Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910.
Article
PubMed
Google Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5-. 5th ed. Washington, DC: American Psychiatric Association; 2013. p. 50.
Book
Google Scholar
Schaefer GB, Mendelsohn NJ. Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet Med. 2008;10(1):4–12.
Article
PubMed
Google Scholar
Schaaf CP, Zoghbi HY. Solving the autism puzzle a few pieces at a time. Neuron. 2011;70(5):806–8.
Article
CAS
PubMed
Google Scholar
Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;7(5):753–9.
Article
Google Scholar
Niyazov DM, Kahler SG, Frye RE. Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol Syndromol. 2016;7(3):122–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martikainen MH, Chinnery PF. Mitochondrial disease: mimics and chameleons. Pract Neurol. 2015;15(6):424–35.
Article
PubMed
Google Scholar
Frye RE, Rossignol DA. Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr Res. 2011;69:41–7.
Article
Google Scholar
Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17:290–314.
Article
CAS
PubMed
Google Scholar
Lombard J. Autism: a mitochondrial disorder? Med Hypotheses. 1998;50:497–500.
Article
CAS
PubMed
Google Scholar
Valenti D, de Bari L, De Filippis B, Henrion-Caude A, Vacca RA. Mitochondrial dysfunction as a central act or in intellectual disability-related diseases: an overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci Behav Rev. 2014;46:202–17.
Article
CAS
Google Scholar
Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, et al. Mitochondrial dysfunction in autism. JAMA. 2010;304:2389–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frye RE. Biomarkers of abnormal energy metabolism in children with autism spectrum disorder. NAJ Med Sci. 2012;5:141–7.
Google Scholar
Oliveira G, Diogo L, Grazina M, Garcia P, Ataíde A, Marques C, et al. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. 2005;47:185–9.
Article
CAS
PubMed
Google Scholar
Goldenthal MJ, Damle S, Sheth S, Shah N, Melvin J, Jethva R, et al. Mitochondrial enzyme dysfunction in autism spectrum disorders; a novel biomarker revealed from buccal swab analysis. Biomark Med. 2015;9(10):957–65.
Article
CAS
PubMed
Google Scholar
Parikshak NN, Gandal MJ, Geschwind DH. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat Rev Genet. 2015;16(8):441–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Napoli E, Wong S, Hertz-Picciotto I, Giulivi C. Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics. 2014;133(5):e1405–10.
Article
PubMed
PubMed Central
Google Scholar
Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL, et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS ONE. 2008;3(11):e3815.
Article
PubMed
PubMed Central
Google Scholar
Palmieri L, Persico AM. Mitochondrial dysfunction in autism spectrum disorders: cause or effect? Biochim Biophys Acta. 2010;1797(6–7):1130–7.
Article
CAS
PubMed
Google Scholar
Fillano JJ, Goldenthal MJ, Rhodes CH, Marín-García J. Mitochondrial dysfunction in patients with hypotonia, epilepsy, autism, and developmental delay: HEADD syndrome. J Child Neurol. 2002;17(6):435–9.
Article
PubMed
Google Scholar
Smith M, Spence MA, Flodman P. Nuclear and mitochondrial genome defects in autism. Ann NY Acad Sci. 2009;1151:102–32.
Article
CAS
PubMed
Google Scholar
Gu F, Chauhan V, Kaur K, Brown WT, LaFauci G, Wegiel J, et al. Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatry. 2013;3:e299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitceathly RD, Rahman S, Hanna MG. Single deletions in mitochondrial DNA–molecular mechanisms and disease phenotypes in clinical practice. Neuromuscul Disord. 2012;22(7):577–86.
Article
CAS
PubMed
Google Scholar
Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N, et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics. 2007;120:1326–33.
Article
PubMed
Google Scholar
Méhes K. Informative morphogenetic variants (minor congenital anomalies). Orv Hetil. 1986;127(49):3001–3.
PubMed
Google Scholar
NEPSYBANK. Magyar Klinikai Neurogenetikai Társaság, Budapest. http://molneur.webdoktor.hu. Accessed 03 April 2016.
Remenyi V, Inczedy-Farkas G, Komlosi K, Horvath R, Maasz A, Janicsek I, et al. Retrospective assessment of the most common mitochondrial DNA mutations in a large Hungarian cohort of suspect mitochondrial cases. Mitochondrial DNA. 2015;26(4):572–8.
Article
CAS
PubMed
Google Scholar
Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77.
Article
CAS
PubMed
Google Scholar
Chi square, Fisher exact test. http://vassarstats.net/odds2x2.html. Accessed 20 Jul 2017.
Picard Tools–By Broad Institute. http://broadinstitute.github.io/picard/. Accessed 02 Jun 2017.
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):754–60.
Article
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6(2):80–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balicza P, Grosz Z, Gonzalez MA, Bencsik R, Pentelenyi K, Gal A, et al. Genetic background of the hereditary spastic paraplegia phenotypes in Hungary—an analysis of 58 probands. J Neurol Sci. 2016;364:116–21.
