Koh JY, Lim JS, Byun HR, Yoo MH. Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients. Mol Brain. 2014. doi:10.1186/s13041-014-0064-z.
PubMed
PubMed Central
Google Scholar
Rogers SJ, Ozonoff S. Annotation: what do we know about sensory dysfunction in autism? A critical review of the empirical evidence. J Child Psychol Psychiatry. 2005;46(12):1255–68.
Article
PubMed
Google Scholar
Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910.
Article
PubMed
Google Scholar
Gillberg C, Billstedt E. Autism and Asperger syndrome: coexistence with other clinical disorders. Acta Psychiatr Scand. 2000;102(5):321–30.
Article
CAS
PubMed
Google Scholar
Chris Plauche J. Early clinical characteristics of children with autism. In: autistic spectrum disorders in children. Informa Healthcare; 2004.
Zandt F, Prior M, Kyrios M. Repetitive behaviour in children with high functioning autism and obsessive compulsive disorder. J Autism Dev Disord. 2007;37(2):251–9. doi:10.1007/s10803-006-0158-2.
Article
PubMed
Google Scholar
Hollander E, Novotny S, Hanratty M, Yaffe R, DeCaria CM, Aronowitz BR, et al. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology. 2003;28(1):193–8.
Article
CAS
PubMed
Google Scholar
Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci USA. 2010;107(9):4389–94. doi:10.1073/pnas.0910249107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai LY. Impact of DSM-5 on epidemiology of Autism Spectrum Disorder. Res Autism Spectr Disord. 2014;8(11):1454–70.
Article
Google Scholar
Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC, et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry. 2011;168(9):904–12. doi:10.1176/appi.ajp.2011.10101532.
Article
PubMed
Google Scholar
Amir RE, Van Den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nat Genet. 1999;23(2):185–8.
Article
CAS
PubMed
Google Scholar
Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012;486(7402):261–5.
Article
CAS
PubMed
Google Scholar
Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, et al. Autistic-like behaviour in Scn1a +- mice and rescue by enhanced GABA-mediated neurotransmission. Nature. 2012;489(7416):385–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43(6):585–9.
Article
PubMed
PubMed Central
Google Scholar
Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;484(7397):237–41.
Article
Google Scholar
McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T + tf/J mice. Genes Brain Behav. 2008;7(2):152–63.
Article
CAS
PubMed
Google Scholar
Moy SS, Riddick NV, Nikolova VD, Teng BL, Agster KL, Nonneman RJ, et al. Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism. Behav Brain Res. 2014;259:200–14.
Article
CAS
PubMed
Google Scholar
Garner JP, Mason GJ. Evidence for a relationship between cage stereotypies and behavioural disinhibition in laboratory rodents. Behav Brain Res. 2002;136(1):83–92.
Article
PubMed
Google Scholar
Tanimura Y, Yang MC, Lewis MH. Procedural learning and cognitive flexibility in a mouse model of restricted, repetitive behaviour. Behav Brain Res. 2008;189(2):250–6.
Article
PubMed
Google Scholar
Turner M. Towards an executive dysfunction account of repetitive behaviour in autism. Autism as an executive disorder, vol 8. Oxford: Oxford University Press; 1997.
Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci. 2010;11(7):490–502. doi:10.1038/nrn2851.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angoa-Pérez M, Kane MJ, Briggs DI, Francescutti DM, Kuhn DM. Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J Vis Exp. 2013;82:50978.
PubMed
Google Scholar
Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18(9):1213–25. doi:10.1038/nn.4091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wahlsten D, Metten P, Crabbe JC. Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum. Brain Res. 2003;971(1):47–54.
Article
CAS
PubMed
Google Scholar
Silverman JL, Smith DG, Rizzo SJS, Karras MN, Turner SM, Tolu SS, et al. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med. 2012;4(131):131ra51.
Silverman JL, Tolu SS, Barkan CL, Crawley JN. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology. 2010;35(4):976–89.
Article
CAS
PubMed
Google Scholar
Han S, Tai C, Jones CJ, Scheuer T, Catterall WA. Enhancement of inhibitory neurotransmission by GABAA receptors having α2,3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron. 2014;81(6):1282–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147(1):235–46.
