Kallman WM, Isaac W: The effects of age and illumination on the dose-response curve for three stimulants. Psychopharmacology (Berl.). 1975, 40: 313-318. 10.1007/BF00421469.
Article
CAS
Google Scholar
Patrick KS, Markowitz JS: Pharmacology of methylphenidate, amphetamine enantiomers, and pemoline in attention deficit hyperactivity disorder. Human Psychopharmacology (Berl.). 1997, 12: 527-546. 10.1002/(SICI)1099-1077(199711/12)12:6<527::AID-HUP932>3.0.CO;2-U.
Article
CAS
Google Scholar
Teo SK, Stirling DL, Thomas SD, Khetani VD: Neurobehavioral effects of racemic threo-methylphenidate and its D and L enantiomers in rats. Pharmacol Biochem Behav. 2003, 74: 747-754. 10.1016/S0091-3057(02)01073-0.
Article
CAS
PubMed
Google Scholar
Brandon CL, Marinelli M, White FJ: Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons. Biol Psychiatry. 2003, 54: 1338-1344. 10.1016/S0006-3223(03)00787-X.
Article
CAS
PubMed
Google Scholar
Jensen PS, Hinshaw SP, Swanson JM, Greenhill LL, Conners CK, Arnold LE: Findings from the NIMH Multimodal Treatment Study on ADHD (MTA): Implications and applications for healthcare providers. J Dev Behav Pediatr. 2001, 22: 60-73.
Article
CAS
PubMed
Google Scholar
Shaywitz BA, Fletcher JM, Shaywitz SE: Attention deficit hyperactivity disorder. Curr Treat Options Neurol. 2001, 3: 229-236.
Article
PubMed
Google Scholar
Carr DB, Sesack SR: Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals. J Comp Neurol. 1996, 369: 1-15. 10.1002/(SICI)1096-9861(19960520)369:1<1::AID-CNE1>3.0.CO;2-7.
Article
CAS
PubMed
Google Scholar
Christie MJ, Bridge S, James LB, Beart PM: Excitotoxic lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area. Brain Res. 1985, 333: 169-172. 10.1016/0006-8993(85)90140-4.
Article
CAS
PubMed
Google Scholar
Koob GF, Bloom FE: Cellular and molecular mechanisms of drug dependence. Science. 1988, 242: 715-723.
Article
CAS
PubMed
Google Scholar
Kuczenski R: Biochemical actions of amphetamine and other stimulants. Stimulants: Neurochemical, Behavioral, and Clinical Perspective. Edited by: Creese I. 1983, Raven Press, 31-61.
Google Scholar
Kuczenski R, Segal DS: Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: Comparison with amphetamine. J Neurochem. 1997, 68: 2032-2037.
Article
CAS
PubMed
Google Scholar
Oades RD, Halliday GM: Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res. 1987, 434: 117-165.
Article
CAS
PubMed
Google Scholar
Pierce CR, Kalivas PW: A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev. 1997, 25: 192-216. 10.1016/S0165-0173(97)00021-0.
Article
CAS
PubMed
Google Scholar
Volkow ND, Wang GJ, Fowler JS, Fischman M, Foltin R, Abumrad NN, Gatley SJ, Logan J, Wong C, Gifford A, Ding YS, Hitzemann R, Pappas N: Methylphenidate and cocaine have a similar in vivo potency to block dopamine transporters in the human brain. Life Sci. 1999, 65: PL7-PL12. 10.1016/S0024-3205(99)00225-8.
Article
CAS
PubMed
Google Scholar
Drug Enforcement Administration, Office of Diversion Control: Methylphenidate Review: Eight Factor Analysis. 2000, Drug Enforcement Administration, Washington DC
Google Scholar
Goldman LS, Genel M, Bezman RJ, Slanetz PJ: Diagnosis and treatment of attention deficit hyperactivity disorder in children and adolescents. JAMA. 1998, 279: 1100-1107. 10.1001/jama.279.14.1100.
Article
CAS
PubMed
Google Scholar
Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley JS, Dewey S, Ashby C, Liebermann J, Hitzemann R: Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain. Arch Gen Psychiatry. 1995, 52: 456-463.
Article
CAS
PubMed
Google Scholar
Clure C, Brady KT, Saladin ME, Johnson D, Waid R, Rittenbury M: Attention deficit/hyperactivity disorder and substance use: Symptoms patterns and drug choice. Am J Drug Alcohol Abuse. 1999, 25: 441-448. 10.1081/ADA-100101871.
