Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci. 2000;3:1178–83. https://doi.org/10.1038/81453.
Article
CAS
PubMed
Google Scholar
Borgland SL. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci. 2004;24:7482–90. https://doi.org/10.1523/JNEUROSCI.1312-04.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi KH, Edwards S, Graham DL, Larson EB, Whisler KN, Simmons D, et al. Reinforcement-related regulation of AMPA glutamate receptor subunits in the ventral tegmental area enhances motivation for cocaine. J Neurosci. 2011;31:7927–37. https://doi.org/10.1523/JNEUROSCI.6014-10.2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deroche-Gamonet V. Evidence for Addiction-like Behavior in the Rat. Science. 2004;305:1014–7. https://doi.org/10.1126/science.1099020.
Article
CAS
PubMed
Google Scholar
Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci. 1988;85:5274–8. https://doi.org/10.1073/pnas.85.14.5274.
Article
PubMed
PubMed Central
Google Scholar
Dickman DK, Davis GW. The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science. 2009;326:1127–30. https://doi.org/10.1126/science.1179685.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron. 2018;100:314–29. https://doi.org/10.1016/j.neuron.2018.10.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engblom D, Bilbao A, Sanchis-Segura C, Dahan L, Perreau-Lenz S, Balland B, et al. Glutamate receptors on dopamine neurons control the persistence of cocaine seeking. Neuron. 2008;59:497–508. https://doi.org/10.1016/j.neuron.2008.07.010.
Article
CAS
PubMed
Google Scholar
Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem. 2016;139:973–96. https://doi.org/10.1111/jnc.13687.
Article
CAS
PubMed
Google Scholar
Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J, et al. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science. 2014;344:313–9. https://doi.org/10.1126/science.1249240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grimm JW, Hope BT, Wise RA, Shaham Y. Incubation of cocaine craving after withdrawal. Nature. 2001;412:141–2. https://doi.org/10.1038/35084134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guzman D, Carreira MB, Friedman AK, Adachi M, Neve RL, Monteggia LM, et al. Inactivation of NMDA receptors in the ventral tegmental area during cocaine self-administration prevents GluA1 up-regulation but with paradoxical increases in cocaine-seeking behavior. J Neurosci. 2017. https://doi.org/10.1523/JNEUROSCI.2828-16.2017.
Article
PubMed
Google Scholar
Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007;8:844–58. https://doi.org/10.1038/nrn2234.
Article
CAS
PubMed
Google Scholar
Lane DA, Reed B, Kreek MJ, Pickel VM. Differential glutamate AMPA-receptor plasticity in subpopulations of VTA neurons in the presence or absence of residual cocaine: implications for the development of addiction. Neuropharmacology. 2011;61:1129–40. https://doi.org/10.1016/j.neuropharm.2010.12.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu W. Repeated administration of amphetamine or cocaine does not alter AMPA receptor subunit expression in the rat midbrain. Neuropsychopharmacology. 2002;26:1–13. https://doi.org/10.1016/S0893-133X(01)00272-X.
Article
PubMed
Google Scholar
Moulin TC, Petiz LL, Rayêe D, Winne J, Maia RG, Lima da Cruz RV, et al. Chronic in vivo optogenetic stimulation modulates neuronal excitability, spine morphology, and Hebbian plasticity in the mouse hippocampus. Hippocampus. 2019. https://doi.org/10.1002/hipo.23080.
Article
PubMed
Google Scholar
Moulin TC, Rayêe D, Williams MJ, Schiöth HB. The synaptic scaling literature: A systematic review of methodologies and quality of reporting. Front: Cell. Neurosci; 2020. https://doi.org/10.3389/fncel.2020.00164.
Book
Google Scholar
Pérez-Otaño I, Ehlers MD. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci. 2005;28:229–38. https://doi.org/10.1016/j.tins.2005.03.004.
Article
CAS
PubMed
Google Scholar
Pignatelli M, Bonci A. Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron. 2015;86:1145–57. https://doi.org/10.1016/j.neuron.2015.04.015.
Article
CAS
PubMed
Google Scholar
Qiu Z, Sylwestrak EL, Lieberman DN, Zhang Y, Liu X-Y, Ghosh A. The rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci. 2012;32:989–94. https://doi.org/10.1523/JNEUROSCI.0175-11.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson T. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1993;18:247–91. https://doi.org/10.1016/0165-0173(93)90013-P.
Article
CAS
PubMed
Google Scholar
Soden ME, Chen L. Fragile X protein fmrp is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. J Neurosci. 2010;30:16910–21. https://doi.org/10.1523/JNEUROSCI.3660-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuber GD, Klanker M, de Ridder B, Bowers MS, Joosten RN, Feenstra MG, et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science. 2008;321:1690–2. https://doi.org/10.1126/science.1160873.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol. 2012;4:a005736. https://doi.org/10.1101/cshperspect.a005736.
Article
PubMed
PubMed Central
Google Scholar
Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5:97–107. https://doi.org/10.1038/nrn1327.
Article
CAS
PubMed
Google Scholar
Ungless MA, Whistler JL, Malenka RC, Bonci A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature. 2001;411:583–7. https://doi.org/10.1038/35079077.
Article
CAS
PubMed
Google Scholar
Wang G, Gilbert J, Man H-Y. AMPA receptor trafficking in homeostatic synaptic plasticity: functional molecules and signaling cascades. Neural Plast. 2012;2012:1–12. https://doi.org/10.1155/2012/825364.
Article
CAS
Google Scholar
Yamamoto K, Tanei Z-I, Hashimoto T, Wakabayashi T, Okuno H, Naka Y, et al. Chronic optogenetic activation augments aβ pathology in a mouse model of Alzheimer disease. Cell Rep. 2015;11:859–65. https://doi.org/10.1016/j.celrep.2015.04.017.
Article
CAS
PubMed
Google Scholar
Zhang XF, Hu XT, White FJ, Wolf ME. Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther. 1997;281:699–706.
CAS
PubMed
Google Scholar
Zweifel LS, Argilli E, Bonci A, Palmiter RD. Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron. 2008;59:486–96. https://doi.org/10.1016/j.neuron.2008.05.028.
Article
CAS
PubMed
PubMed Central
Google Scholar