Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, et al. The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry. 2003;64(12):1465–75.
Article
PubMed
Google Scholar
Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry. 2000;48(8):766–77.
Article
CAS
PubMed
Google Scholar
Schroeter ML, Abdul-Khaliq H, Sacher J, Steiner J, Blasig IE, Mueller K. Mood disorders are glial disorders: evidence from in vivo studies. Cardiovasc Psychiatry Neurol. 2010;2010:780645.
Article
PubMed
PubMed Central
Google Scholar
Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001;58(6):545–53.
Article
CAS
PubMed
Google Scholar
Vostrikov VM, Uranova NA, Orlovskaya DD. Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res. 2007;94(1–3):273–80.
Article
PubMed
Google Scholar
Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, et al. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci. 2007;8:2.
Article
PubMed
PubMed Central
Google Scholar
Haglid KG, Yang Q, Hamberger A, Bergman S, Widerberg A, Danielsen N. S-100beta stimulates neurite outgrowth in the rat sciatic nerve grafted with acellular muscle transplants. Brain Res. 1997;753:196–201.
Article
CAS
PubMed
Google Scholar
Akuzawa S, Kazui T, Shi E, Yamashita K, Bashar AH, Terada H. Interleukin-1 receptor antagonist attenuates the severity of spinal cord ischemic injury in rabbits. J Vasc Surg. 2008;48(3):694–700.
Article
PubMed
Google Scholar
Hetzel G, Moeller O, Evers S, Erfurth A, Ponath G, Arolt V, et al. The astroglial protein S100B and visually evoked event-related potentials before and after antidepressant treatment. Psychopharmacology. 2005;178(2–3):161–6.
Article
CAS
PubMed
Google Scholar
Schroeter ML, Steiner J. Elevated serum levels of the glial marker protein S100B are not specific for schizophrenia or mood disorders. Mol Psychiatry. 2009;14(3):235–7.
Article
CAS
PubMed
Google Scholar
Schmidt FM, Mergl R, Stach B, Jahn I, Schönknecht P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE), but not S100B in major depressive disorder. World J Biol Psychiatry. 2015;16(2):106–13.
Article
PubMed
Google Scholar
Gos T, Schroeter ML, Lessel W, Bernstein HG, Dobrowolny H, Schiltz K, et al. S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: a postmortem study. J Psychiatr Res. 2013;47(11):1694–9.
Article
PubMed
Google Scholar
Arolt V, Peters M, Erfurth A, Wiesmann M, Missler U, Rudolf S, et al. S100B and response to treatment in major depression: a pilot study. Eur Neuropsychopharmacol. 2003;13(4):235–9.
Article
CAS
PubMed
Google Scholar
Schroeter ML, Abdul-Khaliq H, Krebs M, Diefenbacher A, Blasig IE. Serum markers support disease specific glial pathology in major depression. J Affect Disord. 2008;111(2–3):271–80.
Article
CAS
PubMed
Google Scholar
Ambrée O, Bergink V, Grosse L, Alferink J, Drexhage HA, Rothermundt M, et al. S100B Serum levels predict treatment response in patients with melancholic depression. Int J Neuropsychopharmacol.2015; 19(3):pyv103.
Google Scholar
Femenía T, Gómez-Galán M, Lindskog M, Magara S. Dysfunctional hippocampal activity affects emotion and cognition in mood disorders. Brain Res. 2012;1476:58–70.
Article
PubMed
Google Scholar
Eriksson TM, Delagrange P, Spedding M, Popoli M, Mathé AA, Ögren SO, et al. Emotional memory impairments in a genetic rat model of depression: involvement of 5-HT/MEK/Arc signaling in restoration. Mol Psychiatry. 2012;17(2):173–84.
Article
CAS
PubMed
Google Scholar
Fenli S, Feng W, Ronghua Z, Huande L. Biochemical mechanism studies of venlafaxine by metabonomic method in rat model of depression. Eur Rev Med Pharmacol Sci. 2013;17(1):41–8.
CAS
PubMed
Google Scholar
Li ZY, Zheng XY, Gao XX, Zhou YZ, Sun HF, Zhang LZ, et al. Study of plasma metabolic profiling and biomarkers of chronic unpredictable mild stress rats based on gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(24):3539–46.
Article
CAS
PubMed
Google Scholar
Chen Z, Xu H, Haimano S, Li X, Li XM. Quetiapine and venlafaxine synergically regulate heme oxygenase-2 protein expression in the hippocampus of stressed rats. Neurosci Lett. 2005;389(3):173–7.
Article
CAS
PubMed
Google Scholar
Xing Y, He J, Hou J, Lin F, Tian J, Kurihara H. Gender differences in CMS and the effects of antidepressant venlafaxine in rats. Neurochem Int. 2013;63(6):570–5.
Article
CAS
PubMed
Google Scholar
Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS. Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry. 2007;62(5):496–504.
Article
CAS
PubMed
Google Scholar
Luo Y, Kuang S, Xue L, Yang J. The mechanism of 5-lipoxygenase in the impairment of learning and memory in rats subjected to chronic unpredictable mild stress. Physiol Behav. 2016;167:145–53.
Article
CAS
PubMed
Google Scholar
Li H, Zhang L, Huang Q. Differential expression of mitogen-activated protein kinase signaling pathway in the hippocampus of rats exposed to chronic unpredictable stress. Behav Brain Res. 2009;205(1):32–7.