Article
PubMed
PubMed Central
Google Scholar
Berridge KC, Whishaw IQ. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp Brain Res. 1992;90(2):275–90.
Article
CAS
PubMed
Google Scholar
Kruk MR, Westphal KGC, Van Erp AMM, Van Judith A, Cave BJ, Slater E, et al. The hypothalamus: cross-roads of endocrine and behavioural regulation in grooming and aggression. Neurosci Biobehav Rev. 1998;23(2):163–77.
Article
CAS
PubMed
Google Scholar
Hong W, Kim DW, Anderson DJ. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell. 2014;158(6):1348–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan BC, Young NB, Crawley JN, Bodfish JW, Moy SS. Social deficits, stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. Behav Brain Res. 2010;208(1):178–88.
Article
PubMed
Google Scholar
Duffney LJ, Wei J, Cheng J, Liu W, Smith KR, Kittler JT, et al. Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci. 2013;33(40):15767–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437–42.
Article
PubMed
PubMed Central
Google Scholar
Vaccarino FJ, Franklin KBJ. Dopamine mediates ipsi- and contraversive circling elicited from the substantia nigra. Pharmacol Biochem Behav. 1982;17(3):431–4.
Article
CAS
PubMed
Google Scholar
Velíšek L, Velíšková J, Ravizza T, Giorgi FS, Moshé SL. Circling behavior and (14C)2-deoxyglucose mapping in rats: possible implications for autistic repetitive behaviors. Neurobiol Dis. 2005;18(2):346–55.
Article
PubMed
Google Scholar
Ishiguro A, Inagaki M, Kaga M. Stereotypic circling behavior in mice with vestibular dysfunction: asymmetrical effects of intrastriatal microinjection of a dopamine agonist. Int J Neurosci. 2007;117(7):1049–64.
Article
PubMed
Google Scholar
Balemans MCM, Huibers MMH, Eikelenboom NWD, Kuipers AJ, van Summeren RCJ, Pijpers MMCA, et al. Reduced exploration, increased anxiety, and altered social behavior: autistic-like features of euchromatin histone methyltransferase 1 heterozygous knockout mice. Behav Brain Res. 2010;208(1):47–55.
Article
CAS
PubMed
Google Scholar
Sungur AÖ, Vörckel KJ, Schwarting RKW, Wöhr M. Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: developmental aspects and effects of social context. J Neurosci Methods. 2014;234:92–100. doi:10.1016/j.jneumeth.2014.05.003.
Article
CAS
PubMed
Google Scholar
Hayashi E, Kuratani K, Kinoshita M, Hara H. Pharmacologically distinctive behaviors other than burying marbles during the marble burying test in mice. Pharmacology. 2010;86(5–6):293–6. doi:10.1159/000321190.
Article
CAS
PubMed
Google Scholar
Dzirasa K, Phillips HW, Sotnikova TD, Salahpour A, Kumar S, Gainetdinov RR, et al. Noradrenergic control of cortico-striato-thalamic and mesolimbic cross-structural synchrony. J Neurosci. 2010;30(18):6387–97. doi:10.1523/JNEUROSCI.0764-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garner JP. Stereotypies and other abnormal repetitive behaviors: potential impact on validity, reliability, and replicability of scientific outcomes. ILAR J. 2005;46(2):106–17.
Article
CAS
PubMed
Google Scholar
Garner JP, Meehan CL, Mench JA. Stereotypies in caged parrots, schizophrenia and autism: evidence for a common mechanism. Behav Brain Res. 2003;145(1–2):125–34. doi:10.1016/S0166-4328(03)00115-3.
Article
PubMed
Google Scholar
Calderoni S, Bellani M, Hardan AY, Muratori F, Brambilla P. Basal ganglia and restricted and repetitive behaviours in autism spectrum disorders: current status and future perspectives. Epidemiol Psychiatr Sci. 2014;23(3):235–8. doi:10.1017/S2045796014000171.
Article
CAS
PubMed
Google Scholar
Ernst AM, Smelik PG. Site of action of dopamine and apomorphine on compulsive gnawing behaviour in rats. Experientia. 1966;22(12):837–8. doi:10.1007/BF01897450.
Article
CAS
PubMed
Google Scholar
Horev G, Ellegood J, Lerch JP, Son YEE, Muthuswamy L, Vogel H, et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci USA. 2011;108(41):17076–81. doi:10.1073/pnas.1114042108.
