesh B, Kain AK, Pauline T, Anju B, Sairam M et al (2003) Lead induced oxidative stress: beneficial effects of Kombucha tea. Biomed Environ Sci 16(3):276–282
CAS
PubMed
Google Scholar
Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP (2005) Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 62(4):554–560
Article
PubMed
Google Scholar
Peppe A, Pierantozzi M, Altibrandi MG, Giacomini P, Stefani A, Bassi A et al. (2001) Bilateral GPi DBS is useful to reduce abnormal involuntary movements in advanced Parkinson’s disease patients, but its action is related to modality and site of stimulation. Eur J Neurol Off J Eur Fed Neurol Soc 8(6):579–586
CAS
Google Scholar
Benabid AL, Pollak P, Gao D, Hofmann D, Limousin P, Gay E et al (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84(2):203–214
Article
CAS
PubMed
Google Scholar
Brown P, Mazzone P, Oliviero A, Altibrandi MG, Pilato F, Tonali PA et al (2004) Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Exp Neurol 188(2):480–490
Article
PubMed
Google Scholar
Hassani OK, Fèger J (1999) Effects of intrasubthalamic injection of dopamine receptor agonists on subthalamic neurons in normal and 6-hydroxydopamine-lesioned rats: an electrophysiological and c-Fos study. Neuroscience 92(2):533–543
Article
CAS
PubMed
Google Scholar
Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156(3):274–281
Article
PubMed
Google Scholar
Lozano AM, Dostrovsky J, Chen R, Ashby P (2002) Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol 1(4):225–231
Article
PubMed
Google Scholar
Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D et al (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol 61(1):89–96
Article
PubMed
Google Scholar
Burbaud P, Gross C, Bioulac B (1994) Effect of subthalamic high frequency stimulation on substantia nigra pars reticulata and globus pallidus neurons in normal rats. J Physiol Paris 88(6):359–361
Article
CAS
PubMed
Google Scholar
Tai CH, Boraud T, Bezard E, Bioulac B, Gross C, Benazzouz A (2003) Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J Off Publ Fed Am Soc Exp Biol 17(13):1820–1830
CAS
Google Scholar
Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C (2003) Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci Off J Soc Neurosci 23(25):8743–8751
CAS
Google Scholar
Lee KH, Chang SY, Roberts DW, Kim U (2004) Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J Neurosurg 101(3):511–517
Article
CAS
PubMed
Google Scholar
Jaggi JL, Umemura A, Hurtig HI, Siderowf AD, Colcher A, Stern MB et al (2004) Bilateral stimulation of the subthalamic nucleus in Parkinson’s disease: surgical efficacy and prediction of outcome. Stereotact Funct Neurosurg 82(2–3):104–114
Article
PubMed
Google Scholar
Holden KR (2012) Biological effects of pulsed electromagnetic field (PEMF) therapy. Med News
Siskin BF, Walker J (1995) Therapeutic aspects of electromagnetic fields for soft-tissue healing. In: Blank M (ed) Electromagnetic fields: biological interactions and mechanisms. Advances in Chemistry Series, vol 250. American Chemical Society, Washington, DC, pp 277–285
Chapter
Google Scholar
Iannitti T, Fistetto G, Esposito A, Rottigni V, Palmieri B (2013) Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: clinical experience in the elderly. Clin Interv Aging 8:1289–1293
Article
PubMed Central
PubMed
Google Scholar
Aktas I, Akgun K, Cakmak B (2007) Therapeutic effect of pulsed electromagnetic field in conservative treatment of subacromial impingement syndrome. Clin Rheumatol 26(8):1234–1239
Article
PubMed
Google Scholar
Thomas AW, Graham K, Prato FS, McKay J, Forster PM, Moulin DE et al (2007) A randomized, double-blind, placebo-controlled clinical trial using a low-frequency magnetic field in the treatment of musculoskeletal chronic pain. Pain Res Manage J Can Pain Soc (journal de la societe canadienne pour le traitement de la douleur) 12(4):249–258
