Heal DJ, Cheetham SC, Smith SL: The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacology. 2009, 57: 608-618.
Article
CAS
PubMed
Google Scholar
Solanto MV: Neuropsychopharmacological mechanisms of stimulant drug addiction in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res. 1998, 94: 127-152.
Article
CAS
PubMed
Google Scholar
Kiyatkin EA, Rebec GV: Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J Neurophysiol. 1996, 75: 142-153.
CAS
PubMed
Google Scholar
Volkow ND, Swanson JM: Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am J Psychiatry. 2003, 160: 1909-1918.
Article
PubMed
Google Scholar
Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley J, Wong C, Hitzemann R, Pappas NR: Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D2 receptors. J Pharmacol Exp Ther. 1999, 291: 409-415.
CAS
PubMed
Google Scholar
Dalley JW, Theobald D, Cerry JA, Milstein K, Laane BJ, Everitt TW: Cognitive sequelae of intravenous amphetamine self-administration in rats: evidence for selective effects on attentioanal performance. Neuropsychopharmacology. 2005, 30: 525-537.
Article
CAS
PubMed
Google Scholar
Fletcher PJ, Korth KM, Stewart J, Chambers JW: Depletion of brain serotonin following intra-raphe injections of 5,7-dihydroxytryptamine does not alter d-amphetamine self-administration across different schedules and access conditions. Psychopharmacology (Berl). 1999, 146: 185-193.
Article
CAS
Google Scholar
Marco EM, Adriani W, Ruocco LA, Canese R, Sadile AG, Laviola G: Neurobehavioral adaptations to methylphenidate: The issue of early adolescent exposure. Neurosci Biobehav Rev. 2011, 35: 1722-1739.
Article
CAS
PubMed
Google Scholar
Augustyniak PN, Kourrich S, Rezazadeh SM, Stewart J, Arvanitogiannis A: Differential behavioral and neurochemical effects of cocaine after early exposure to methylphenidate in an animal model of attention deficit hyperactivity disorder. Behav Brain Res. 2006, 167: 379-382.
Article
CAS
PubMed
Google Scholar
Brandon CL, Marinelli M, White FJ: Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons. Biol Psychiatry. 2003, 54: 1338-1344.
Article
CAS
PubMed
Google Scholar
Harvey RC, Sen S, Deaciuc A, Dwoskin LP, Kantak KM: Methylphenidate treatment in adolescent rats with an attention deficit/hyperactivity disorder phenotype: cocaine addiction vulnerability and dopamine transporter function. Neuropsychopharmacology. 2011, 36: 837-847.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kollins SH: ADHD, substance use disorders, and psychostimulant treatment: current literature and treatment guidelines. J Atten Disord. 2008, 12 (2): 115-125.
Article
PubMed
Google Scholar
Soeters HS, Howells FM, Russell VA: Methylphenidate does not increase ethanol consumption in a rat model for attention-deficit hyperactivity disorder-the spontaneously hypertensive rat. Metab Brain Dis. 2008, 23: 303-314.
Article
CAS
PubMed
Google Scholar
Steiner H, Van Waes V: Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants. Prog Neurobiol. 2013, 100: 60-80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yuferov V, Nielsen D, Butelman E, Kreek MJ: Microarray studies of psychostimulant-induced changes in gene expression. Addict Biol. 2005, 10: 101-118.
Article
CAS
PubMed
Google Scholar
Rhodes JS, Crabbe JC: Gene expression induced by drugs of abuse. Curr Opin Pharmacol. 2005, 5 (1): 26-33.
Article
CAS
PubMed
Google Scholar
Freeman WM, Lull ME, Patel KM, Brucklacher RM, Morgan D, Roberts D, Vrana KE: Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration. BMC Neurosci. 2010, 11: 29-
Article
PubMed Central
PubMed
CAS
Google Scholar
Robison AJ, Nestler EJ: Transcriptional and epigenetic mechanisms of addiction. Nat Rev. 2011, 12: 623-637.
Article
CAS
Google Scholar
Dela Peña IC, Jeon SJ, Lee E, Ryu JH, Shin CY, Noh M, Cheong JH: Neuronal development genes are key elements mediating the reinforcing effects of methamphetamine, amphetamine, and methylphenidate. Psychopharmacology. 2013, 230: 399-413.
Article
PubMed
CAS
Google Scholar
Fan X, Bruno KJ, Hess EJ: Rodent models of ADHD. Curr Top Behav Neurosci. 2012, 9: 273-300.
Article
PubMed
Google Scholar
Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1239-1247.
