Maze I, Nestler E. The epigenetic landscape of addiction. Ann NY Acad Sci. 2011;1216:99–113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harstad E, Levy S. Attention-deficit/hyperactivity disorder and substance abuse. Pediatrics. 2014;134:e293–301.
Article
PubMed
Google Scholar
Meade CS, Watt MH, Sikkema KJ, Deng LX, Ranby KW, Skinner D, Pieterse D, Kalichmann SC. Methamphetamine use is associated with childhood sexual abuse and HIV sexual risk behaviors among patrons of alcohol-serving venues in Cape Town, South Africa. Drug Alcohol Depend. 2012;126:232–9.
Article
PubMed
PubMed Central
Google Scholar
Oswald LM, Wand GS, Kuwabara H, Wong DF, Zhu S, Brasic JR. History of childhood adversity is positively associated with ventral striatal dopamine responses to amphetamine. Psychopharmacology. 2014;231:2417–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dean AC, Kohno M, Hellemann G, London ED. Childhood maltreatment and amygdala connectivity in methamphetamine dependence: a pilot study. Brain Behav. 2014;4:867–76.
Article
PubMed
PubMed Central
Google Scholar
Boecker R, Holz N, Buchmann A, Blomeyer D, Plichta M, Wolf I, Baumeister S, Meyer-Lindenberg A, Banaschewski T, Brandeis D, Laucht M. Impact of early life adversity on reward processing in young adults: EEG-fMRI results from a prospective study over 25 years. PLoS ONE. 2014;9:e104185.
Article
PubMed
PubMed Central
Google Scholar
Kosten T, Miserendino M, Kehoe P. Enhanced acquisition of cocaine self-administration in adult rats with neonatal isolation stress experience. Brain Res. 2000;875:44–50.
Article
CAS
PubMed
Google Scholar
Der-Avakian A, Markou A. Neonatal maternal separation exacerbates the reward-enhancing effect of acute amphetamine administration and the anhedonic effect of repeated social defeat in adult rats. Neuroscience. 2010;170:1189–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Xue X, Shao S, Shao F, Wang W. Cognitive, emotional and neurochemical effects of repeated maternal separation in adolescent rats. Brain Res. 2013;1518:82–90.
Article
CAS
PubMed
Google Scholar
Volkow ND, Koob G, Baler R. Biomarkers in substance use disorders. ACS Chem Neurosci. 2015;6:522–5.
Article
CAS
PubMed
Google Scholar
Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, Peña Y, Murphy ER, Shah Y, Probst K, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science. 2007;315:1267–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cook EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet. 1995;56:993–8.
CAS
PubMed
PubMed Central
Google Scholar
Barr CL, Xu C, Kroft J, Feng Y, Wigg K, Zai G, Tannock R, Schachar R, Malone M, Roberts W, et al. Haplotype study of three polymorphisms at the dopamine transporter locus confirm linkage to attention-deficit/hyperactivity disorder. Biol Psychiatry. 2001;49:333–9.
Article
CAS
PubMed
Google Scholar
Pasini A, Sinibaldi L, Paloscia C, Douzgou S, Pitzianti M, Romeo E, Curatolo P, Pizzuti A. Neurocognitive effects of methylphenidate on ADHD children with different DAT genotypes: a longitudinal open label trial. Eur J Paediatr Neurol. 2013;17:407–14.
Article
CAS
PubMed
Google Scholar
Riddle E, Fleckenstein A, Hanson G. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 2006;8:E413–8.
Article
PubMed
PubMed Central
Google Scholar
Tobler PN. Behavioral Functions of Dopamine Neurons. In: Iversen L, Iversen S, Dunnett S, Bjorklund A, editors. Dopamine Handbook. 1st ed. New York: Oxford University Press; 2010. p. 316–30.
Google Scholar
Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000;24:31–9.
Article
CAS
PubMed
Google Scholar
Sagvolden T, Russell V, Aase H, Johansen E, Farshbaf M. Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57:1239–47.
Article
PubMed
Google Scholar
Russell V. Neurobiology of animal models of attention-deficit hyperactivity disorder. J Neurosci Methods. 2007;161:185–98.
Article
PubMed
Google Scholar
Womersley JS, Hsieh JH, Kellaway LA, Gerhardt GA, Russell VA. Maternal separation affects dopamine transporter function in the spontaneously hypertensive rat: an in vivo electrochemical study. Behav Brain Funct. 2011;7:49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Womersley JS, Kellaway LA, Stein DJ, Gerhardt GA, Russell VA. Effect of cocaine on striatal dopamine clearance in a rat model of developmental stress and attention-deficit/hyperactivity disorder. Stress. 2016;19:78–82.