Article
CAS
PubMed
Google Scholar
Cooper DN, Ball EV, Krawczak M. The human gene mutation database. Nucleic Acids Res. 1998;26(1):285–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morava E, van den Heuvel L, Hol F, de Vries MC, Hogeveen M, Rodenburg RJ, et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology. 2006;67(10):1823–6.
Article
CAS
PubMed
Google Scholar
Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA. 2014;312(1):68–77.
Article
PubMed
Google Scholar
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for molecular pathology. Genet Med. 2015;17(5):405–24.
Article
PubMed
PubMed Central
Google Scholar
Aramaki M, Udaka T, Kosaki R, Makita Y, Okamoto N, Yoshihashi H, et al. Phenotypic spectrum of CHARGE syndrome with CHD7 mutations. J Pediatr. 2006;148:410–4.
Article
CAS
PubMed
Google Scholar
Karniely S, Weekes MP, Antrobus R, Rorbach J, vanHaute L, Umrania Y, et al. Human cytomegalovirus infection upregulates the mitochondrial transcription and translation machineries. Mbio. 2016;7(2):e00029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basson MA, van Ravenswaaij-Arts C. Functional insights into chromatin remodelling from studies on CHARGE syndrome. Trends Genet. 2015;31(10):600–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koyanagi M, Asahara S, Matsuda T, Hashimoto N, Shingeyama Y, Shibutani Y, et al. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLoS ONE. 2011;6:e23238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang S, Ren G, Steiner RD, Merkens LS, Roullet JB, Korade Z. Elevated autophagy and mitochondrial dysfunction in the Smith–Lemli–Opitz syndrome. Mol Genet Metabol Rep. 2014;1:431–42.
Article
CAS
Google Scholar
Kornblum C, Nicholls TJ, Haack TB, Schöler S, Peeva V, Danhauser K, et al. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat Genet. 2013;45:214–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyynismaa H, Ylikallio E, Patel M, Molnar MJ, Haller RG, Suomalainen A. A heterozygous truncating mutation in RRM2B causes autosomal-dominant progressive external ophthalmoplegia with multiple mtDNA deletions. Am J Hum Genet. 2009;5(2):290–5.
Article
Google Scholar
Suomalianen A, Kaukonen J. Disease caused by nuclear genes affecting mtDNA stability. Am J Meg Genet. 2001;106:53–61.
Article
Google Scholar
Chalkia D, Singh LN, Leipzig J, Lvova M, Derbeneva O, Lakatos A, et al. Association between mitochondrial DNA Haplogroup variation and autism spectrum disorders. JAMA Psychiatry. 2017;74(11):1161–8.
Article
PubMed
Google Scholar
Pentelenyi K, Remenyi V, Gal A, Milley GM, Csosz A, Mende BG, et al. Asian-specific mitochondrial genome polymorphism (9-bp deletion) in Hungarian patients with mitochondrial disease. Mitochondrial DNA A. 2016;27(3):1697–700.
CAS
Google Scholar
Beunders G, van de Kamp J, Vasudevan P, Morton J, Smets K, Kleefstra T, et al. A detailed clinical analysis of 13 patients with AUTS2 syndrome further delineates the phenotypic spectrum and underscores the behavioural phenotype. J Med Genet. 2016;53(8):523–32.
Article
PubMed
Google Scholar
Bartlett CW, Flax JF, Logue MW, Vieland VJ, Bassett AS, Tallal P, et al. A major susceptibility locus for specific language impairment is located on 13q21. Am J Hum Genet. 2002;71:45–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bi W, Ohyama T, Nakamura H, Yan J, Visvanathan J, Justice MJ, et al. Inactivation of Rai1 in mice recapitulates phenotypes observed in chromosome engineered mouse models for Smith–Magenis syndrome. Hum Mol Genet. 2005;14:983–95.
Article
CAS
PubMed
Google Scholar
Zhang F, Potocki L, Sampson JB, Liu P, Sanchez-Valle A, Robbins-Furman P, et al. Identification of uncommon recurrent Potocki–Lupski syndrome-associated duplications and the distribution of rearrangement types and mechanisms in PTLS. Am J Hum Genet. 2010;86:462–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Girirajan S, Elsas LJ, Devriendt K, Elsea SH. RAI1 variations in Smith–Magenis syndrome patients without 17p11.2 deletions. J Med Genet. 2005;42:820–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald ML, MacMullen C, Liu DJ, Leal SM, Davis RL. Genetic association of cyclic AMP signaling genes with bipolar disorder. Transl Psychiatry. 2012;2(10):e169.
Article
CAS
PubMed
PubMed Central
Google Scholar
MitoBreak. http://mitobreak.portugene.com. Accessed 27 Nov 2017.
Guo Y, Deng X, Zhang J, Su L, Xu H, Luo Z, et al. Analysis of the MRPL3, DNAJC13 and OFCC1 variants in Chinese Han patients with TS-CTD. Neurosci Lett. 2012;517(1):18–20.
Article
CAS
PubMed
Google Scholar