Article
PubMed
Google Scholar
Russell VA, Sagvolden T, Johansen EB: Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct. 2005, 1: 9-
Article
PubMed Central
PubMed
CAS
Google Scholar
Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Behav Rev. 2000, 24: 31-39.
Article
CAS
Google Scholar
Vendruscolo LF, Izidio GS, Takahashi RN: Drug reinforcement in a rat model of attention deficit/hyperactivity disorder. Curr Drug Abuse Rev. 2009, 2 (2): 177-183.
Article
CAS
PubMed
Google Scholar
Harlan R, Garcia M: Drugs of abuse and immediate-early genes in the forebrain. Mol Neurobiol. 1998, 16: 221-267.
Article
CAS
PubMed
Google Scholar
Berke JD, Hyman SE: Addiction, dopamine and the molecular mechanisms of memory. Neuron. 2000, 25: 515-532.
Article
CAS
PubMed
Google Scholar
Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM: It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 2003, 26: 184-192.
Article
CAS
PubMed
Google Scholar
Kalivas PW, Volkow ND: New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry. 2011, 16: 974-986.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qiu J, Hong Q, Chen RH, Tong ML, Zhang M, Fei L, Pan XQ, Guo M, Guo XR, Chi X: Gene expression profiles in the prefrontal cortex of SHR rats by cDNA microarrays. Mol Biol Rep. 2010, 37: 1733-1740.
Article
CAS
PubMed
Google Scholar
Dela Peña IC, Lee JC, Lee HL, Woo TS, Lee HC, Sohn AR, Cheong JH: Differential behavioral responses of the spontaneously hypertensive rat to methylphenidate and methamphetamine: lack of a rewarding effect of repeated methylphenidate treatment. Neurosci Lett. 2012, 514: 189-193.
Article
PubMed
CAS
Google Scholar
Kollins SH: A qualitative review of issues arising in the use of psycho-stimulant medications in patients with ADHD and co-morbid substance use disorders. Curr Med Res Opin. 2008, 24: 1345-1357.
Article
PubMed
Google Scholar
Mannuzza S, Klein RG, Truong NL, Moulton JL, Roizen ER, Howell KH: Age of methylphenidate treatment initiation in children with ADHD and later substance abuse: prospective follow-up into adulthood. Am J Psychiatry. 2008, 165: 604-609.
Article
PubMed Central
PubMed
Google Scholar
Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina PE, Dewey SL: Comparison between intraperitoneal and oral methylphenidate administration: microdialysis and locomotor activity study. J Pharmacol Exp Ther. 2000, 295: 51-57.
CAS
PubMed
Google Scholar
Dela Peña IC, Ahn HS, Choi JY, Shin CY, Ryu JH, Cheong JH: Methylphenidate self-administration and conditioned place preference in an animal model of attention-deficit hyperactivity disorder: the spontaneously hypertensive rat. Behav Pharmacol. 2011, 22: 31-39. doi:10.1097
Article
PubMed
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols. 2008, 4: 44-57.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001, 25: 402-408.
Article
CAS
PubMed
Google Scholar
Robinson TE, Berridge KC: The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev. 1996, 18: 247-291.
Article
Google Scholar
Dela Peña IC, Cheong JH: Abuse and dependence liability assessment of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder (ADHD): what have we learned?. Arch Pharm Res. 2013, 23: 400-410.
Article
CAS
Google Scholar
Biederman JJ, Wilens T, Mick E, Faraone SV, Weber W, Curtis S, Thornell A, Pfister K, Jetton J, Soriano J: Is ADHD a risk factor for psychoactive substance use disorders? Findings from a four-year prospective follow-up study. J Am Acad Child Adolesc Psychiatr. 1997, 36: 21-29.
Article
CAS
Google Scholar
Yui S, Nakatani Y, Mikami M: Calprotectin (S100a8/S100a9), an inflammatory protein complex from neurophils with a broad apoptosis-inducing activity. Biol Pharm Bull. 2003, 26: 753-760.
Article
CAS
PubMed
Google Scholar
Sadasivan S, Pond BB, Pani AK, Qu C, Jiao Y, Smeyne RJ: Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice. PloS One. 2012, 7: e33693-
Article
PubMed Central
CAS
PubMed
Google Scholar
Baldwin HA, Colado MI, Murray TK, De Souza RJ, Green AR: Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizolcilpine. Brit J Pharmacol. 1993, 108: 590-596.
Article
CAS
Google Scholar
Clark KH, Wiley CA, Bradberry CW: Psychostimulant abuse and neuroinflammation: emerging evidence of their interconnection. Neurotox Res. 2012, 23: 174-188.