Google Scholar
Lee PB, Kim YC, Lim YJ, Lee CJ, Choi SS, Park SH et al (2006) Efficacy of pulsed electromagnetic therapy for chronic lower back pain: a randomized, double-blind, placebo-controlled study. J Int Med Res 34(2):160–167
Article
CAS
PubMed
Google Scholar
Lappin MS, Lawrie FW, Richards TL, Kramer ED (2003) Effects of a pulsed electromagnetic therapy on multiple sclerosis fatigue and quality of life: a double-blind, placebo controlled trial. Altern Ther Health Med 9(4):38–48
PubMed
Google Scholar
Richards TL, Lappin MS, Acosta-Urquidi J, Kraft GH, Heide AC, Lawrie FW et al (1997) Double-blind study of pulsing magnetic field effects on multiple sclerosis. J Altern Complement Med 3(1):21–29
Article
CAS
PubMed
Google Scholar
Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N et al (2009) Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J Exp Clin Cancer Res 28:51
Article
PubMed Central
PubMed
Google Scholar
Sandyk R (1996) Freezing of gait in Parkinson’s disease is improved by treatment with weak electromagnetic fields. Int J Neurosci 85(1–2):111–124. doi:10.3109/00207459608986356
Article
CAS
PubMed
Google Scholar
Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, Runfeldt M et al (2010) Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis 19(1):191–210
PubMed
Google Scholar
Ericsson AD, Hazlewood CF, Markov M, Crawford F (2004) Specific Biochemical changes in circulating lymphocytes following acute ablation of symptoms in Reflex Sympathetic Dystrophy (RSD): a pilot study. In: Biological effects of EMF’s. KOS, Greece, pp 683–688
Google Scholar
Yost MG, Liburdy RP (1992) Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett 296(2):117–122 pii: 0014-5793(92)80361-J
Article
CAS
PubMed
Google Scholar
Edmonds DT (1993) Larmor precession as a mechanism for the detection of static and alternating magnetic fields. Bioelectrochem Bioenerg 30:3–12
Article
Google Scholar
Liboff AR, Cherng S, Jenrow KA, Bull A (2003) Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 microT magnetostatic fields. Bioelectromagnetics 24(1):32–38. doi:10.1002/bem.10063
Article
CAS
PubMed
Google Scholar
Demitrack MA, Thase ME (2009) Clinical significance of transcranial magnetic stimulation (TMS) in the treatment of pharmacoresistant depression: synthesis of recent data. Psychopharmacol Bull 42(2):5–38
PubMed
Google Scholar
Liboff AR (2004) Signal shapes in electromagnetic therapies: a primer. In: Rosch PJ, Markov MS (eds) Bioelectromagnetic medicine. Marcel Dekker, NY, pp 17–37
Sandyk R (1998) Reversal of a body image disorder (macrosomatognosia) in Parkinson’s disease by treatment with AC pulsed electromagnetic fields. Int J Neurosci 93(1–2):43–54
Article
CAS
PubMed
Google Scholar
Sandyk R (1994) A drug naive parkinsonian patient successfully treated with weak electromagnetic fields. Int J Neurosci 79(1–2):99–110
CAS
PubMed
Google Scholar
Sandyk R (1995) Reversal of visuospatial deficit on the Clock Drawing Test in Parkinson’s disease by treatment with weak electromagnetic fields. Int J Neurosci 82(3–4):255–268
Article
CAS
PubMed
Google Scholar
Ben-Shachar D, Belmaker RH, Grisaru N, Klein E (1997) TMS induces alterations in brain monoamines. J Neural Trans 104:191–197
Article
CAS
Google Scholar
Cerasa A, Koch G, Donzuso G, Mangone G, Morelli M, Brusa L et al (2015) A network centred on the inferior frontal cortex is critically involved in levodopa-induced dyskinesias. Brain 138(2):414–427
Article
PubMed
Google Scholar
Keck ME, Welt T, Post A, Müller MB, Toschi N, Wigger A et al (2001) Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 24(4):337–349