Article
CAS
PubMed
Google Scholar
Schubiner H, Tzelepsis A, Milberger S, Lockhart N, Kruger M, Kelley BJ, Schoeurer EP: Prevalence of attention deficit/hyperactivity disorder and conduct disorder among substance abusers. J Clin Psychiatry. 2000, 61: 244-251.
Article
CAS
PubMed
Google Scholar
Wilens FJ, Biederman J, Mick E, Faraone SV, Spencer T: Attention deficit hyperactivity disorder is associated with early onset substance use disorders. J Nerv Ment Dis. 1997, 185: 475-482. 10.1097/00005053-199708000-00001.
Article
CAS
PubMed
Google Scholar
Biederman J, Wilens T, Mick E, Milberger S, Faraone S, Spencer T: Psychoactive substance abuse disorder in adults with attention deficit hyperactivity disorder. Am J Psychiatry. 1995, 152: 1652-1658.
Article
CAS
PubMed
Google Scholar
Biederman J, Wilens T, Mick E, Spencer T: Pharmacotherapy of ADHD reduces the risk for substance use disorder. Pediatrics. 1999, 104: e20-10.1542/peds.104.2.e20.
Article
CAS
PubMed
Google Scholar
Swanson JM, Cantwell D, Lerner M, McBurnett K, Hanna G: Effects of stimulant medication on learning in children with ADHD. J Learn Disabil. 1991, 24: 219-230.
Article
CAS
PubMed
Google Scholar
Thurston CM, Sobol MP, Swanson J, Kinsbourne M: Effects of methylphenidate on selective attention in hyperactive children. J Abnorm Child Psychol. 1979, 7: 471-481. 10.1007/BF00917617.
Article
CAS
PubMed
Google Scholar
Douglas VI, Barr RG, Desilets J, Sherman E: Do high doses of stimulants impair flexible thinking in ADHD?. J Am Acad Child Adolesc Psychiatry. 1995, 34: 877-885. 10.1097/00004583-199507000-00011.
Article
CAS
PubMed
Google Scholar
Solanto MV, Wender EH: Does methylphenidate constrict cognitive functioning?. J Am Acad Child Adolesc Psychiatry. 1989, 36: 897-902.
Article
Google Scholar
Dyme IZ, Sahakian BJ, Golinko BE, Rabe EF: Perservation induced by methylphenidate in children: Preliminary findings. Prog Neuropsychopharmacol Biol Psychiatry. 1982, 6: 259-273. 10.1016/S0278-5846(82)80177-2.
Article
Google Scholar
Malone MA, Kershner JR, Siegel L: The effects of methylphenidate on levels of processing and laterality in children with attention deficit disorder. J Abnorm Child Psychol. 1988, 16: 379-395. 10.1007/BF00914170.
Article
CAS
PubMed
Google Scholar
Sunohara GA, Malone MA, Rovet J, Humphries T, Roberts W, Taylor M: Effect of methylphenidate on attention in children with attention deficit hyperactivity disorder (ADHD): ERP evidence. Neuropsychopharmacology. 1999, 21: 218-228. 10.1016/S0893-133X(99)00023-8.
Article
CAS
PubMed
Google Scholar
Carboni E, Silvagni A, Valentini V, Chiara GD: Effect of amphetamine, cocaine, and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats. An in vivo microdialysis study. Neurosci Biobehav Rev. 2003, 27: 653-659. 10.1016/j.neubiorev.2003.08.008.
Article
CAS
PubMed
Google Scholar
Joy B, McMahon RP, Shepard PD: Effects of acute and chronic clozapine on d-amphetamine-induced disruption of auditory gating in the rat. Psychopharmacology (Berl.). 2004, 174: 274-282. 10.1007/s00213-003-1731-4.
Article
CAS
Google Scholar
Rebec G, Segal DS: Dose dependent biphasic alterations in the spontaneous activity of neurons in the rat neostriatum produced by d-amphetamine and methylphenidate. Brain Res. 1978, 150: 353-366. 10.1016/0006-8993(78)90286-X.
Article
CAS
PubMed
Google Scholar
Price HL: General anesthesia. The pharmacological basis of therapeutic. Edited by: Goodman LS, Gilman A. 1975, MacMillan, 81-88.
Google Scholar
Cooper DC, Moore SJ, Staff NP, Spruston N: Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum. J Neurosci. 2003, 23: 9937-9946.
CAS
PubMed
Google Scholar
Johnson SW, North RA: Two types of neurons in the rat ventral tegmental area and their synaptic inputs. J Physiol. 1992, 450: 455-468.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moriguchi S, Watanabe S, Kita H, Nakanishi H: Enhancement of N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials in the neostriatum after methamphetamine sensitization. An in vitro slice study. Exp Brain Res. 2002, 144: 238-246. 10.1007/s00221-002-1039-3.