Article
PubMed
PubMed Central
Google Scholar
Portmann T, Yang M, Mao R, Panagiotakos G, Ellegood J, Dolen G, et al. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Reports. 2014;7(4):1077–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78(2–3):69–74.
Article
PubMed
Google Scholar
Groenewegen HJ, Van Den Heuvel OA, Cath DC, Voorn P, Veltman DJ. Does an imbalance between the dorsal and ventral striatopallidal systems play a role in Tourette’s syndrome? A neuronal circuit approach. Brain Dev. 2003;25(SUPPL. 1):S3–14.
Article
PubMed
Google Scholar
Mason G, Rushen J. Stereotypic animal behaviour: fundamentals and applications to welfare. In: Stereotypic animal behaviour: fundamentals and applications to welfare. 2nd ed. 2006.
Presti MF, Mikes HM, Lewis MH. Selective blockade of spontaneous motor stereotypy via intrastriatal pharmacological manipulation. Pharmacol Biochem Behav. 2003;74(4):833–9. doi:10.1016/S0091-3057(02)01081-X.
Article
CAS
PubMed
Google Scholar
Presti MF, Gibney BC, Lewis MH. Effects of intrastriatal administration of selective dopaminergic ligands on spontaneous stereotypy in mice. Physiol Behav. 2004;80(4):433–9. doi:10.1016/j.physbeh.2003.09.008.
Article
CAS
PubMed
Google Scholar
Wolmarans DW, Brand L, Stein DJ, Harvey BH. Reappraisal of spontaneous stereotypy in the deer mouse as an animal model of obsessive-compulsive disorder (OCD): response to escitalopram treatment and basal serotonin transporter (SERT) density. Behav Brain Res. 2013;256:545–53. doi:10.1016/j.bbr.2013.08.049.
Article
CAS
Google Scholar
Saunders A, Oldenburg IA, Berezovskii VK, Johnson CA, Kingery ND, Elliott HL, et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature. 2015;521(7550):85–9. doi:10.1038/nature14179.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oldenburg Ian A, Sabatini Bernardo L. Antagonistic but not symmetric regulation of primary motor cortex by basal ganglia direct and indirect pathways. Neuron. 2015;86(5):1174–81. doi:10.1016/j.neuron.2015.05.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bast T, Zhang WN, Feldon J. The ventral hippocampus and fear conditioning in rats: different anterograde amnesias of fear after tetrodotoxin inactivation and infusion of the GABAA agonist muscimol. Exp Brain Res. 2001;139(1):39–52. doi:10.1007/s002210100746.
Article
CAS
PubMed
Google Scholar
Zhang WN, Bast T, Feldon J. Effects of hippocampal N-methyl-D-aspartate infusion on locomotor activity and prepulse inhibition: differences between the dorsal and ventral hippocampus. Behav Neurosci. 2002;116(1):72–84. doi:10.1037/0735-7044.116.1.72.
Article
CAS
PubMed
Google Scholar
Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15(10):655–69. doi:10.1038/nrn3785.
Article
CAS
PubMed
Google Scholar
Aggleton JP, O’Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT. Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci. 2010;31(12):2292–307. doi:10.1111/j.1460-9568.2010.07251.x.
Article
PubMed
PubMed Central
Google Scholar
Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci. 2001;21(13):4915–22.
CAS
PubMed
Google Scholar
Felix-Ortiz AC, Tye KM. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J Neurosci. 2014;34(2):586–95. doi:10.1523/JNEUROSCI.4257-13.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciocchi S, Passecker J, Malagon-Vina H, Mikus N, Klausberger T. Selective information routing by ventral hippocampal CA1 projection neurons. Science. 2015;348(6234):560–3. doi:10.1126/science.aaa3245.
Article
CAS
PubMed
Google Scholar
Mandyam CD. The interplay between the hippocampus and amygdala in regulating aberrant hippocampal neurogenesis during protracted abstinence from alcohol dependence. Front Psychiatr. 2013. doi:10.3389/fpsyt.2013.00061.
Google Scholar
Feduccia AA, Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors: Neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci. 2012. doi:10.3389/fnmol.2012.00083.