Article
CAS
PubMed
Google Scholar
Bjørnebekk A, Mathé AA, Brené S. The antidepressant effects of running and escitawlopram are associated with levels of hippocampal NPY and Y1 receptor but not cell proliferation in a rat model of depression. Hippocampus. 2010;20(7):820–8.
PubMed
Google Scholar
Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry. 2008;64(4):293–301.
Article
CAS
PubMed
Google Scholar
Gosselin RD, Gibney S, O’Malley D, Dinan TG, Cryan JF. Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience. 2009;159(2):915–25.
Article
CAS
PubMed
Google Scholar
Ye Y, Wang G, Wang H, Wang X. Brain-derived neurotrophic factor (BDNF) infusion restored astrocytic plasticity in the hippocampus of a rat model of depression. Neurosci Lett. 2011;503(1):15–9.
Article
CAS
PubMed
Google Scholar
Rothermundt M, Falkai P, Ponath G, Abel S, Bürkle H, Diedrich M, Siegmund A, Pedersen A, Maier W, Schramm J, Suslow T, Ohrmann P, Arolt V, et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry. 2004;9(10):897–9.
Article
CAS
PubMed
Google Scholar
Haglid KG, Yang Q, Hamberger A, Bergman S, Widerberg A, Danielsen N. S-100beta stimulates neurite outgrowth in the rat sciatic nerve grafted with acellular muscle transplants. Brain Res. 1997;753(2):196–201.
Article
CAS
PubMed
Google Scholar
Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793(6):1008–22.
Article
CAS
PubMed
Google Scholar
Schroeter ML, Steiner J, Mueller K. Glial pathology is modified by age in mood disorders—a systematic meta-analysis of serum S100B in vivo studies. J Affect Disord. 2011;134(1–3):32–8.
Article
PubMed
Google Scholar
Grabe HJ, Ahrens N, Rose HJ, Kessler C, Freyberger HJ. Neurotrophic factor S100beta in major depression. Neuropsychobiology. 2001;44:88–90.
Article
CAS
PubMed
Google Scholar
Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets. 2013;14(11):1237–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Polyakova M, Sander C, Arelin K, Lampe L, Luck T, Luppa M, et al. First evidence for glial pathology in late life minor depression: S100B is increased in males with minor depression. Front Cell Neurosci. 2015;9:406.
Article
PubMed
PubMed Central
Google Scholar
Benton CS, Miller BH, Skwerer S, Suzuki O, Schultz LE, Cameron MD, et al. Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains. Psychopharmacology (Berl). 2012;221(2):297–315.
Article
CAS
Google Scholar
Li Y, Barger SW, Liu L, Mrak RE, Griffin WS. S100beta induction of the proinflammatory cytokine interleukin-6 in neurons. J Neurochem. 2000;74(1):143–50.
CAS
PubMed
PubMed Central
Google Scholar
Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.
Article
CAS
PubMed
Google Scholar
Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Zagarella S, et al. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog. 2011;7(3):e1001315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonçalves FM, Freitas AE, Peres TV, Rieger DK, Ben J, Maestri M, et al. Vatairea macrocarpa lectin (VML) induces depressive-like behavior and expression of neuroinflammatory markers in mice. Neurochem Res. 2013;38(11):2375–84.
Article
PubMed
Google Scholar
De Souza DF, Wartchow K, Hansen F, Lunardi P, Guerra MC, Nardin P, et al. Interleukin-6-induced S100B secretion is inhibited by haloperidol and risperidone. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:14–22.
Article
PubMed
Google Scholar
Liu Y, Ho RC, Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord. 2012;139(3):230–9.
Article
CAS
PubMed
Google Scholar
Hiles SA, Baker AL, de Malmanche T, Attia J. Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med. 2012;42(10):2015–26.
Article
CAS
PubMed
Google Scholar
Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, et al. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1306–16.
Article
CAS
PubMed
Google Scholar
Kubera M, Lin AH, Kenis G, Bosmans E, van Bockstaele D, Maes M. Anti-Inflammatory effects of antidepressants through suppression of the interferon-gamma/interleukin-10 production ratio. J Clin Psychopharmacol. 2001;21(2):199–206.
Article
CAS
PubMed
Google Scholar
Ohgi Y, Futamura T, Kikuchi T, Hashimoto K. Effects of antidepressants on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol Biochem Behav. 2013;103(4):853–9.
Article
CAS
PubMed
Google Scholar
Lu J, Shao RH, Hu L, Tu Y, Guo JY. Potential antiinflammatory effects of acupuncture in a chronic stress model of depression in rats. Neurosci Lett. 2016;618:31–8.
Article
CAS
PubMed
Google Scholar
Wang N, Yu HY, Shen XF, Gao ZQ, Yang C, Yang JJ, et al. The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus. Ups J Med Sci. 2015;120(4):241–8.
Article
PubMed
PubMed Central
Google Scholar
Ayuob NN, Ali SS, Suliaman M, El Wahab MG, Ahmed SM. The antidepressant effect of musk in an animal model of depression: a histopathological study. Cell Tissue Res. 2016;366(2):271–84.
Article
PubMed
Google Scholar
Cicek IE, Cicek E, Kayhan F, Uguz F, Erayman I, Kurban S, et al. The roles of BDNF, S100B, and oxidative stress in interferon-induced depression and the effect of antidepressant treatment in patients with chronic viral hepatitis: a prospective study. J Psychosom Res. 2014;76(3):227–32.
Article
PubMed
Google Scholar