Article
PubMed
CAS
Google Scholar
Filloux F, Townsend JJ: Pre- and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp Neurol. 1993, 119: 79-88.
Article
CAS
PubMed
Google Scholar
Hastings TG, Lewis DA, Zigmond MJ: Role of oxidation in the neurotoxic effects of instrastriatal dopamine injections. Proc Natl Acad Sci U S A. 1996, 93: 1956-1961.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gomes KM, Inacio CG, Valvassori SS, Reus GZ, Boeck CR, Dal-Pizzol F, Quevedo J: Superoxide production after acute and chronic treatment with methylphenidate in young and adult rats. Neurosci Lett. 2009, 465 (1): 95-98.
Article
CAS
PubMed
Google Scholar
Schmitz F, Scherer EB, da Cunha MJ, da Cunha AA, Lima DD, Delwing D, Netto CA, Wyse AT: Chronic methylphenidate administration alteres antioxidant defenses and butyrylcholinesterase activity in blood of juvenile rats. Mol Cell Biochem. 2012, 361: 281-288.
Article
CAS
PubMed
Google Scholar
Chase T, Carrey N, Soo E, Wilkinson M: Methylphenidate regulates activity regulated cytoskeletal associated but not brain-derived neurotrophic factor gene expression in the developing rat striatum. Neuroscience. 2007, 144: 969-984.
Article
CAS
PubMed
Google Scholar
Scherer EB, Matte C, Ferreira AG, Gomes KM, Comim CM, Mattos C, Quevedo J, Streck EL, Wyse AT: Methylphenidate treatment increases Na+, K+-ATPase activity in the cerebrum of young and adult rats. J Neural Transm. 2009, 116: 1681-1687.
Article
CAS
PubMed
Google Scholar
Scherer EB, da Cunha MJ, Matte C, Schmitz F, Netto C, Wyse AT: Methylphenidate affects memory, brain-derived neurotrophic factor immunocontent and brain acetylcholinesterase activity in the rat. Neurobiol Learn Mem. 2010, 94 (2): 247-253.
Article
CAS
PubMed
Google Scholar
Koob GF, Volkow ND: Neurocircuitry of addiction. Neuropsychopharmacology. 2010, 35: 217-238.
Article
PubMed Central
PubMed
Google Scholar
Uemura M, Nakao S, Suzuki ST, Takeichi M, Hirano S: OL-protocadherin is essential for growth of striatal axons and thalamocortical projections. Nat Neurosci. 2007, 10: 1151-1159.
Article
CAS
PubMed
Google Scholar
Yagi T: Clustered protocadhrin family. Dev Growth Differ. 2008, 50 (1): S131-S140.
Article
CAS
PubMed
Google Scholar
Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS, Mukaddes NM, Balkhy S, Gascon G, Hashmi A, Al-Saad S, Ware J, Joseph RM, Greenblatt R, Gleason D, Ertelt JA, Apse KA, Bodell A, Partlow JN, Barry B, Yao H, Markianos K, Ferland R, Greenberg ME, Walsch CA: Identifying autism loci and genes by tracing recent shared ancestry. Science. 2008, 321: 218-223.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sun X, Wang JF, Tseng M, Young LT: Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci. 2006, 31: 189-196.
PubMed Central
PubMed
Google Scholar
Fagundes AO, Scaini G, Santos PM, Sachet MU, Bernhardt NM, Rezin GT, Valvassori SS, Schuck PF, Quevedo J, Streck EL: Inhibition of mitochondrial respiratory chain in the brain of adult rats after acute and chronic administration of methylphenidate. Neurochem Res. 2010, 35: 405-411.
Article
CAS
PubMed
Google Scholar
Donovan P, Poronnik P: Nedd4 and Nedd4-2: ubiquitin ligases at work in the neuron. Int J Biochem Cell Biol. 2013, 45 (3): 706-710.
Article
CAS
PubMed
Google Scholar
Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Layfield R: Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci. 2000, 97: 9902-9906.
Article
PubMed Central
CAS
PubMed
Google Scholar
Layfield R, Alban A, Mayer RJ, Lowe J: The ubiquitin protein catabolic disorders. Neuropathol Appl Neurobiol. 2001, 27: 171-179.
Article
CAS
PubMed
Google Scholar
Fumagalli F, Cattaneo A, Caffino L, Ibba M, Racagni G, Carboni E, Gennarelli M, Riva MA: Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signallin in the brain of adolescent spontaneously hypertensive rats: comparison with methylphenidate. Pharmacol Res. 2010, 62 (6): 523-529.
Article
CAS
PubMed
Google Scholar