PubMed
PubMed Central
Google Scholar
Silverman JL, Pride MC, Hayes JE, Puhger KR, Butler-Struben HM, Baker S, et al. GABA B receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in Two mouse models of autism. Neuropsychopharmacology. 2015;40(9):2228–39. doi:10.1038/npp.2015.66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conn PJ, Battaglia G, Marino MJ, Nicoletti F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci. 2005;6(10):787–98. doi:10.1038/nrn1763.
Article
CAS
PubMed
Google Scholar
Parkitna JR, Sikora M, Gołda S, Gołembiowska K, Bystrowska B, Engblom D, et al. Novelty-seeking behaviors and the escalation of alcohol drinking after abstinence in mice are controlled by metabotropic glutamate receptor 5 on neurons expressing dopamine D1 receptors. Biol Psychiatry. 2013;73(3):263–70. doi:10.1016/j.biopsych.2012.07.019.
Article
CAS
PubMed
Google Scholar
Lewis M, Kim SJ. The pathophysiology of restricted repetitive behavior. J Neurodev Disord. 2009;1(2):114–32. doi:10.1007/s11689-009-9019-6.
Article
PubMed
PubMed Central
Google Scholar
Draper A, Stephenson MC, Jackson GM, Pépés S, Morgan PS, Morris PG, et al. Increased GABA contributes to enhanced control over motor excitability in Tourette syndrome. Curr Biol. 2014;24(19):2343–7. doi:10.1016/j.cub.2014.08.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parr-Brownlie LC, Hyland BI. Bradykinesia induced by dopamine D2 receptor blockade is associated with reduced motor cortex activity in the rat. J Neurosci. 2005;25(24):5700–9. doi:10.1523/JNEUROSCI.0523-05.2005.
Article
CAS
PubMed
Google Scholar
Li YC, Kellendonk C, Simpson EH, Kandel ER, Gao WJ. D2 receptor overexpression in the striatum leads to a deficit in inhibitory transmission and dopamine sensitivity in mouse prefrontal cortex. Proc Natl Acad Sci USA. 2011;108(29):12107–12. doi:10.1073/pnas.1109718108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim IH, Rossi MA, Aryal DK, Racz B, Kim N, Uezu A, et al. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci. 2015;. doi:10.1038/nn.4015.
Google Scholar
Morency MA, Stewart RJ, Beninger RJ. Effects of unilateral microinjections of sulpiride into the medial prefrontal cortex on circling behavior of rats. Prog Neuropsychopharmacol Biol Psychiatry. 1985;9(5–6):735–8. doi:10.1016/0278-5846(85)90051-X.
Article
CAS
PubMed
Google Scholar
Aliane V, Pérez S, Nieoullon A, Deniau JM, Kemel ML. Cocaine-induced stereotypy is linked to an imbalance between the medial prefrontal and sensorimotor circuits of the basal ganglia. Eur J Neurosci. 2009;30(7):1269–79. doi:10.1111/j.1460-9568.2009.06907.x.
Article
PubMed
Google Scholar
Anderson SW, Bechara A, Damasio H, Tranel D, Damasio AR. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat Neurosci. 1999;2(11):1032–7. doi:10.1038/14833.
Article
CAS
PubMed
Google Scholar
Tsunada J, Sawaguchi T. Neuronal categorization and discrimination of social behaviors in primate prefrontal cortex. PLoS One. 2012;. doi:10.1371/journal.pone.0052610.
PubMed
PubMed Central
Google Scholar
Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, Ogshea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477(7363):171–8. doi:10.1038/nature10360.
Article
CAS
PubMed
PubMed Central
Google Scholar
Testa-Silva G, Loebel A, Giugliano M, De Kock CPJ, Mansvelder HD, Meredith RM. Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and Autism. Cereb Cortex. 2012;22(6):1333–42. doi:10.1093/cercor/bhr224.
Article
PubMed
Google Scholar
Hines RM, Wu L, Hines DJ, Steenland H, Mansour S, Dahlhaus R, et al. Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neurosci. 2008;28(24):6055–67. doi:10.1523/JNEUROSCI.0032-08.2008.
Article
CAS
PubMed
Google Scholar
Kalivas PW, Duffy P. Repeated cocaine administration alters extracellular glutamate in the ventral tegmental area. J Neurochem. 1998;70(4):1497–502.