Article
PubMed
Google Scholar
Barr AM, Panenka WJ, MacEwan GW, Thornton AE, Lang DJ, Honer WG, Lecomte T. The need for speed: an update on methamphetamine addiction. J Psychiatry Neurosci. 2006;31:301–13.
PubMed
PubMed Central
Google Scholar
Garza RDL, Mahoney J. A distinct neurochemical profile in WKY rats at baseline and in response to acute stress: implications for animal models of anxiety and depression. Brain Res. 2004;1021:209–18.
Article
Google Scholar
Sagvolden T, Johansen EB, Wøien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby O, Jensen V, Aase H, Russell VA, et al. The spontaneously hypertensive rat model of ADHD-the importance of selecting the appropriate reference strain. Neuropharmacology. 2009;57:619–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kandel D, Logan J. Patterns of drug use from adolescence to young adulthood: I. Periods of risk for initiation, continued use, and discontinuation. Am J Public Health. 1984;74:660–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–93.
Article
CAS
PubMed
Google Scholar
Carlezon WA. Place conditioning to study drug reward and aversion. Methods Mol Med. 2003;84:243–9.
CAS
PubMed
Google Scholar
SABS: South African National Standard. The Care and Use of Animals for Scientific Purposes (SANS 10386:2008). 1st edn. Pretoria: South African Bureau of Standards, Standards Division; 2008.
Mohr B. The current status of laboratory animal ethics in South Africa. ATLA. 2013;41:48–51.
Google Scholar
Daniels WM, Pietersen CY, Carstens ME, Stein DJ. Maternal separation in rats leads to anxiety-like behavior and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metab Brain Dis. 2004;19:3–14.
Article
CAS
PubMed
Google Scholar
Kosten TA, Huang W, Nielsen DA. Sex and litter effects on anxiety and DNA methylation levels of stress and neurotrophin genes in adolescent rats. Dev Psychobiol. 2014;56:392–406.
Article
CAS
PubMed
Google Scholar
Kosten TA, Nielsen DA. Litter and sex effects on maternal behavior and DNA methylation of the Nr3c1 exon 17 promoter gene in hippocampus and cerebellum. Int J Dev Neurosci. 2014;36:5–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volkow ND. What do we know about drug addiction? Am J Psychiatry. 2005;162:1401–2.
Article
PubMed
Google Scholar
Wultz B, Sagvolden T, Moser E, Moser M. The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on exploratory behavior. Behav Neural Biol. 1990;53:88–102.
Article
CAS
PubMed
Google Scholar
Faure J, Stein D, Daniels W. Maternal separation fails to render animals more susceptible to methamphetamine-induced conditioned place preference. Metab Brain Dis. 2009;24:541–59.
Article
CAS
PubMed
Google Scholar
Silva CD, Neves AF, Dias AI, Freitas HJ, Mendes SM, Pita I, Viana SD, Oliveira PAD, Cunha RA, Ribeiro CAF. A single neurotoxic dose of methamphetamine induces a long-lasting depressive-like behaviour in mice. Neurotox Res. 2014;25:295–304.
Article
CAS
PubMed
Google Scholar
dela Peña I, Ahn H, Choi J, Shin C, Ryu J, Cheong J. Reinforcing effects of methamphetamine in an animal model of attention-deficit/hyperactivity disorder- the spontaneously hypertensive rat. Behav Brain Funct. 2010;6:72.
Article
PubMed
PubMed Central
Google Scholar
dela Peña I, Lee JC, Lee HL, Woo TS, Lee HC, Sohn AR, Cheong JH. Differential behavioral responses of the spontaneously hypertensive rat to methylphenidate and methamphetamine: lack of a rewarding effect of repeated methylphenidate treatment. Neurosci Lett. 2012;514:189–93.
Article
PubMed
Google Scholar
Zhang Y, Loonam T, Noailles P, Angulo J. Comparison of cocaine- and methamphetamine-evoked dopamine and glutamate overflow in somatodendritic and terminal field regions of the rat brain during acute, chronic, and early withdrawal conditions. Ann NY Acad Sci. 2001;937:93–120.
Article
CAS
PubMed
Google Scholar
Wobbrock J, Findlater L, Gergle D, Higgins J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ‘11). New York: ACM Press; 2011. p. 143–6.
Google Scholar
Lehner MH, Taracha E, Kaniuga E, Wisłowska-Stanek A, Wróbel J, Sobolewska A, Turzyńska D, Skórzewska A, Płaźnik A. High-anxiety rats are less sensitive to the rewarding affects of amphetamine on 50 kHz USV. Behav Brain Res. 2014;275:234–42.