Article
CAS
PubMed
Google Scholar
Kolta MG, Shreve P, Uretsky NJ: Effect of pretreatment with amphetamine on the interaction between amphetamine and dopamine neurons in the nucleus accumbens. Neuropharmacology. 1989, 28: 9-14. 10.1016/0028-3908(89)90060-9.
Article
CAS
PubMed
Google Scholar
Russell V, de Villers A, Sagvolden T, Lamm M, Talijaard J: Differences between electrically-, ritalin-, and D-amphetamine-stimulated release of [3H] dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of attention-deficit/hyperactivity disorder. Behav Brain Res. 1998, 94: 163-171. 10.1016/S0166-4328(97)00177-0.
Article
CAS
PubMed
Google Scholar
Winsberg BG, Javitt DC, Shanahan/Silipo G: Electrophysiological indices of information processing in methylphenidate responders. Biol Psychiatry. 1997, 42: 434-445. 10.1016/S0006-3223(96)00429-5.
Article
CAS
PubMed
Google Scholar
Amini B, Yang PB, Swann AC, Dafny N: Differential locomotor responses in male rats from three strains to acute methylphenidate. Int J Neurosci. 2004, 114: 1063-1084. 10.1080/00207450490475526.
Article
CAS
PubMed
Google Scholar
Crawford CA, McDougall SA, Meier TL, Collins RL, Watson JB: Repeated methylphenidate treatment induces behavioral sensitization and decreases protein kinase A and dopamine-stimulated adenylyl cyclase activity in the dorsal striatum. Psychopharmacology (Berl.). 1998, 136: 24-33. 10.1007/s002130050536.
Article
Google Scholar
Gaytan O, al-Rahim S, Swann A, Dafny N: Sensitization to locomotor effects of methylphenidate in the rat. Life Sci. 1997, 61: 101-107. 10.1016/S0024-3205(97)00598-5.
Article
Google Scholar
McNamara CG, Davidson ES, Schenk S: A comparison of the motor-activating effects of acute and chronic exposure to amphetamine and methylphenidate. Pharmacol Biochem Behav. 1993, 45: 729-732. 10.1016/0091-3057(93)90532-X.
Article
CAS
PubMed
Google Scholar
Yang PB, Amini B, Swann AC, Dafny N: Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res. 2003, 971: 139-152. 10.1016/S0006-8993(02)04240-3.
Article
CAS
PubMed
Google Scholar
Picton TW, Bentin S, Berg P, Donchin E, Hillyard R, Johnson R: Guideline for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology. 2000, 37: 127-152. 10.1017/S0048577200000305.
Article
CAS
PubMed
Google Scholar
Nobre AC, Allison T, McCarthy G: Word recognition in the human inferior-temporal lobe. Nature. 1994, 372: 260-263. 10.1038/372260a0.
Article
CAS
PubMed
Google Scholar
Luck SJ, Hillyard SA: Electrophysiological evidence for parallel and serial processing during visual search. Percept Psychophys. 1994, 48: 603-617.
Article
Google Scholar
Breton F, Ritter W, Simson R, Vaughan HGJ: The N2 component elicited by stimulus matches and multiple targets. Biol Psychol. 1988, 27: 23-44. 10.1016/0301-0511(88)90003-8.
Article
CAS
PubMed
Google Scholar
Naatanen R: The role of attention in auditory information processing revealed by event related brain potentials. Behav Brain Sci. 1990, 13: 201-288.
Article
Google Scholar
Arnsten A, Dudley AG: Methylphenidate improves prefrontal cortical cognitive function through α2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects of attention deficit hyperactivity disorder. Behav Brain Functions. 2005, 1: 2-10.1186/1744-9081-1-2.
Article
CAS
Google Scholar
Faleiro L, Jones S, Kauer JA: Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology. 2004, 29: 2115-2125. 10.1038/sj.npp.1300495.
Article
CAS
PubMed
Google Scholar
Gatley SJ, Volkow ND, Gifford AN, Fowler JS, Dewey SL, Ding YS, Logan J: Dopamine-transporter occupancy after intravenous doses of cocaine and methylphenidate in mice and humans. Psychopharmacology (Berl.). 1999, 146: 93-100. 10.1007/s002130051093.