Article
CAS
PubMed
Google Scholar
Takahata R, Moghaddam B. Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology. 2003;28(6):1117–24.
CAS
PubMed
Google Scholar
Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157(7):1535–51. doi:10.1016/j.cell.2014.05.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guariglia SR, Chadman KK. Water T-maze: a useful assay for determination of repetitive behaviors in mice. J Neurosci Methods. 2013;220(1):24–9. doi:10.1016/j.jneumeth.2013.08.019.
Article
PubMed
Google Scholar
Scattoni ML, Martire A, Cartocci G, Ferrante A, Ricceri L. Reduced social interaction, behavioural flexibility and BDNF signalling in the BTBR T + tf/J strain, a mouse model of autism. Behav Brain Res. 2013;251:35–40. doi:10.1016/j.bbr.2012.12.028.
Article
CAS
PubMed
Google Scholar
Burket JA, Benson AD, Tang AH, Deutsch SI. D-Cycloserine improves sociability in the BTBR T + Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res Bull. 2013;96:62–70. doi:10.1016/j.brainresbull.2013.05.003.
Article
CAS
PubMed
Google Scholar
Etherton MR, Blaiss CA, Powell CM, Südhof TC. Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci USA. 2009;106(42):17998–8003. doi:10.1073/pnas.0910297106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grayton HM, Missler M, Collier DA, Fernandes C. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS One. 2013;8(6):67.
Article
Google Scholar
Rabaneda LG, Robles-Lanuza E, Nieto-González J, Scholl FG. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice. Cell Reports. 2014;8(2):338–46. doi:10.1016/j.celrep.2014.06.022.
Article
CAS
PubMed
Google Scholar
Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S, et al. En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res. 2006;1116(1):166–76.
Article
CAS
PubMed
Google Scholar
Sgadò P, Genovesi S, Kalinovsky A, Zunino G, Macchi F, Allegra M, et al. Loss of GABAergic neurons in the hippocampus and cerebral cortex of engrailed-2 null mutant mice: implications for autism spectrum disorders. Exp Neurol. 2013;247:496–505. doi:10.1016/j.expneurol.2013.01.021.
Article
PubMed
PubMed Central
Google Scholar
Wurzman R, Forcelli PA, Griffey CJ, Kromer LF. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for autism spectrum disorders. Behav Brain Res. 2015;278:115–28.
Article
CAS
PubMed
Google Scholar
Gerlai R. Eph receptors and neural plasticity. Nat Rev Neurosci. 2001;2(3):205–9.
Article
CAS
PubMed
Google Scholar
Bolz J, Uziel D, Mühlfriedel S, Güllmar A, Peuckert C, Zarbalis K, et al. Multiple roles of ephrins during the formation of thalamocortical projections: maps and more. J Neurobiol. 2004;59(1):82–94.
Article
CAS
PubMed
Google Scholar
Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, et al. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci. 2008;28(7):1697–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB, et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature. 2013;493(7432):371–7.
Article
CAS
PubMed
Google Scholar
Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468(7321):263–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res. 2008;187(2):207–20.
Article
CAS
PubMed
Google Scholar
Dansie LE, Phommahaxay K, Okusanya AG, Uwadia J, Huang M, Rotschafer SE, et al. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience. 2013;246:186–98. doi:10.1016/j.neuroscience.2013.04.058.
Article
CAS
PubMed
Google Scholar
Bakker CE, Verheij C, Willemsen R, Van Der Helm R, Oerlemans F, Vermey M, et al. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell. 1994;78(1):23–33.
Google Scholar
Gibson JR, Bartley AF, Hays SA, Huber KM. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol. 2008;100(5):2615–26.
Article
PubMed
PubMed Central
Google Scholar
Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet. 2011;20(15):3093–108. doi:10.1093/hmg/ddr212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahbazian MD, Young JI, Yuva-Paylor LA, Spencer CM, Antalffy BA, Noebels JL, et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron. 2002;35(2):243–54.
Article
CAS
PubMed
Google Scholar
Veenstra-VanderWeele J, Muller CL, Iwamoto H, Sauer JE, Owens WA, Shah CR, et al. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci USA. 2012;109(14):5469–74.
Article
CAS
PubMed
PubMed Central
Google Scholar