Article
CAS
Google Scholar
Fitzgerald PB, Brown TL, Marston NA, Daskalakis ZJ, De Castella A, Kulkarni J (2003) Transcranial magnetic stimulation in the treatment of depression: a double-blind, placebo-controlled trial. Arch Gen Psychiatry 60(10):1002–1008
PubMed
Google Scholar
Loo CK, Mitchell PB, Croker VM, Malhi GS, Wen W, Gandevia SC et al (2003) Double-blind controlled investigation of bilateral prefrontal transcranial magnetic stimulation for the treatment of resistant major depression. Psychol Med 33(1):33–40
Article
CAS
PubMed
Google Scholar
Janicak PG, O’Reardon RJ et al (2008) Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. J Clin Psychiatry 69(2):222–232
Article
PubMed
Google Scholar
Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108(1):1–16
Article
CAS
PubMed
Google Scholar
Dirnberger G, Jahanshahi M (2013) Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol 7(2):193–224
Article
PubMed
Google Scholar
Narayanan NS, Rodnitzky RL, Uc EY (2013) Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci 24(3):267–278
Article
PubMed
Google Scholar
Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord Off J Mov Disord Soc 6(4):288–292
Article
CAS
Google Scholar
Benazzouz A, Gross C, Féger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5(4):382–389
Article
CAS
PubMed
Google Scholar
Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249(4975):1436–1438
Article
CAS
PubMed
Google Scholar
Lang AE (2000) Surgery for Parkinson disease: a critical evaluation of the state of the art. Arch Neurol 57(8):1118–1125 pii:nnt00000
Article
CAS
PubMed
Google Scholar
Levy R, Lang AE, Dostrovsky JO, Pahapill P, Romas J, Saint-Cyr J et al (2001) Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain J Neurol 124(Pt 10):2105–2118
Article
CAS
Google Scholar
Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci Off J Soc Neurosci 23(5):1916–1923
CAS
Google Scholar
Lacombe E, Carcenac C, Boulet S, Feuerstein C, Bertrand A, Poupard A et al (2007) High-frequency stimulation of the subthalamic nucleus prolongs the increase in striatal dopamine induced by acute l-3,4-dihydroxyphenylalanine in dopaminergic denervated rats. Eur J Neurosci 26(6):1670–1680
Article
PubMed Central
PubMed
Google Scholar
Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 12(6):S40–S44
Google Scholar
Welter ML, Houeto J, Tezenas du Montcel S, Mesnage V, Bonnet AM, Pillon B et al (2002) Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain J Neurol 125(Pt 3):575–583
Article
CAS
Google Scholar
Stoffers D, Bosboom JL, Wolters E, Stam CJ, Berendse HW (2008) Dopaminergic modulation of cortico-cortical functional connectivity in Parkinson’s disease: an MEG study. Exp Neurol 213(1):191–195. doi:10.1016/j.expneurol.2008.05.021
Article
CAS
PubMed
Google Scholar
Degos B, Deniau JM, Thierry AM, Glowinski J, Pezard L, Maurice N (2005) Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. J Neurosci 25(33):7687–7696
Article
CAS
Google Scholar
Salin P, Manrique C, Forni C, Kerkerian-Le Goff L (2002) High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. J Neurosci 22(12):5137–5148 pii: 22/12/5137
CAS
PubMed
Google Scholar
Poulet E, Haesebaert F, Saoud M, Suaud-Chagny MF, Brunelin J (2010) Treatment of schizophrenic patients and rTMS. Psychiatr Danub 22(1):S143–S146
PubMed
Google Scholar
Markov MS (2007) History of Pulsed Electro Magnetic Field Therapy. PEMF Systems Inc
Sklar B (2014) Announcing the iMRS from swiss bionic solutions. Relax Restore Massage
Sklar B (2009) MRS 2000 + the revolutionary “sawtooth” wave impulse. Relax and Restore Massage Services
Andras V (1999) Proof of ion transport due to application of QRS System Salut-II. Quantron Medizin GmbH zHd Dr Fischer Nußloch