Article
CAS
Google Scholar
Ruskin DN, Bergstrom DA, Shenker A, Freeman LE, Baek D, Walters JR: Drugs used in the treatment of attention deficit/hyperactivity disorder affect postsynaptic firing rate and oscillation without preferential dopamine autoreceptor action. Biol Psychiatry. 2001, 49: 340-350. 10.1016/S0006-3223(00)00987-2.
Article
CAS
PubMed
Google Scholar
Bunney BS, Walters JR, Roth RH, Aghajanian GK: Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther. 1973, 185: 560-571.
CAS
PubMed
Google Scholar
Einhorn LC, Johansen PA, White FJ: Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci. 1988, 8: 100-112.
CAS
PubMed
Google Scholar
Shi WX, Pun CL, Smith PL, Bunney BS: Endogenous DA-mediated feedback inhibition of DA neurons: involvement of both D(1)- and D(2)-like receptors. Synapse. 2000, 35: 111-119. 10.1002/(SICI)1098-2396(200002)35:2<111::AID-SYN3>3.0.CO;2-7.
Article
CAS
PubMed
Google Scholar
Shi WX, Pun CL, Zhou Y: Psychostimulants induce low-frequency oscillations in the firing activity of dopamine neurons. Neuropsychopharmacology. 2004, 29: 2160-2167. 10.1038/sj.npp.1300534.
Article
CAS
PubMed
Google Scholar
Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS: Dual effects of d-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci. 2000, 20: 3504-3511.
CAS
PubMed
Google Scholar
Kamata K, Rebec GV: Long-term amphetamine treatment attenuates or reverses the depression of neuronal activity produced by dopamine agonists in the ventral tegmental area. Life Sci. 1984, 34: 2419-2427. 10.1016/0024-3205(84)90431-4.
Article
CAS
PubMed
Google Scholar
Brandon CL, Marinelli M, Baker LK, White FJ: Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacology. 2001, 25: 651-661. 10.1016/S0893-133X(01)00281-0.
Article
CAS
PubMed
Google Scholar
Kuczenski R, Segal DS: Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther. 2001, 296: 876-883.
CAS
PubMed
Google Scholar
Di Chiara G, Acquas E, Carboni E: Drug motivation and abuse: a neurobiological perspective. Ann N Y Acad Sci. 1992, 654: 207-219.
Article
CAS
PubMed
Google Scholar
Robinson TE, Berridge KC: The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. 1993, 18: 247-291. 10.1016/0165-0173(93)90013-P.
Article
CAS
Google Scholar
White FJ, Kalivas PW: Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend. 1998, 51: 141-153. 10.1016/S0376-8716(98)00072-6.
Article
CAS
PubMed
Google Scholar
Santosh PJ, Taylor E: Stimulant drugs. Eur Child Adolesc Psychiatry. 2000, 9: 1-28. 10.1007/s007870070017.
Article
Google Scholar
White SR, Yadao CM: Characterization of methylphenidate exposures reported to a regional poison control center. Arch Pediatr Adolesc Med. 2000, 154: 1199-1203.
Article
CAS
PubMed
Google Scholar
Kuczenski R, Segal DS: Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci. 2002, 22: 7264-7271.
CAS
PubMed
Google Scholar
Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina P, Dewey SL: Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor activity study. J Pharmacol Exp Ther. 2000, 295: 51-57.
CAS
PubMed
Google Scholar
Patrics K, Mueller R, Gualtieri C: Pharmacokinetics and actions of methylphenidate. Psychopharmacology: a third generation of progress. Edited by: Meltzer H. 1987, New York, NY, Raven Press, 1387-1395.
Google Scholar
Wargin W, Kilts PC, Gualtieri CT, Ellington KR, Mueller RA, Kraemer G, Breese RG: Pharmacokinetics of methylphenidate in man, rat and monkey. J Pharmacol Exp Ther. 1983, 226: 382-386.
CAS
PubMed
Google Scholar
Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. 1986, Academic Press
Google Scholar
Dafny N, Marchard J, McClung R, Salamy J, Sands S, Wachtendorf H, Burks TF: Effects of morphine on sensory evoked responses recorded from central gray, reticular formation, thalamus, hypothalamus, limbic system, basal ganglia, dorsal raphe, locus ceruleus, and pineal body. J Neurosci Res. 1981, 5: 399-412. 10.1002/jnr.490050505.
Article
Google Scholar
Yan HK, Mazow ML, Dafny N: NGF prevents the changes induced by monopolar deprivation during the critical period of rats. Brain Res. 1996, 706: 318-322. 10.1016/0006-8993(95)01331-8.
Article
CAS
PubMed
Google Scholar