Article
CAS
PubMed
Google Scholar
Roberts W, Peters J, Adams Z, Lynam D, Milich R. Identifying the facets of impulsivity that explain the relation between ADHD symptoms and substance use in a nonclinical sample. Addict Behav. 2014;39:1272–7.
Article
PubMed
PubMed Central
Google Scholar
dela Peña I, Ahn H, Choi J, Shin C, Ryu J, Cheong J. Methylphenidate self-administration and conditioned place preference in an animal model of attention-deficit hyperactivity disorder: the spontaneously hypertensive rat. Behav Pharmacol. 2011;22:31–9.
Article
PubMed
Google Scholar
dela Peña I, de la Peña J, Kim B, Han D, Noh M, Cheong J. Gene expression profiling in the striatum of amphetamine-treated spontaneously hypertensive rats which showed amphetamine conditioned place preference and self-administration. Arch Pharm Res. 2015;38:865–75.
Article
PubMed
Google Scholar
Yang P, Cuellar D III, Swann A, Dafny N. Age and genetic strain differences in response to chronic methylphenidate administration. Behav Brain Res. 2011;218:206–17.
Article
CAS
PubMed
Google Scholar
Yang P, Swann A, Dafny N. Acute and chronic methylphenidate dose-response assessment on three adolescent male rat strains. Brain Res Bull. 2006;71:301–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langen B, Dost R. Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists. Atten Defic Hyperact Disord. 2011;3:1–12.
Article
PubMed
Google Scholar
Everitt BJ, Robbins TW. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev. 2013;37:1946–54.
Article
PubMed
Google Scholar
Kelley A. Measurement of rodent stereotyped behavior. Curr Protoc Neurosci. 2001;4:8.8.1–8.13.
Google Scholar
Camp D, Browman K, Robinson T. The effects of methamphetamine and cocaine on motor behavior and extracellular dopamine in the ventral striatum of Lewis versus Fischer 344 rats. Brain Res. 1994;668:180–93.
Article
CAS
PubMed
Google Scholar
McCarty R, Chiueh C, Kopin I. Differential behavioral responses of spontaneously hypertensive (SHR) and normotensive (WKY) rats to d-amphetamine. Pharmacol Biochem Behav. 1980;12:53–9.
Article
CAS
PubMed
Google Scholar
Knackstedt L, Kalivas P. Extended access to cocaine self-administration enhances drug-primed reinstatement but not behavioral sensitization. J Pharmacol Exp Ther. 2007;322:1103–9.
Article
CAS
PubMed
Google Scholar
Eisener-Dorman AF, Grabowski-Boase L, Tarantino LM. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice. Behav Brain Funct. 2011;7:29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T. Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med. 1997;38:470–4.
CAS
PubMed
Google Scholar
Myers M, Whittemore S, Hendley E. Changes in catecholamine neuronal uptake and receptor binding in the brains of spontaneously hypertensive rats (SHR). Brain Res. 1981;220:325–38.
Article
CAS
PubMed
Google Scholar
Provençal N, Binder E. The effects of early life stress on the epigenome: from the womb to adulthood and even before. Exp Neurol. 2015;268:10–20.
Article
PubMed
Google Scholar
Antonopoulos J, Dori I, Dinopoulos A, Chiotelli M, Parnavelas J. Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience. 2002;110:245–56.
Article
CAS
PubMed
Google Scholar
Marco EM, Macrì S, Laviola G. Critical age windows for neurodevelopmental psychiatric disorders: evidence from animal models. Neurotox Res. 2011;19:286–307.
Article
PubMed
Google Scholar
Money K, Stanwood G. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci. 2013;7:260.
Article
PubMed
PubMed Central
Google Scholar
Martin LJ, Spicer DM, Lewis MH, Gluck JP, Cork LC. Social deprivation of infant rhesus monkeys alters the chemoarchitecture of the brain: I, subcortical regions. J Neurosci. 1991;11:3344–58.
CAS
PubMed
Google Scholar
Cagniard B, Sotnikova T, Gainetdinov R, Zhuang X. The dopamine transporter expression level differentially affects responses to cocaine and amphetamine. J Neurogenet. 2014;28:112–21.
Article
CAS
PubMed
Google Scholar
Stein MA, Waldman I, Newcorn J, Bishop J, Kittles R, Cook EH. Dopamine transporter genotype and stimulant dose-response in youth with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2014;24:238–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Womersley JS, Mpeta B, Dimatelis JJ, Kellaway LA, Stein DJ, Russell VA. Developmental stress elicits preference for methamphetamine in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Zenodo. 2016. doi:10.5281/zenodo.52569.
Google Scholar